### SOME RESULTS CONCERNING THE STRUCTURE OF GRAPHS

#### G.A. Dirac

(received March 25, 1962)

1. <u>Introduction and terminology</u>. The object of this paper is to present results concerning the structure of 3-connected graphs and of 5-chromatic and 6-chromatic graphs and also a theorem on contraction and a theorem of Turán type. The Axiom of Choice is assumed.

A graph  $\Gamma$ : a set  $V(\Gamma)$  whose elements are called the vertices of the graph; with each pair of distinct vertices a and b there is associated a set  $e(a,b,\Gamma)$  (= $e(b,a,\Gamma)$ ),  $e(a,b,\Gamma) \cap V(\Gamma) = \emptyset$ ) whose elements are called the edges joining a and b,  $e(a,b,\Gamma) \cap e(a',b',\Gamma) = \emptyset$  if  $\{a,b\} \neq \{a',b'\}$ ; the union of all the sets  $e(a,b,\Gamma)$  is denoted by  $E(\Gamma)$ , and  $\Gamma = V(\Gamma) \cup E(\Gamma)$ . (a,b) denotes an element of  $e(a,b,\Gamma)$ . If  $|e(a,b,\Gamma)| < 1$  for all  $a,b \in V(\Gamma)$  then the graph contains no multiple edges. If  $\Gamma$  and  $\Gamma'$  are graphs and  $V(\Gamma') \subset V(\Gamma)$ and  $E(\Gamma^{!}) \subset E(\Gamma)$  then  $\Gamma^{!}$  is called a subgraph of  $\Gamma$ ,  $\Gamma' \subset \Gamma$ ; if in addition  $V(\Gamma') \neq V(\Gamma)$  or  $E(\Gamma') \neq E(\Gamma)$  then  $\Gamma^{!}$  will be called a proper subgraph of  $\Gamma$ ,  $\Gamma^{!} \subset \Gamma$ . A planar graph is a graph which corresponds to a line complex imbedded in the plane without intersection of lines. If  $W \subset V(\Gamma)$  then  $\Gamma$ -W will denote the graph obtained from  $\Gamma$  by deleting all vertices of W and all edges incident with one or two vertices of W. The valency of a vertex is the number of edges incident with the vertex.

A graph  $\Gamma$  will be called  $\lambda$ -connected, where  $\lambda$  is an integer  $\geq 1$ , if any two vertices a and b of  $\Gamma$  are connected by a set of  $\lambda$  (or more) paths of  $\Gamma$ , any two of which have no vertex other than a and b and no edge in common. (A  $\lambda$ -connected graph is also  $\mu$ -connected for  $1 \leq \mu < \lambda$ .) For graphs without multiple edges this property is by Menger's theorem equivalent to the following:  $\Gamma$  is connected,  $\big|V(\Gamma)\big| \geq \lambda + 1$ , and

Canad. Math. Bull. vol. 6, no. 2, May 1963.

 $VW[W \subset V(\Gamma) \text{ and } |W| < \lambda \implies \Gamma - W \text{ is connected}][1].$ 

If A, B  $\subset \Gamma$ , A  $\neq \emptyset$ , B  $\neq \emptyset$  and A  $\cap$  B =  $\emptyset$  then a path which has one end-vertex in A and the other in B and has no other vertex in common with A  $\cup$  B will be called an (A) (B)-path.

 $\Gamma(W)$ , where  $W\subseteq V$  ( $\Gamma$ ), will denote  $\Gamma$ -( $\Gamma$ - W), that is to say the subgraph of  $\Gamma$  generated or spanned by the vertices of W.

 $((\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_i))$ , where  $i \geq 2$ , will denote a circuit whose vertices in cyclic order are  $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_i$ . The <u>length</u> of the circuit is i.

If Y is a path and p,q are vertices of Y then Y[p,q] (= Y[q,p]) will denote that part of Y which has p and q as its two end-vertices; Y[p,p] = p.

A <u>complete k-graph</u> or  $\langle k \rangle$  will denote a graph with  $k \geq 1$  vertices in which each pair of distinct vertices are joined by exactly one edge, a  $\langle 1 \rangle$  is a single vertex. A  $\langle k \rangle$  will denote a  $\langle k \rangle$  with exactly one edge missing.

A wheel will denote a graph which consists of a circuit together with a vertex not belonging to the circuit and joined to each vertex of the circuit by at least one edge.

K or  $K(x_1, x_2, x_3; y_1, y_2, \dots, y_i)$ , where  $i \geq 3$ , will denote a graph with the i + 3 vertices  $x_1, x_2, x_3, y_1, \dots, y_i$  in which  $x_1, x_2, x_3$  are each joined to  $y_1, \dots, y_i$  by exactly one edge and there are no more edges.  $K(x_1, x_2, x_3; y_1, \dots, y_i)$  together with one or more edges joining  $x_1$  and  $x_2$  will be denoted by  $K_1$  or  $K_1(x_1, x_2, x_3; y_1, \dots, y_i)$ ,  $K_1(x_1, x_2, x_3; y_1, \dots, y_i)$  together with one or more edges joining  $x_2$  and  $x_3$  will be denoted by  $K_2$  or  $K_2(x_1, x_2, x_3; y_1, \dots, y_i)$ , and  $K_2(x_1, x_2, x_3; y_1, \dots, y_i)$  together with one or more edges

joining  $x_3$  and  $x_1$  by  $K_3$  or  $K_3(x_1, x_2, x_3; y_1, \dots, y_i)$ . A K with six vertices is called a <u>Kuratowski graph</u> and will be denoted by  $K^6$ ; a  $K_i$  with six vertices will be denoted by  $K_i^6$  for i = 1, 2, 3.

