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ON CERTAIN PROPERTIES OF 
SUBNORMAL SUBGROUPS 

JENNIFER WHITEHEAD 

1. Introduction. 

1.1. Main results. Let G be a group generated by two subnormal subgroups 
H and K. Denoting the class of nilpotent groups by 9Î, and the limit of the 
lower central series by G^, Wielandt showed in [14], for groups with a composi­
tion series that 

(*) G* = H*K* and H*K = KH^. 

More recently, Stonehewer has shown in [13] that (*) remains true when H 
and K are minimax groups or have finite rank, provided that H/H^ and K/K^1 

are nilpotent. Here, we obtain a further generalization of Wielandt's result, 
removing the condition that the lower central series of H and K terminate. 
If yr(G) denotes the r-th term of the lower central series of G, and Max-sn 
denotes the class of groups having the maximal condition on subnormal sub­
groups, then we state: 

THEOREM A. Suppose that a group G is generated by two subnormal subgroups 
H and K, and let H, K Ç 'Max-sn. Then, given any two positive integers rx and 
r2, there exists a positive integer r such that 

yr(G) ^ (yrl(H),yrt(K)). 

We say G satisfies Min-n if G satisfies the minimal condition on normal 
subgroups. Then any group G satisfying Min-n has the property that the 
lower central series terminates after finitely many steps. If G is generated by 
two subnormal subgroups H and K, we do not know that H/H^1 and K/K^1 are 
nilpotent, since the condition M'm-n is not necessarily inherited even by 
normal subgroups (see Robinson [9, p. 153]). However, we are able to prove 
more generally: 

THEOREM B. Let G satisfy M'm-n and let G be generated by two subnormal 
subgroups H and K. Then for any two positive integers r\ and r2 

G* ^yn(H)yr2(K). 

We note that it is not possible to find any general theorem of this type, 
since the join of two nilpotent subgroups need not be nilpotent (see Zassenhaus 
[16, Appendix D, Exercise 23]). 
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Let # be a class of groups. We define the %-residual G* to be the intersection 
of all normal subgroups of G whose factor groups in G are X-groups. Let L9Î 
denote the class of locally ni lpotent groups. For the proof of Theorem B we 
shall examine the locally ni lpotent residual of a locally finite group which is 
the join of two subnormal subgroups. We obtain the following criterion for the 
permutabi l i ty of the locally ni lpotent residuals of two subnormal subgroups, 
and we note t ha t this is analogous to the case of nilpotent residuals proved 
as Theorem A in [13]. 

T H E O R E M C. Let G = {H, K) where H, K are subnormal subgroups of G and 
suppose that Gm = (Hm, Km). Then Gm = HmKL*, HmK = KH™ and 
HKm = KmH provided that H/Hm £ L5R. 

Our second result on locally nilpotent residuals generalizes Wie landt ' s 
theorem (*) to the class of locally finite groups. 

T H E O R E M D. Let G be a locally finite group, generated by two subnormal sub­
groups H and K. Then G/Gm, H/Hm, K/Km Ç LVl (this is well known), 

Gm = (HmiKL3i) = HL*Km,andHL*K = KHm. 

Finally, we examine a criterion for subnormal i ty in soluble groups. In [15], 
Wielandt found conditions in a finite group which imply the subnormal i ty of 
a subgroup, and has also extended some of these results to groups satisfying 
the maximal condition. Similar results have been proved by Har t ley and Peng 
for groups satisfying the minimal condition [4], and by Peng [8] for soluble-by-
finite groups and groups satisfying maximal and minimal conditions on abelian 
subgroups. Let [h, k] denote the commuta to r h~lk~lhk and define inductively 
[h, nk] = [[h, n_ik]k]. Then we obtain the following condition for a finitely 
generated subgroup of a soluble group to be subnormal : 

T H E O R E M E. Let G be a soluble group and let H ^ G such that H = 
(hi\l ^ i ^ m). Suppose there exists a fixed integer n such that [g, nh^\ G H for 
all g e G, 1 S iS m. If 

(i) G is poly cyclic, or 
(ii) H is M'm-by-nilpotent, 

then H is subnormal in G. 

