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Introduction
We are all familiar with the formulae for finding the sums of the powers

of the first  natural numbers. For example, n

1 + 2 + 3 +  …  + n =
n(n + 1)

2
and12 + 22 +  …  + n2 =

n(n + 1)(2n + 1)
6

.

What about sums like

1 + 2 + 3 +  …  + n or 3 1 + 3 2 + 3 3 +  …  + 3 n?
Are there relatively simple formulae for those types of sums?

In this Article, we find an (almost) elementary way to approximate sums
such as these using series techniques from calculus.

The technique
Let us first consider the sum

S (n) = 1 + 2 + 3 +  …  + n. (1)
There is no tidy summing approach like the one Gauss used when he was a
boy to find the sum of the first 100 numbers. To find the sum

1 + 2 + 3 +  …  +  98 + 99 + 100
he paired the numbers 1 and 100, 2 and 99, 3 and 98, etc. to get 50 pairs of
101, which yielded a sum of 5050 [1]. Further, the sum in (1) cannot be
obtained by the inductive, telescoping approach that one uses to find the
sums of the natural numbers raised to integral powers 2 and higher [1].

To begin finding a formula for , we can
gain some initial insight from the integral . Why the integral?
Because the corresponding Riemann sum, with a  length of 1, is precisely
the sum . Since the value of the integral is , we get

1 + 2 + 3 +  …  + n
∫
n
0 x dx

dx
S (n) 2

3n3/2

1 + 2 + 3 +  …  + n ∼ 2
3n3/2.

The symbol ∼ means ‘is asymptotic to’ in the sense that the ratio of
 divided by  approaches  as . To

see that we are on the right track, let us try some values of : 
1 + 2 + 3 +  …  + n 2

3n3/2 1 n → ∞
n

n S (n) 2n3/2 / 3 S (n) / (2n3/2 / 3)
10 22.4683 21.0819 1.06576

100 671.463 666.667 1.00719

1000 21 097.5 21 081.9 1.00074

10000 666 716 666 667 1.00007

TABLE 1

https://doi.org/10.1017/mag.2023.91 Published online by Cambridge University Press

http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/mag.2023.91&domain=pdf
https://doi.org/10.1017/mag.2023.91


400 THE MATHEMATICAL GAZETTE

There is clearly some promise in our initial insight to connect the sum
with the integral. However, the difference of the actual sums from their
integral approximations grows as  increases, and there is a persistent error
term in the ratio of around . These observations suggest that we create
an asymptotic series  which incorporates , along with some
correction terms, to approximate the sum . Formally, we define  so
that it satisfies

n
7 / 10n

A (n) 2
3n3/2

S (n) A (n)

S (n) = 1 + 2 + 3 +  …  + n ∼ A (n) ,
with  given byA (n)

A (n) = n (2
3n + a0 +

a1

n
+

a2

n2
+

a3

n3
+  … ) + z. (2)

The first term arises from the integral , the coefficients  are yet to be
determined, and the reason for naming the last term  will be revealed
towards the end of the analysis.

(2
3n3/2) ak

z

Finding the coefficients
We start with the ready observation that

S(n) − S(n − 1) = (1 + 2 +  …  + n − 1 + n) − (1 + 2 +  …  + n − 1)
= n,

which translates to 
A (n) − A (n − 1) ∼ n. (3)

We will use this equation, along with (2), to determine the first few
coefficients of . This will then give accurate answers for the sum of

.
A (n)

1 + 2 + 3 +  …  + n
The first complication in computing  is that  is a

series in powers of  whereas 
A (n) − A (n − 1) A (n)

n

A(n − 1) = n − 1 (2
3 (n − 1) + a0 +

a1

n − 1
+

a2

(n − 1)2
+

a3

(n − 1)3
+… ) + z

is a series in powers of , so the terms do not automatically match up.
To circumvent this, we expand each of the terms in  in terms of
powers of , considering  to be large. As examples, for large , the Taylor

series for  is . Also,

, and  .

