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1. Introduction. A Riesz operator is a bounded linear operator on a Banach space which
possesses a Riesz spectral theory. These operators have been studied in [5] and [6]. In §2 of
this paper we characterise Riesz operators in terms of their resolvent operators. In [6] it was
shown that every Riesz operator on a Hilbert space can be decomposed into the sum of
compact and quasi-nilpotent parts. § 3 contains an example to show that these parts cannot, in
general, be chosen to commute. In §4 the eigenset of a Riesz operator is defined. It is a
sequence of quadruples each of which consists of an eigenvalue, the corresponding spectral
projection, index and nilpotent part. This sequence satisfies certain obvious conditions, and
the question arises of the existence of a Riesz operator which has such a sequence as its eigen-
set. We give an example of an eigenset which has no corresponding Riesz operator.

Our nomenclature will be that of [5] and [6]. Let us recall that X\s a Banach space and
that 8 , <£, <QVL and 5R denote the subsets of linear operators on X which are bounded, compact,
quasi-nilpotent and Riesz, respectively. If Te 8 , then a{T) is the spectrum of T, p(T) is its
resolvent set and r(T) is its spectral radius. If Y is a subspace of X which is invariant under T,
then T\ F denotes the restriction of Tto Y. The resolvent operator

is defined and bounded for z e p(T). If x is a non-zero element of X, then the one-dimensional
subspace generated by x will be written [x].

2. The resolvent characterisation. In this section the underlying space is a Banach space.
Ruston [3] has characterised Riesz operators as follows.

RUSTON CONDITION. Let Ke&. Then KeW. if and only if

lim
f ")1/n

lim ^inf I i C - C B =0.
-»oo (.CeC J

£ is a uniformly closed ideal of 8 . Hence the quotient algebra 8/<£ is a Banach algebra.
The Ruston condition is equivalent to the requirement that the coset Kc = K+<L be quasi-
nilpotent in 8/<£.

We shall require a lemma on analytic functions of compact operators.

LEMMA. Let D be a connected open set in the complex plane containing a non-empty open
set U. IfF(z): D -* 8 is analytic in D and if F(z) e<LforzeU, then F(z) e<ZforzeD.

Proof. (Due to A. Lebow). F(z) is analytic in D; hence so also is its image F(z)c in
8/<£. Now

F(z)c=0 (zeU),
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by hypothesis. But D is connected. Therefore, by the principle of analytic continuation ([1],
p. 202),

F(z)c = 0 (ze£>).

This proves the lemma.

RESOLVENT CONDITION. Let KB B. Then KeM if and only if

R(z;K) = C(z)+B(z) (zep(K)),

where C(z)e<Lfor zep(K) and B(z) is an entire function ofz~l.

Proof. We show that the Ruston and resolvent conditions are equivalent.
Let K satisfy the resolvent condition. Then, for | z | > r(K), R(z; K) and B(z) have expan-

sions in powers of z" 1 ; thus so also has C{z). Therefore

where | Bn fl
1/n -> 0 as n -»oo.

Formula (9.3.5.1) on p. 199 of [1] shows that C n e£ for each n. Also

( n £ 0 ) . (1)

Hence K satisfies the Ruston condition.
Conversely, let K satisfy the Ruston condition. Then we can find sequences {Cn} in <£

and {Bn} with || Bn \\
u" -> 0 as n ->oo which satisfy equation (1). Take \z\> r(K). Then

R(z;K) = f z-"-'Kn = f z-"-1Cn+f z-"-^,,.
o o o

The convergence of these last two series follows from the condition on the sequence {Bn}.
Thus, for | z | > r{K),

R(z;K) = C(z)+B(z),

where B{z) is an entire function of z"1 and C(z)e<L C(z) is defined and analytic for zep(K).
If we show that p(K) is connected, an application of the lemma will complete the proof.

To do this, let \i be a fixed positive real number. We can choose a positive integer n such
that || Bn || < n". Then, for | A | ^ /i, /4n = I — X~"Bn is a homeomorphism and

A-/-K- = n-Bn-cn = /Lxr/-/!;1^).

Thus A" e o(K") if and only if A" 6 <r(/C * Cn). But ^n~' Cn e <L Therefore, if A" e (T(/S:"), then A"
is an eigenvalue of A~iCn, and hence is an eigenvalue of K". Thus, if Xea(K) and | A | ^ ^,
then A" is an eigenvalue of K". It can now be shown that there are only a finite number of
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points X in o{K) with | X | ^ fi. (See the proof of Lemma 3.5 in [3].) As /z is arbitrary, it
follows that the non-zero spectrum of K is discrete. Hence p(K) is connected.