W e prove par t (i) first for finite soluble groups and then extend to polycyclic 
groups. We do not know whether the result remains true in the finite case when 
the condition of solubility is removed, and we leave this as an open question. 

1.2. Notation. If H is a subgroup of G, we define H0 = G and inductively 
Hi+i = HHi for i ^ 0. Ht is called the i-th normal closure of H in G. If H is 
subnormal in G we write H sn G; and if the index of subnormal i ty is a t most n, 
then we write H <P G. Hence H <T G if and only if H = Hn. W e define 
[H, K] = ([h, k]\h£ H,ke K) and [H, nK] = [[H, ^K], K\. Let X be any 
subgroup of G, then Core G (X) denotes the largest normal subgroup of G con­
tained in X. 
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The closure operations we shall use are S, Sn, Q, RQ, R, N0, N and are defined 
as follows: 

X = 5 Ï if every subgroup of an £-group is an ï -group , 

ï = SnX if every subnormal subgroup of an X-group is an ï -g roup . 
X = QH if every homomorphic image of an X-group is an £-group. 
H = Ro% if whenever for normal subgroups TVi, 7V2 of G with G/N\ G £, 

G/N2 G X then G/{Nl C\ N2) G £ 
ï = 7?X if7Vx<3GandG/7VxGX(\G A) always imply G / C r W i V x ) G X. 
X = iV0£ if the product of any pair of normal ï - subgroups is an ï -g roup . 
G G iVï if G can be generated by its ascendant 36-subgroups. 

We say tha t ï is coalcscent if and only if in any group the join of a pair of 
subnormal ï - subgroups is always a subnormal ï - subgroup. 21 denotes the class 
of abelian groups; L g and L g n denote the classes of locally finite and locally 
finite II-groups for a set of primes II, respectively. 

2. Proofs of T h e o r e m s C a n d D . 

2.1. Preliminary lemmas. Our first result examines the effect of homomor-
phisms on the ^-residual of a group G. We omit the proof which is straight­
forward. 

LEMMA 2.1. Let ï = Q% and suppose that G is a group such that G/G* G £. 
Then if S is any homomorphism of G, we have (Gd)* = {G*)d and GO/(GO)* G X. 

We next examine the ^-residual of the join of a subnormal and a normal 
subgroup. 

LEMMA 2.2. Let £ = 7V0ï = SnH = QT£. Suppose that G = HK where H sn G, 
K < G and that K/K* G S, H/H* G ï . Then G/G1 G ï and G* = H*K*. 

Proof. I t follows easily from the definition of G* and the ^ -c losure of Ï t ha t 
H*% K* S G*. 

Since K% <\ G, by Lemma 2.1 we may assume K* = 1 and show H* = G*. 
Let H <\m G and use induction on m.lim = 1, H* < G and G/H1 is generated 
by two normal X-subgroups. By the AVclosure of ï we have G/H* G ï . So 
G* = H* and G/G* G ï . 

Suppose m > 1. Then Hx = H(HX C\ K) and H1 T\ K e SJL = X. Since 
H <m-1 Hu by induction H? = H1 and H^/H? G 36. Then by case m = 1 
the result follows. 

I t is not hard to show tha t if ï is an 5 and i?0-closed class of finite groups then 
the class of L36-groups is /^-closed relative to the class of locally finite groups. 
Using this fact, we examine the Lï-residual of a locally finite group G, and 
relate it to the X-residuals of its finite subgroups. 
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LEMMA 2.3. Let G G Lg. Let X = (S, R0, Q)X £ g. Then we have GL* = 
(F*\F is a finite subgroup of G). 

Proof. By the above we have G/GL* G LU. 
Let R = (F*\F is a finite group of G). Then R <] G and if F is any finite 

subgroup of G, FR/R £ Çï = ï . Hence if 2C/JR is any finite subgroup of G/R 
then X/7* G ï . Therefore G/R G L Ï and it follows that GL* ^ R. 

However, if F is any finite subgroup of G, it is easy to see that F* S GL*. 
So R ^ GL* and we have equality. 

