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ON CERTAIN PROPERTIES OF
SUBNORMAL SUBGROUPS

JENNIFER WHITEHEAD

1. Introduction.

1.1. Main results. Let G be a group generated by two subnormal subgroups
H and K. Denoting the class of nilpotent groups by 9N, and the limit of the
lower central series by G®, Wielandt showed in [14], for groups with a composi-
tion series that

(*y G% = H®K®™ and H%“K = KH%®,

More recently, Stonehewer has shown in [13] that (*) remains true when H
and K are minimax groups or have finite rank, provided that H/H® and K/K"
are nilpotent. Here, we obtain a further generalization of Wielandt’s result,
removing the condition that the lower central series of H and K terminate.
If v,(G) denotes the r-th term of the lower central series of G, and Max-sn
denotes the class of groups having the maximal condition on subnormal sub-
groups, then we state:

THEOREM A. Suppose that « group G is generated by two subnormal subgroups
H and K, and let H, K € Nax-sn. Then, given any lwo positive integers vy and
79, there exists « positive integer r such that

v.(G) £ <'Yr1(H)r Yre (K)>

We say G satisfies Min-n if G satisfies the minimal condition on normal
subgroups. Then any group G satisfying Min-n has the property that the
lower central series terminates after finitely many steps. If G is generated by
two subnormal subgroups H and K, we do not know that H/H" and K/K® are
nilpotent, since the condition \in-z is not necessarily inherited even by
normal subgroups (see Robinson [9, p. 153]). However, we are able to prove
more generally:

THEOREM B. Let G satisfy NMin-n and let G be generated by two subnormal
subgroups H and K. Then for any two positive integers ri and v,

Gt =i (H)'er (K)

We note that it is not possible to find any general theorem of this type,
since the join of two nilpotent subgroups need not be nilpotent (see Zassenhaus
[16, Appendix D, Exercise 23]).
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Let X be a class of groups. We define the ¥-residual G¥ to be the intersection
of all normal subgroups of G whose factor groups in G are X-groups. Let LN
denote the class of locally nilpotent groups. For the proof of Theorem B we
shall examine the locally nilpotent residual of a locally finite group which is
the join of two subnormal subgroups. We obtain the following criterion for the
permutability of the locally nilpotent residuals of two subnormal subgroups,

and we note that this is analogous to the case of nilpotent residuals proved
as Theorem A in [13].

TueoreMm C. Let G = (H, K) where H, K ure subnormal subgroups of G and
suppose that GF% = (HE® K%, Then G** = HEKIY HIYK = KHY and
HK®™ = K'*H provided that H/H*® € LN.

Our second result on locally nilpotent residuals generalizes Wielandt's
theorem (*) to the class of locally finite groups.

THEOREM D. Let G be « locully finite group, generated by two subnormul sub-
groups H and K. Then G/G*®, H/H™"™, K/K™ ¢ LN (this is well known),
G = <HL‘JEY KL‘JE> — HL‘RKL‘R’ and HIME = KHWW,

Finally, we examine a criterion for subnormality in soluble groups. In [15],
Wielandt found conditions in a finite group which imply the subnormality of
a subgroup, and has also extended some of these results to groups satisfying
the maximal condition. Similar results have been proved by Hartley and I’eng
for groups satisfying the minimal condition [4], and by Peng [8] for soluble-hy-
finite groups and groups satisfying maximal and minimal conditions on abelian
subgroups. Let |/, k] denote the commutator A~'k~'hk and define inductively
Lk, k] = [[h, ,—ik]k]. Then we obtain the following condition for a finitely
generated subgroup of a soluble group to be subnormal:

THEOREM E. Let G be a soluble group and let H = G such that H =
(hi|l =1 £ m). Suppose there exists a fixed integer n such that g, ;) € H for
all g € G, 1 £1 2 m. If

(1) G 1s polycyclic, or

(i1) H s Min-by-nilpotent,
then H 1s subnormal in G.

We prove part (i) first for finite soluble groups and then extend to polycyclic
groups. We do not know whether the result remains true in the finite case when
the condition of solubility is removed, and we leave this as an open question.

1.2. Notation. 1f H is a subgroup of G, we define Hy = G and inductively
Hiyy = H"ifor 1 2 0. H; is called the i-th normal closure of H in G. 1f H is
subnormal in G we write H sn G; and if the index of subnormality is at most #,
then we write H <" G. Hence H <" G if and only if H = H,. We define
[H, K] = {h, k]l;h € H k¢ K)and [H, ,K] = |[|H, ,.1K], K]. Let X be any
subgroup of G, then Core,(X) denotes the largest normal subgroup of G con-
tained in X.
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The closure operations we shall use are S, S,, Q, Ry, R, Ny, N and are defined
as follows:

X = SX  if every subgroup of an X-group is an X-group.