The higher order terms of  are found similarly via Taylor
expansions.

n − 1
A (n − 1)

n n n

n − 1 n 1 −
1
n

∼ n (1 −
1
2n

−
1

8n2
−

1
16n3

… )
1

n − 1
=

1
n ( 1

1 − 1
n
) ∼

1
n

+
1
n2

+
1
n3

…
1

(n − 1)2
∼

1
n2

+
2
n3

+
3
n4

…

A (n − 1)

Using these series, the equation for the difference
becomes

A (n) − A (n − 1)

A (n) − A (n − 1) ∼ n ×

(1 +
2a0 − 1

4
×

1
n

+
3a0 − 1 − 12a1

24
×

1
n2

+
4a0 − 1 − 24a1 − 96a2

64
×

1
n3

… ). (4)
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The key idea is that , so that each coefficient of the
powers,  etc. must be equal to zero. Hence ,  and

. For clarity of exposition, the higher order terms  were
not shown in (4). However, when the coefficients of those terms are set
equal to zero, we get . By way of summary, at
this stage, we have the following expression for :

A (n) − A (n − 1) ∼ n
1
n, 1

n2, a0 = 1
2 a1 = 1

24
a2 = 0 ( 1

n4, 1
n5, … )

a3 = −1
1920, a4 = 0, a5 = 1

9216
A (n)

A (n) ∼ n (2
3

n +
1
2

+
1

24n
−

1
1920n3

+
1

9216n5
+… ) + z. (5)

Higher order terms can be calculated, and those calculations are best
facilitated by a program like Mathematica [2]. (For novelty, this author used
it to calculate the coefficients up to .)  Nevertheless, the higher order
terms of  are not of much practical value in approximating  since
the error in  after using just the first two terms is of order , and the
error is of order  when using the first three terms – quite accurate! Of
interest is that the result in (5) can be obtained by using the Euler-Maclaurin
sum formula, a more advanced mathematical technique outside the scope of
this paper [3].

a19
A (n) S (n)

A (n) 1 / n
1 / n5/2

Two side facts are illuminating:
(1) All of the coefficients of the even powers  are zero. It

is not immediately obvious why this is the case, but a close look at
the pattern in which the higher order terms of the Taylor series
combine reveal this to be true. This result can also be seen by using
results from the Euler-Maclaurin sum formula.

( 1
n2, 1

n4, 1
n6, … )

(2) The first two terms of  in (5) are the terms found when
approximating the integral  by using the composite
trapezoidal rule with a unit step in ; from this  is
approximately  [4]. In essence, the other terms in (5) are
the elusive error terms of the trapezoidal rule for large .

A (n)
∫
n
0 x dx

x ∫
n
0 x dx

n (2
3n + 1

2)
n

Finding z
What is interesting at this stage is that we have a procedure for

determining the coefficients  of , but that procedure cannot find the
value of .  This is because the s subtract out when taking the difference

. So how to find ? The following table shows the first few
terms of  (without ) for ; it gives us a good sense of what the
numerical value of  might be.

ak A (n)
z z

A (n) − A (n − 1) z
A (n) z n = 10

z

Terms of A (n) 3 4 5

A (10) 22.6761660548 22.6761644078 22.6761644112

z ≈ S(10) − A(10) -0.2078878687 -0.2078862216 -0.2078862250

TABLE 2      n = 10 S (10) = 22.4682781862
Of note is that the value of  in  is the same no matter what  is used;
Table 2 indicates that the value of  is around -0.207886225.

z A (n) n
2
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The main point of the Article is to use elementary techniques to get
accurate approximations for sums like . So far, that
has been the case. However, to get the exact value of  in , we must
now take a slight detour and insert results from more advanced
mathematical tools. As it turns out, 

1 + 2 +  …  + n
z A (n)

z = ζ (−1
2) ,

in which  is the Riemann zeta function. The details are deferred to the
Appendix, in keeping with the elementary flavour of this paper. To twenty
decimal places, , which is in line with
the values in Table 2 above.

ζ

ζ (−1
2) = −0.20788622497735456602

By way of summary, we have

1 + 2 +  …  + n

∼ n (2
3

n +
1
2

+
1

24n
−

1
1920n3

+
1

9216n5
+  … ) + ζ (−1

2) . (6)

Table 3 illustrates how accurate this formula is even when using just the
first few terms. The digits in bold are the first digits in the approximations
that differ from the exact sum. Interestingly, the formula was derived under
the assumption that  was ‘large’, but we still get good results even for