2.2. Proof of Theorem C. We now turn to the problem of permutability of 
locally nilpotent residuals. Following the methods of Stonehewer in [13], we 
use the following result of Brewster [2] on the permutability of subnormal 
subgroups. 

LEMMA 2.4. (Brewster). Suppose that H and K are subnormal subgroups of 
a group G, that G = {H, K) and that for all finite c ^ 1 G = HKyc(G). Then 
G = UK. 

We proceed with the proof of Theorem C. Let M = GLn and for some integer 
c ^ 1 let N = yc(M). Then M <\ G and using Lemma 2.1 we may apply 
Lemma 2.2 to the product 

HM = (HN\ l M \ 
N \ N J\ N I ' 

Since (M/N)m = 1, we obtain (HM/N)m = (HN/N)m = (HmN)/N 
and therefore (HmN)/N O HM/N. 

So HmN < M and we have M = HmKmyc(M). As this is true for all 
finite c à 1, by Lemma 2.4 M = HmKm. 

The last statement of the theorem now follows easily since KHL^1 = 
KKmHL* = KGL* = GmK = tf ^ i £ . Similarly HKm = KmH. 

2.3. Proof of Theorem D. We generalize the methods used by Wielandt in 
[14], but note that the proof itself is independent of the finite case. If IT is a set 
of primes, we denote the II-residual of a locally finite group G by 0n(G) and 
note that G/Ou(G) is a locally finite II-group. 

We shall need the following results: 

LEMMA 2.5. Let X and Y be subgroups of a locally finite group such that G = 
(X, Y) and Y sn G. Suppose that every finite subgroup of X lies in a subnormal 
subgroup of Gin X. 

IfOu(Y) ^ X H YthenOu(G) g X. 

Proof. Let Y <]m G and proceed by induction on m. 
Case l. m = 1. Then Y <\ G and by Lemma 2.3 

(**) 0U(G) = (0U(F) | F is a finite subgroup of G ). 
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Let F be any finite subgroup of C. Then F ^ I<\ a finite subgroup, where 
Fi = (X r\ Fi, Y H Fx). By hypothesis, there exists a subnormal subgroup 
X1 of C, such tha t I H f t ^ I ^ X . Hence F\ = ( X : H /<\, F H 7^) where 
X i H Fi sn /^i, F H Fi <\ FL By Lemma 2.2 we have 

on(F!) = on(xl n ^i)on(Fn /̂ ) ^ x. 
So 0 n ( F ) g X for all finite subgroups F of G and so by (**) 0U(G) g X 

as required. 

Case 2. m > 1. Let Fi = F x . If ^ is any finite subgroup of Fx H X , then by 
hypothesis there exists a subnormal subgroup S of G such tha t F S S ^ X . 
Then ^ g 5 H Fx g Fx H X where ^ H ^ s n C. Hence the group Y = 
(Yi C\ X, Y) satisfies the hypotheses of the Lemma, and F <]m~1 F. By induc­
tion we have 0U(Y) S X H F. 

Let X = 0 n ( F ) , X = X H F L Then X ^ X, X/N is a n-group and X has 
no non-trivial II-quotients. Therefore X = 0 n ( X ) O (X, F ) = C. 

Now Yi/N = (YXN/N\x £ X ) and so F i / X is generated by subnormal 
Lgn-subgroups. By the X-closure of the class Lgn (see Robinson [9, p. 57 
Theorem 2.31]), Y,/N £ Lgii and applying case 1 to G/N we obtain O n ( C / X ) 
^ X / X . Using Lemma 2.1 we have 0U(G) ^ X . 

LEMMA 2.6. Let G be a locally finite group. Let A, 13 be subnormal subgroups of 
C, and let J = (A, B). Then if F is any finite subgroup of J, there exists a sub­
normal subgroup S of G such that F ^ S ^ / . 

Proof. This follows immediately from Roseblade and Stonehewer [12, 
Theorem A]. 

I t is now an easy consequence of Lemmas 2.5 and 2.6 to prove: 

T H E O R E M 2.1. Let G be a locally finite group generated by two subnormal sub­
groups H and K. Then 

0U(G) = < 0 n ( # ) , 0 n ( i £ ) > . 