X = S5X if every subnormal subgroup of an X-group is an X-group.

X = QX if every homomorphic image of an X-group is an X-group.

X = RoX if whenever for normal subgroups N, N:of G with G/N; € X,

G/N, € X then G/ (N1 N N,) € X.

= RX ifN,<dGandG/Ny€X(AE A)alwaysimply G/ (MrealVy) € X.
= NoX if the product of any pair of normal X-subgroups is an X-group.
€ NX if G can be generated by its ascendant X-subgroups.

We say that X is coalescent if and only if in any group the join of a pair of
subnormal X-subgroups is always a subnormal X-subgroup. 9 denotes the class
of abelian groups; L§ and Ly denote the classes of locally finite and locally
finite TI-groups for a set of primes II, respectively.

2. Proofs of Theorems C and D.

2.1. Preliminary lemmas. Our first result examines the effect of homomor-
phisms on the X-residual of a group G. We omit the proof which is straight-
forward.

Lemuma 2.1, Let ¥ = QX and suppose that G 1s « group such that G/G¥ ¢ X.
Then if 6 is any homomorphism of G, we have (G8)* = (G¥)0 and G0/ (GO)* ¢ X.

We next examine the X-residual of the join of a subnormal and a normal
subgroup.

LumMa 2.2, Let X = NyX = 5,X = QX. Suppose that G = HK where H sn G,
K <G and that K/K¥ ¢ ¥, H/H* ¢ X. Then G/G* ¢ X and G¥ = HY¥K¥,

Proof. It follows easily from the definition of G¥ and the .S,-closure of ¥ that
H* K¥ < GY.

Since K*¥ < G, by Lemma 2.1 we may assume K* = 1 and show H¥ = G¥,
Let H <4™ G and use induction on m. If m = 1, H* <4 G and G/H¥ is generated
by two normal ¥-subgroups. By the Ny-closure of ¥ we have G/H* € ¥. So
G¥ = H¥ and G/G¥ ¢ X.

Suppose m > 1. Then H, = H(Hi N K) and HHN K € S,X¥ = X. Since
H ™1 H,, by induction H¥ = H¥ and H,/H,* ¢ X. Then by case m = 1
the result follows.

It is not hard to show that if X is an .S and Ro-closed class of finite groups then
the class of LX-groups is R-closed relative to the class of locally finite groups.
Using this fact, we examine the LX-residual of a locally finite group G, and
relate it to the X-residuals of its finite subgroups.
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LEMMA 2.3. Let G € LE. Let ¥ = (S, Ry, Q)X £ §. Then we have G*¥ =
(F¥| Fis a finite subgroup of G).

Proof. By the above we have G/G* ¢ LX.

Let R = (F¥|Fis a finite group of G). Then R < G and if F is any finite
subgroup of G, FR/R ¢ QX = X. Hence if K/R is any finite subgroup of G/R
then K/R € X. Therefore G/R € LX and it follows that G** < R,

However, if F is any finite subgroup of G, it is easy to see that F* < GI¥,
So R £ G™ and we have equality.

2.2. Proof of Theorem C. We now turn to the problem of permutability of
locally nilpotent residuals. Following the methods of Stonehewer in [13], we
use the following result of Brewster {2] on the permutability of subnormal
subgroups.

LEmMa 2.4. (Brewster). Suppose that H and K are subnormal subgroups of
a group G, that G = (H, K) and that for all finite c 2 1 G = HKv (G). Then
G = HK.

We proceed with the proof of Theorem C. Let M = G*®and for some integer
c=11let N =~.(M). Then M < G and using Lemma 2.1 we may apply
Lemma 2.2 to the product

HM _ (ﬁ_l\_’) ( M)
N \N N/
Since (M/N)X® =1, we obtain (HM/N)!® = (HN/N)® = (H"N)/N
and therefore (H*"N)/N <1 HM/N.

So HFN <« M and we have M = HIRK %y (M). As this is true for all
finite c 2 1, by Lemma 2.4 M = HIRK™®,

The last statement of the theorem now follows easily since KHZ®
KKIHIR = KGN = GIK = HMMK, Similarly HK*® = K" H,

€N _

2.3. Proof of Theorem D. We generalize the methods used by Wielandt in
[14], but note that the proof itself is independent of the finite case. If II is a set
of primes, we denote the II-residual of a locally finite group G by O"(G) and
note that G/O"(G) is a locally finite II-group.