, which is not that large.
n

n = 10

n 1 + 2 +  …  + n n(2
3

n +
1
2

+
1

24n) + z n(2
3

n +
1
2

+
1

24n
−

1
1920n3) + z

10 22.468278186204100 22.468279829813398 22.468278182793784

100 671.462947103147753 671.462947108355978 671.462947103147645

1000 21097.455887480735355385 21097.455887480751825 21097.455887480735355381

TABLE 3

Generalisations
The techniques in the prior sections can be readily mimicked to find

asymptotic expressions for sums of other fractional powers. For example, 

3 1 + 3 2 + 3 3 +  …  + 3 n ∼ 3 n(3n
4

+
1
2

+
1

36n
−

1
1944n3

… ) + ζ (−1
3).  (7)

As in the approach above, the first term,  is . As in the
square root case, this technique cannot find the last term, , but the
results shown in the Appendix produce this term. (For the interested reader,

 .)

3
4n4/3 ∫

n
0

3 x dx
ζ (−1

3)

ζ (−1
3) = −0.2773400478…
This approach can be generalised to find the sums of other fractional

powers rather than just the square root and cube root cases analysed so far.
To outline the method, we first expand the sum:

1s + 2s +  …  + ns ∼ ns ( n
s + 1

+
1
2

+
a1

n
+

a3

n3
+  … ) + z.
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Similarly,

1s +  …  + (n − 1)s ∼ (n − 1)s(n − 1
s + 1

+
1
2

+
a1

n − 1
+

a3

(n − 1)3
+  … ) + z.

After this latter series is expanded in terms of powers of , the difference
of the two series yields

1 / n

ns ∼ ns (1 −
(s − 1) (s − 12a1)

12n2
+  … ) .

From this we see that . Determining the higher order terms is
algebraically more involved, but the net result is

a1 = s
12

1s + 2s +  …  + ns ∼

ns( n
s + 1

+
1
2

+
s

12n
−

s(s − 1)(s − 2)
720n3

+
s(s − 1)(s − 2)(s − 3)(s − 4)

30240n5 ) + z.  (8)

Again,  follows from the results found in the Appendix.
Interestingly, the terms up to  were found by G. H. Hardy by using
analytic number theory techniques [5].

z = ζ (−s)
1 / n

Conclusion
From the earliest days of school, finding sums has been an important

activity for mathematics students. Naturally, the types of sums a student is
able to compute become more advanced with time. Arithmetic sums,
geometric sums, and sums of powers are often a stopping point for students
who do not get as far as calculus.

By using calculus, the types of sums that can be found is considerably
broadened. This paper shows how Taylor series can be used to find sums of
natural numbers raised to fractional powers. The technique is widely
accessible to a large mathematical audience and illustrates a novel way of
using common tools to extend results to sums that are, on the face of it,
difficult to evaluate.

Appendix
The Riemann zeta function,  is defined by, ζ (s)

ζ (s) = ∑
∞

m = 1

1
ms

,

and it is convergent for . The definition can be extended analytically
to complex values of . There are two relevant results that pertain directly to
the work of this Article. By using the Euler-Maclaurin sum formula [3] and
techniques from analytic number theory, G .H. Hardy [5] showed that

s > 1
s

ζ (s) = lim
n → ∞

⎧
⎩
⎨ ∑

∞

m = 1

1
ms

−
n1 − s

1 − s
−

1
2

n−s +
1
12

sn−s − 1⎫
⎭
⎬ .

This expression is valid when , except for . whereRe (s) > −3 s = 1 Re (s)
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denotes the real part of . A related result by Srivastava and Choi iss

ζ (s) = lim
n→ ∞

⎧
⎩
⎨∑

∞

m= 1

1
ms

−
n1 −s

1 − s
−

1
2

n−s +
1
12

sn−s − 1 −
1

720
s(s + 1)(s + 2)n−s − 3⎫

⎭
⎬.

This result is valid for  also, except for , [6].Re (s) > −5 s = 1
The sums of roots formula, developed in this Article are naturally of the

form , not in the form  as specified
in the results of Hardy and Srivastava and Choi. However, if  is
substituted for  into either of their results, then we get

1s + 2s +  …  + ns 1
1s + 1

2s +  …  + 1
ns

−s
s

1s + 2s +  …  + ns ∼ ns( n
s + 1

+
1
2

+
s

12n
−

s(s − 1)(s − 2)
720n3

+… ) + ζ (−s),

in accord with (8).
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