Proof. I t is easy to show tha t (0n(H), 0n(K)) ^ 0n(G). T o show the 
opposite inclusion, by Lemma 2.6 the group (0U(H), 0U(K)) satisfies the 
hypotheses of the group X in Lemma 2.5. Hence, applying this Lemma to 
(0U(H), K) with F = K we have: 

0*((0*(H),K)) S <On( t f) ,OnCK)>. 

Similarly, applying Lemma 2.5 to G with X = (0n(H), K) and F = H we 
obtain 

0U(G) rg < 0 n ( # ) , X > . 

Hence 0U(G) g (0U(H), 0U(K)) and we have equality. 
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We are now ready to prove Theorem D. We note first t ha t by the 7^-closure 
of the class LW relative to the class L g , we have G/Gm, H/Hm and K/Km 

are locally nilpotent . By Theorem C, it is enough to prove t ha t Gm = 
{HL*,Km). I t follows easily t ha t (Hm,Km) ^ Gm. 

Now let p be any prime, and in Theorem 2.1 let II = \p] and apply to the 
group G generated by H and K. 

T h e n O ( G ) = (0P(H), 0P(K)). 
Since K/Km is the direct product of ^-groups, denoting the set of primes 

different from p by p', we have 0P'(0P(K)) g Km. Let L = 0P(G). Applying 
Theorem 2.1 to the group L wi th II = {^ | we have 

0p,{L) = (Op'(Op(H)),Op,(Op(K))). 

Then GL*/(CoreG(Hm, Km)) is an Lg^ -g roup . 
Since p wras any prime, this is t rue for all primes £>. Hence Gm = (Hm,Km). 

3. Proof of T h e o r e m B . We shall use the fact t ha t for a group G satisfying 
the minimal condition and generated by two subnormal subgroups H and K, 
G^ = (H^, K^) = H^K^1. This is not hard to show, adapt ing the proof given 
by Wielandt in [14] for groups with a composition series. 

If G is a group, we denote by G(n) the n-th term of the derived series of G. 
Star t ing on the proof of Theorem B, there exist positive integers Si and s2 

such tha t 

# ( S 1 ) S 7n(H) and 2£<"> g yT2(K). 

By Roseblade [11], there exists an integer s such t ha t 

G<*> S H<°*K<°* è yT1(H)yrt(K) 

and hence, wi thout loss of generality, we may factor by G(s) and assume G is 
soluble. Since G satisfies Min-n, G is locally finite (see Baer [1]). By Theorem I) , 
the factors G/Gm, H/Hm, K/Km are locally ni lpotent and 

QIM <g HmKm <g 7ri(H)yT2(K). 

Therefore, we may assume Gm = 1 and tha t G £ L^l. So G satisfies the 
minimal condition (see McLain [6]), and by the remark above Gm = HmK^ 
é yri(H)yr2(K). 

We introduce some notat ion before proving a corollary to the Theorem. 
If H and K are subgroups of a group G, then the permntizer PH(K) of K in 7/ 
is defined in [12] to be the largest subgroup of H which permutes with K. 

COROLLARY. Let G = (H, K) satisfy M'm-n and let H and K be subnormal 
-subgroups of G. Then there exists a positive integer 5 such that yt(H) ^ PH(K). 

Proof. T h e proof of this is analogous to t ha t given for the case of the derived 
series in [11] (see [11, corollary to Theorem B]) . 
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4. Proof of T h e o r e m A. We shall need a theorem of Mal 'cev [7] which 
states t ha t any subgroup of a polycyclic group is equal to the intersection of all 
the subgroups of finite index tha t contain it. 

If G is any group, and r an integer we define Gr by Gr = (gr; g G G). 
We now begin the proof of Theorem A and note as in Theorem B we may 

assume G is soluble. By the subnormal coalescence of the class Max-sn (see 
[10]) we have tha t G G Max-sw, and so G is polycyclic. Let G have derived 
length d, and let X = (yri (H), yr2 (K) ). We use induction on d. If d = 1, then 
the Theorem is trivially true. So assume d > 1 and let N be the last bu t one 
term of the derived series of G. By induction, there exists a positive integer r3 

such tha t 7?3(C7) ^ NX. By [13, Lemma 2], there exist positive integers tu h 
such t h a t 

ytl(NH) ^ yn(H) and yt2(NK) g 7 r 2 ( i O . 