We shall need the following results:

LEmMMmA 2.5, Let X and Y be subgroups of « locally finite group such that G =
(X, Y)and Y sn G. Suppose that every finite subgroup of X lies in a subnormal
subgroup of Gin X.

IfO"(Y) = X M Yihen O"(G) = X.

Proof. Let ¥V <I™ G and proceed by induction on .
Case 1.m = 1. Then ¥ < G and by Lemma 2.3

**) O"(G) = (OU(F)|Fisa finite subgroup of G).
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Let F be any finite subgroup of G. Then F £ I, a finite subgroup, where
I'y = (XM Iy, YN Fy). By hypothesis, there exists a subnormal subgroup
Xiof G,such that X M Iy £ X1 £ X. Hence Iy = (X, N Fy, YN Fy) where
X1M Fysn Fy, YN Fy < Fi. By Lemma 2.2 we have

On(Fl) = OH(Xl M FQO“(Yﬂ F]) = X.

So O"(}) £ X for all finite subgroups I of G and so by (**) O"(G) £ X
as required.

Case2.m > 1. Let Y, = V¥ If Fis any finite subgroup of V1 M X, then by
hypothesis there exists a subnormal subgroup S of G such that ' .5 £ X.
Then F<SNY, £ ViNX where SN Y, sn G. Hence the group ¥ =
(V1 N X, V) satisfies the hypotheses of the Lemma, and ¥ <"~ ¥. By induc-
tion we have O(¥V) £ X N V.

Let N = O%(¥), X = XN\ Y,. Then N £ X, X/N is a II-group and N has
no non-trivial II-quotients. Therefore N = 0"(X) < (X, V) = G.

Now Vi/N = (Y*N/N|x ¢ X) and so V;/N is generated by subnormal
Lu-subgroups. By the N-closure of the class LF; (see Robinson [9, p. 57
Theorem 2.31]), ¥1/N ¢ L& and applying case 1 to G/N we obtain O"(G/N)
< X/N. Using Lemma 2.1 we have O"(G) = X.

LEmMA 2.6. Let G be a locally finite group. Let A, B be subnormal subgroups of
G, and let J = (A, B). Then if F is any finite subgroup of J, there exists « sub-
normal subgroup S of G such that ' £S5 < J.

Proof. This follows immediately from Roseblade and Stonehewer [12,
Theorem A].

It is now an easy consequence of Lemmas 2.5 and 2.6 to prove:

THEOREM 2.1. Let G be « locally finite group generated by two subnormul sub-
groups H and K. Then

0M(G) = (O"(H), O"(K)).

Proof. 1t is easy to show that (O"(H), O"(K)) < O"(G). To show the
opposite inclusion, by Lemma 2.6 the group (O"(H), O"(K)) satisfies the
hypotheses of the group X in Lemma 2.5. Hence, applying this Lemma to
(O"(H), K) with ¥V = K we have:

O"({(O™(H), K)) = (0"(H), O"(K)).

Similarly, applying Lemma 2.5 to G with X = (O"(H), K) and ¥V = H we
obtain

0"(G) = (O"(H), K).
Hence O"(G) £ (O"(H), O"(K)) and we have equality.
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We are now ready to prove Theorem D. We note first that by the R-closure
of the class LI relative to the class LE, we have G/G™*, H/H™ and K/K*™"
are locally nilpotent. By Theorem C, it is enough to prove that GX% =
(HM® K™% 1t follows easily that (H®%, K2%) < GIX,

Now let p be any prime, and in Theorem 2.1 let II = {p} and apply to the
group G generated by H and K.

Then 0?(G) = (OF(H), O"(K)).

Since K/K*" is the direct product of p-groups, denoting the set of primes
different from p by p’, we have 0”” (0?(K)) £ K*% Let L = O0?(G). Applying
Theorem 2.1 to the group L with IT = {p'} we have

0"(L) = (0"(07(H)), 0" (0" (K))).

Then GE%/(Core o (H®, K*%)) is an L, -group.
Since p wasany prime, this is true for all primes p. Hence G** = (H% K*%),

3. Proof of Theorem B. We shall use the fact that for a group G satisfying
the minimal condition and generated by two subnormal subgroups H and K,
G% = (H% K%) = H®K™. This is not hard to show, adapting the proof given
by Wielandt in [14] for groups with a composition series.