3. First example. Let A" be a Hilbert space. By [6], Theorem 7.5, if Ke % then K = C+ Q,
where CeCand QeQlT. This decomposition is not unique. We shall construct a A"for which
Cand Q cannot be chosen to commute.

Take X to be I2 and let {ej}f be an orthonormal basis for X. Define linear operators C
and Q on Xas follows:

Cej=rlej C/^l),
and

Qe'Z-T} «*«•
Clearly Ce<£ and Q2 = 0. Put K= C+ Q; then K2e<L and hence KeM. However, A£<£,
since

Ke2j -1 = (2/ — 1) ~1 e2j -1 + ^2; (J ̂  1).

Hence {Afe2j--i}f does not contain a convergent subsequence. A simple calculation shows
that the non-zero eigenvalues and the corresponding eigenspaces of K are given by the
formulae:

and
E2j-\ = [e2y_1+(2/ —1)(2/) e2j],]

v r -i f O '^ l ) - (2)
£ 2 ; = [e2y] J

Suppose now that A = Q + Qj, where Q e€ , g t e QJH and Ct 2X = gx C^ It follows
i = QiK- Hence if x eEj for any j , then

and therefore QI^G-E'J- Thus Ej is invariant under g t . Since Ej is a one-dimensional
subspace, <s{Q^ \ E}) consists of one eigenvalue. Hence

and so gx | E} is the zero operator. Formula (2) shows that Qt e} = 0 for each/ Accordingly
Qi =0 and K— Cy e£, which is a contradiction.

4. Second Example. Let Xbe an infinite dimensional Hilbert space. Let KeW have an
infinite spectrum (the case of a finite spectrum is trivial). Then, associated with K, we have the
following sequence of quadruples:

r
i> Pj, VJ> (
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where (i) Xj are complex numbers tending to zero as y->oo,

(ii) Pj are projections on X with finite dimensional ranges Nj, such that

PjPk = PkPJ = 0 (;V/c),

(iii) Vj are integers greater than or equal to one,

(iv) Qj are nilpotent operators on Nj with order of nilpotence equal to v^.

Of course X} are the eigenvalues of K, Pj the corresponding spectral projections, v̂  the
indices of the eigenvalues and

where I} is the unit operator on Nj. This sequence of quadruples we call the eigenset of K.
We now formulate a general problem: Given a sequence of quadruples satisfying con-

ditions (i)-(iv), does there exist a KeW with this sequence as its eigenset? This appears to be
a difficult problem. Some of its complexities are illustrated in Hamburger's work [2].

We simplify matters by requiring that Vj = 1 for eachy, and hence that each Qj = 0. If
the sequence {\\Pj \\}? is bounded, it is easy to see that the problem has an affirmative
solution. For then, by a theorem due to Lorch and Mackey which is proved in [4], there exists
an invertible A in B such that

A-1PJA=WJ 0^1),

where Wj is a self-adjoint projection. The W/s obviously satisfy condition (ii). The series
00

£ Xj Wj is uniformly convergent to an element C of <£. Thus ACA~l e<L and this has the
i

required properties.
Our example shows that, if the sequence {Pj}? is not uniformly bounded, there may

exist no such Riesz operator. Again take Vj = 1 for each j , and take X to be I2. Let xel2

and define the sequence {Pj}? by the equations

X = [Xl, X2, X3,X4, . . . ) ,

P1x = (xl-iilxl, 0,0,0,...),

= (n1x2,x2,0,0,...),

= (0,0,X3-/i2X4,0,...),

and so on, where the /i,- are complex numbers. This sequence clearly satisfies (ii). Consider
the operator XlPl + X2P2 restricted to the subspace A^ © N2. We have

I W ^ I i V ^ l - sup I
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Similarly

T.

2n

vL

A.

1

GILLESPIE AND T. T.

In

1
= = ( 2n~ 2n-lM. (« ^ 1). (3)

Now choose Xj=j l and ^ = y3 for eachy. Then the right hand side of equation (3) tends to
infinity with n.

Suppose that there exists Ke^R with the required properties. Each Qj is zero and hence
2n 2n In

K ®N,-

Thus
2n 2n

which gives an obvious contradiction.
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