By replacing fi, r2 by /i, /<2 respectively, we may assume tha t N i^ H C\ K, 
and X < JOT. 

Let L = yn(G). Then 1 / ^ ( X X ) ' ^ X and since we may assume without 
loss of generality t ha t Core G (X) = 1 we have L' = 1. 

Let M = X L . Since Af is polycyclic, there exists F < M", A ^ F such tha t 
M/F is finite and F / X is torsion-free. Let \M : F\ = n. Then Mn ^ F and 
| AT : APX| is finite and MnX/X is torsion-free. 

By Mal 'cev 's theorem, there exists F0 S G such tha t \G : F0\ < ex) and 
APX = Fo C\ M. By Wielandt ' s theorem (*) we have tha t there exists an 
integer r4 such tha t 

yri(G) ^XCoreG(Fo). 

Let r5 = max {r3, r 4 }. Then yTb(G) S X(F0n M) ^ XMn. 
Hence we may suppose tha t L = yr^(G) and tha t M/X is torsion-free. In a 

similar way, we can show for all primes p, there exist integers r(p) such t ha t 
7r(P)G S XMV. Let s be the rank of G. Then M/XMV has order less than or 
equal to ps. Then yT5+s(G) ^ H P XMP. 

Now ( M / X ) p = XMP/X and since M/X is a torsion-free abelian group of 
finite rank p | (M/X)p = A . 

Hence C\p XMV = X and yrr0+s(G) ^ X . So, subst i tut ing r = r5 + 6', the 
theorem is proved. 

5. Proof of T h e o r e m E. 

5.1. The finite case. We would like to thank Dr. Brian Har t ley for suggesting 
the following result and for indicating the method of proof. 

T H E O R E M 5.1. Let G be a finite soluble group. Let H = (hi\l ^ i ^ m). Then 
H is subnormal in G if and only if [g, Ji^ G H for all g G G, n = \G\, i = 1, 
. . . , m. 

T o prove this we introduce two concepts. Let G be any group and let a G G. 
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We define subgroups Xr(a) for integers r ^ 0 by 

XT(a) = (a, [g, ta]; g £ G). 

Then Xr(a) ^ Xr+i(a) for all integers r ^ 0. 
Following Wielandt , we define the subnormalizer of a subgroup X to be the 

intersection of all subnormal subgroups of G containing X. We denote the sub­
normalizer of X by SG(X). In general SG(X) need not be subnormal in G. 
For let G be the infinite dihedral group 

A» = (xi ^ l ^ - 1 ^ = y~l, x2 = 1) 

and let X = (x) and Y = (y). 
Then x~1yix = y{~x for all yi (z Y and so Xr(x) = (y2r, x). Then XT(x) < 

X r _ ! ( x ) a n d s o Z r ( x ) s n G f o r f ^ 0. But if SG{X) sn G, then X m (x ) g S G ( X ) 
for some integer ra. Therefore, the chain 

. . . ^ * , ( * ) ^ Xt-!(x) ^ . . . g (xG) ^ G 

terminates after finitely many steps. Since X r ( x ) < X r _ i (x ) for all positive 
integers r, we have a contradict ion. 

Theorem 5.1 follows from: 

L E M M A 5.1. Let G be a finite soluble group and let a £ G. Then if n = |G|, 
we have 

S G ((a)) = Xr(a) for all r ^ n. 

Proof. Since G is finite of order n, SG((a)) is subnormal in G, and the sub­
normal index is bounded by n. Hence Xr(a) ^ SG((a)) for all r ^ n. So it is 
enough to show tha t Xr(a) sn G. Suppose for a contradict ion t ha t this is false, 
and let G be a minimal counterexample. 