If G is a group, we denote by G™ the n-th term of the derived series of G.
Starting on the proof of Theorem B, there exist positive integers s; and s
such that

HGv < v, (H) and KO6? =< vy,,(K).
By Roseblade [11], there exists an integer s such that
G £ HEVKGY < o) (H)y,, (K)

and hence, without loss of generality, we may factor by G and assume G is
soluble. Since G satisfies Min-z, G is locally finite (see Baer [1]). By Theorem D),
the factors G/G™*, H/H™®, K/K*" are locally nilpotent and

GLR < HLRK LN = 'er(H)'er(K)'

Therefore, we may assume G*® = 1 and that G ¢ L%. So G satisfies the
minimal condition (see McLain [6]), and by the remark above G* = H®K™
= v M)y, (K).

We introduce some notation before proving a corollary to the Theorem.
If H and K are subgroups of a group G, then the permutizer Pr(K) of K in I
is defined in [12] to be the largest subgroup of H which permutes with K.

CoRrOLLARY. Let G = (H, K) satisfy Min-n and let H and K be subnormal
subgroups of G. Then there exists « positive integer & such that v;(H) £ Py (K).

Proof. The proof of this is analogous to that given for the case of the derived
series in [11] (see [11, corollary to Theorem B]).
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4. Proof of Theorem A. We shall need a theorem of Mal'cev [7] which
states that any subgroup of a polycyclic group is equal to the intersection of all
the subgroups of finite index that contain it.

If G is any group, and 7 an integer we define G' by G" = (¢g"; ¢ € G).

We now begin the proof of Theorem A and note as in Theorem B we may
assume G is soluble. By the subnormal coalescence of the class Max-sn (see
[10]) we have that G € Max-sn, and so G is polycyclic. Let G have derived
length d, and let X = (y,,(H), v,,(K)). We use induction on d. If d = 1, then
the Theorem is trivially true. So assume d > 1 and let N be the last but one
term of the derived series of G. By induction, there exists a positive integer 7,
such that v,,(G) = NX. By [13, Lemma 2], there exist positive integers 1, /»
such that

'Yll(NH) é 771(H) and 'Ytz(NK) é 'er(K)-

By replacing 71, 72 by 1, t» respectively, we may assume that NV < H M K,
and X < XN.

Let L = v,(G). Then L' £ (XN)" £ X and since we may assume without
loss of generality that Coreq(X) = 1 we have L' = 1.

Let M = XL. Since M is polycyclic, there exists F <1 M, X < F such that
M/F is finite and F/X is torsion-free. Let |M : F| = n. Then M" < F and
|M : M"X| is finite and M"X /X is torsion-free.

By Mal'cev’s theorem, there exists Fy £ G such that |G : Fy

= < oo and
M'X = Fo M M. By Wielandt’s theorem (*) we have that there exists an
integer 7,4 such that

'Yr4(G) é X CoreG(Fo).

Let 75 = max {rs, 74}. Then v,,(G) < X(Fo N\ M) < XM

Hence we may suppose that L = v,,(G) and that M /X is torsion-free. In a
similar way, we can show for all primes p, there exist integers 7(p) such that
v.»G = XMP. Let s be the rank of G. Then M /X M? has order less than or
equal to p*. Then v,,,(G) = N, XM>.

Now (M/X)» = XM?/X and since M/X is a torsion-free abelian group of
finite rank N (M/X)? = X.

Hence N, XM? = X and v,,;:(G) = X. So, substituting r = r; + s, the
theorem is proved.

5. Proof of Theorem E.

5.1. The finite case. We would like to thank Dr. Brian Hartley for suggesting
the following result and for indicating the method of proof.

THEOREM 5.1. Let G be « finite soluble group. Let H = (hy|l =1 < m). Then
H s subnormal in G if and only if (g, ,h] € H for all g € G, n = |G|, 1 = 1,
., m.

To prove this we introduce two concepts. Let G be any group and let ¢ € G.
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We define subgroups X ,(«¢) for integers » = 0 by
X, (a) = (q,[g, a]; ¢ € G).

Then X,(a) = X,1(a) for all integers r = 0.

Following Wielandt, we define the subnormalizer of a subgroup X to be the
intersection of all subnormal subgroups of G containing X. We denote the sub-
normalizer of X by S¢(X). In general S¢(X) need not be subnormal in G.
For let G be the infinite dihedral group

Dy = (x,ylx~lyx =y a* = 1)

and let X = (x)and ¥ = (y).

Then x~yx = y,7! for all y; € YV and so X,(x) = (»*", x). Then X,(x) <
X, 1(x) and so X,(x) sn G forr 2 0. Butif S¢(X) sn G, then X,,(x) £ S¢(X)
for some integer m. Therefore, the chain

LS X i) S XL s 296

il

terminates after finitely many steps. Since X,(x) < X,_1(x) for all positive
integers 7, we have a contradiction.

Theorem 5.1 follows from:

LemMma 5.1. Let G be a finite soluble group and let « € G. Then if n = |G|,
we have

Se((@)) = X,(«) forall r = n.

Proof. Since G is finite of order #, S¢({«)) is subnormal in G, and the sub-
normal index is bounded by n. Hence X ,(¢) < S¢({«)) for all » = n. So it is
enough to show that X ,(«) sn G. Suppose for a contradiction that this is false,
and let G be a minimal counterexample.

Choose an integer r = #, and assume X = X,(«) is not subnormal in G.
Let Gy = {«“). If G, < G, by the minimality of G the subgroup

X1 = {u, [g1, nt]; &1 € G1) where m = |Gy

is subnormal in G;. Hence X, sn G and X £ X,. Butsincem = |G|, X1 = X.
Hence X = X,, and X is subnormal in G, which is a contradiction. So G =
(a%). Let N be a minimal normal subgroup of G. Then XN/N sn G/N and
XN sn G. Therefore XN = G. Since N €3, XN\ NAQG. If XNN=N
then N = X and G = X.So X M N = 1 and X is a maximal subgroup of G.

Now Cgla) £ Ny(X) = X. Hence Cy(a) = 1. Let Ny be a minimal «-
invariant subgroup of N. Then [Ny, «] = Ny = [Ny, ;] £ X. This contradic-
tion shows that X sn G.

Proof of Theorem 5.1. We have H = (h]l £ i s m) = (X,(h)|1 £ = m)
where n = |G|. By Lemma 5.1, we know that each X,(k;) is subnormal in G

where 1 < 7 < m, and hence H is subnormal in G. Obviously the converse
holds.
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5.2. Proof of Theorem E. To prove part (i) of Theorem E we use the finite
case and a result due to Kegel [5] which states that a subgroup X of a poly-
cyclic group G is subnormal in G if and only if X is subnormal in G modulo
normal subgroups of finite index in G. Since the hypotheses of Theorem E
remain true on taking homomorphic images of G, Theorem E (i) casily follows.

To prove Theorem E (ii) we use the following lemmas:

LeMMA 5.2. Let G be any group. Let X = G and let N be a normal abelian sub-
group of G. Let « € X and suppose that X = {a, [g1, ,a]lgi € XN)and XN =
XN.Then X <7 XN.

Proof. Without loss of generality, we may suppose that G = XN. Since
X NN < G we may also assume X N\ N = 1.
Let N1 = Ny(X). Then N, < G. By induction define N, for ¢ > 1 by

Ni/Ni—l = NN/Ni—l (XNi—l/Ni—l)-

We shall show that V = NV,.

Since Cg(a) £ Ng(X) we have Cy(e) £ Ny and [n, ,a] € NN X = 1.
Hence [#, ,_i¢] € N;. Similarly, factoring G by N;, we obtain [n, ,_sa] € N,.
By a simple induction, N = N,,

X<XN,«...<XN,=G and X «'G.

LEMMA 5.3. Let G be a soluble group and let « € G. Suppose for some integer m,
Xnla) = X,ir(a) forallr = 0.
Then X,,(a) snG.

Proof. We use induction on d, the derived length of G. If d = 1, then the
lemma is trivially true. Hence assume d > 1 and let N be the last but one term
of the derived series of G.

Let X = X, (a). By induction, XN/N sn G/N and XN sn G. Suppose
XN «°G.

Let X = (¢, [xn, na];x € X, n € N).

Then X ¢y, (¢) £ X. By hypothesis, X = X, ,(¢). Hence X £ X < X and
X =X.SoXN = XNand by Lemma 52X = Xsn XN.

We are now able to prove Theorem E (ii). By hypothesis, X, (k;) < H for
1 =4 < m. Since H is Min-by-nilpotent, for each %#; € H we can find an
integer k£ = n such that X, (h;) = X, ,(h;) for all » = 0. Let ¢ be the largest
such k.

Then X, ,(h;) = X, (h;) forallr 2 0,1 =17 = m.

By Lemma 5.3, X ,(k;) sn G, and by the subnormal coalescence of the class of
minimax groups (see for example [3]) we have H is subnormal in G as required.
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