Choose an integer r ^ n, and assume X = Xr(a) is not subnormal in G. 
Let Gi = (a G ) . If Gi < G, by the minimali ty of G the subgroup 

^ i = (a, [gi, m'*]; gi Ç Gi) where w = |Gi| 

is subnormal in G\. Hence X\ sn G and X :g X i . But since m = |Gi|, X\ ^ X . 
Hence X = X i , and X is subnormal in G, which is a contradict ion. So G = 
(aG). Let TV be a minimal normal subgroup of G. Then XN/N sn G / X and 
XN sn G. Therefore X X = G. Since TV Ç 21, X C\ N <3 G. If X H TV = TV 
then TV ^ X and G = X. So X P\ X = 1 and X is a maximal subgroup of G. 

N o w GG(a) ^ NG(X) = X . Hence CN(a) = 1. Let TVi be a minimal a-
invar iant subgroup of N. Then [TVi, a] = TVi = [Xi, ra] g X . This contradic­
tion shows t h a t X sn G. 

Proof of Theorem 5.1. We have i7 = (ht\l rg i ^ m) = (Xn(/zz-)|l ^ i ^ m) 
where w = |G|. By Lemma 5.1, we know tha t each Xn{ht) is subnormal in G 
where 1 ^ i ^ m, and hence i7 is subnormal in G. Obviously the converse 
holds. 
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5.2. Proof of Theorem E. T o prove par t (i) of Theorem E we use the finite 
case and a result due to Kegel [5] which states tha t a subgroup X of a poly-
cyclic group G is subnormal in G if and only if X is subnormal in G modulo 
normal subgroups of finite index in G. Since the hypotheses of Theorem E 
remain true on taking homomorphic images of G, Theorem E (i) easily follows. 

T o prove Theorem E (ii) we use the following lemmas: 

LEMMA 5.2. Let G be any group. Let X ^ G and let N be a normal abelian sub­
group of G. Let a £ X and suppose that X = (a, [gi, ra]\gi G XN) and XN = 
XN. ThenX <T X X . 

Proof. Wi thou t loss of generality, we may suppose tha t G = XN. Since 
X H N < G we may also assume X H TV = 1. 

Let Ni = NN(X). Then Ni < G. By induction define Nt for i > 1 by 

Ni/Nt-! = NN/Ni_1(XNi.1/Ni_1). 

We shall show tha t N = Nr. 
Since CG(a) ^ NG(X) we have CN(a) é N1 and [n, ra] G X H X = 1. 

Hence [n, ?-_i«] G Ni. Similarly, factoring G by Xi , we obtain [n, r_2a] £ X 2 . 
By a simple induction, N = Nr, 

X < î i V i < . . . < X X r = G and X < r G. 

LEMMA 5.3. Let G be a soluble group and let a £ G. Suppose for some integer m, 
Xm(a) = Xm+r(a)forallr ^ 0. 

ThenXm(a) sn G. 

Proof. We use induction on d, the derived length of G. If d = 1, then the 
lemma is trivially true. Hence assume d > 1 and let TV be the last bu t one term 
of the derived series of G. 

Let X = Xm(a). By induction, XN/N sn G/N and XN sn G. Suppose 
XN <\s G. 

Let X = (a, [xw, ma] ; x Ç X , n £ TV). 
Then Xs+??l(«) fg X . By hypothesis, X = X 5 + W ( a ) . Hence X ^ X ^ X and 

X - X . So X X = XN and by Lemma 5 . 2 1 = 1 sn X X . 

We are now able to prove Theorem E (ii). By hypothesis, Xn(ht) ^ H for 
1 ^ i ^ m. Since H is Alin-by-nilpotent, for each ht £ H we can find an 
integer k ^ n such tha t Xlc(hi) = Xk+r(hi) for all r ^ 0. Let / be the largest 
such k. 

Then Xt+r(hi) = I , ( ^ ) for all r ^ 0, 1 g i ^ w. 
By Lemma 5.3, Xt(hi) sn G, and by the subnormal coalescence of the class of 

minimax groups (see for exa'mple [3]) we have H is subnormal in G as required. 

Acknowledgements. I am greatly indebted to Dr. Stewart Stonehewer for 
his help and encouragement during the preparat ion of this paper. T h a n k s also 
go to the Science Research Council for their financial support . 
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