A <u>prism-graph</u> P or  $P(x_1, x_2, x_3, y_1, y_2, y_3)$  will denote a graph consisting of the two disjoint circuits  $((x_1, x_2, x_3))$  and  $((y_1, y_2, y_3))$  together with the edges  $(x_1, y_1)$ ,  $(x_2, y_2)$ ,  $(x_3, y_3)$ .  $((x_1, x_2, x_3))$  and  $((y_1, y_2, y_3))$  will be called the <u>ends</u> of P.

If  $\Gamma$  is a graph then  $\Gamma$ U will denote a graph obtained from  $\Gamma$  through the process of subdividing edges by inserting new vertices having valency 2; the vertices having valency  $\geq 3$  in  $\Gamma$ U will be called <u>branch-vertices</u>. For convenience it will be assumed that  $\Gamma$ U  $\neq \Gamma$ . <kU> will denote a graph obtained from a <k> by this process,  $KU(x_1, x_2, x_3; y_1, \ldots, y_i)$  a graph so obtained from  $K(x_1, x_2, x_3; y_1, \ldots, y_i)$ . A path of  $\Gamma$ U connecting two branch-vertices will be called a rib.

If  $\Gamma_1,\ldots,\Gamma_n$  are mutually disjoint connected graphs each of which contains at least three vertices, then any graph constructed from them by the following procedure will be called a cockade composed of  $\Gamma_1,\ldots,\Gamma_n$ : an edge  $(a_1,b_1)$  of  $\Gamma_1$  and an edge  $(a_2,b_2)$  of  $\Gamma_2$  are selected,  $a_1$  is identified with  $a_2$ ,  $b_1$  with  $b_2$ , and  $(a_1,b_1)$  with  $(a_2,b_2)$ ; if n>2 an edge (a,b) of the resulting graph and an edge  $(a_3,b_3)$  of  $\Gamma_3$  are selected,  $a_1$  is identified with  $a_2$ ,  $a_1$  with  $a_2$ ,  $a_1$  and  $a_2$ ,  $a_2$  with  $a_3$ ,  $a_1$  and  $a_2$ ,  $a_2$  and  $a_3$ ,  $a_1$  are selected,  $a_1$  is identified with  $a_2$ ,  $a_1$  with  $a_2$ ,  $a_2$ ,  $a_3$ ,  $a_1$  and  $a_2$ ,  $a_2$ ,  $a_3$ ,  $a_1$ ,  $a_2$ ,  $a_2$ ,  $a_3$ ,  $a_4$ ,  $a_1$ ,  $a_2$ ,  $a_2$ ,  $a_3$ ,  $a_4$ ,  $a_4$ ,  $a_4$ ,  $a_5$ ,  $a_$ 

2. The 3-connected graphs which do not contain two disjoint circuits. Recently K. Corrádi and A. Hajnal have proved that if a finite graph without multiple edges has at least 3k vertices and each vertex has valency  $\geq 2k$ , where k is an integer  $\geq 1$ , then the graph contains k (or more) mutually

disjoint circuits [2]. P. Erdős and the writer have proved that (a) if the number of vertices is at least 6, all vertices have valency  $\geq 3$ , and at least four vertices have valency  $\geq 4$ , then the graph contains two disjoint circuits, (b) for  $k \geq 3$ , if the number of vertices having valency  $\geq 2k$  exceeds the number having valency  $\leq 2k - 2$  by at least  $\binom{2}{k} + 2k - 4$ , then the graph contains k (or more) mutually disjoint circuits [3]. These results suggest the question, — which (2k-1)-connected graphs do not contain k mutually disjoint circuits? This question will here be answered for the case k = 2, graphs with multiple edges being allowed.

THEOREM 1. The only 3-connected graphs with at least four vertices which do not contain two disjoint circuits are the <4>'s, the <4>'s with additional edges which are either all incident with the same vertex, or with two of three vertices (so that the fourth vertex has valency 3), the <5>'s, the <5->'s, the <5->'s with additional edges joining vertices having valency 4 in the <5->, the wheels, the K's, the  $K_1$ 's, the  $K_2$ 's and the  $K_3$ 's.

<u>Proof.</u> The theorem can easily be verified for graphs having fewer than six vertices. The proof for graphs with at least six vertices follows.

The following result is a special case of an extension of Menger's Theorem proved by the writer [4]:

If  $\Gamma$  is a  $\lambda$ -connected graph, a  $\in$  V( $\Gamma$ ), A  $\subseteq$   $\Gamma$ , a  $\notin$  A and A contains at least  $\lambda$  vertices, then  $\Gamma$  contains  $\lambda$  (a)(A)-paths any two of which have only a in common. ...(1)

The next step is to prove that

If a 3-connected graph contains a  $K^0U$  then it contains two disjoint circuits. ...(2)

Proof. Let  $\Gamma$  denote the graph and  $K_0 = K^6 U(x_1, x_2, x_3; y_1, y_2, y_3)$  a  $K^6 U$  contained in  $\Gamma$ . For  $1 \le i$ ,  $j \le 3$  let  $L_{ij}$  denote the rib of  $K_0$  which connects  $x_i$  and  $y_i$ , the notation

being chosen so that  $L_{11}$  contains more than two vertices, and let a denote a vertex in  $L_{11}^{-1} - x_1^{-1} - y_1$ . By (1)  $\Gamma$  contains at least three (a)( $K_0^{-1}$ )-paths any two of which have only a in common, so it contains one to which neither of the two neighbours of a in  $K_0^{-1}$  belong, L say. Let b denote the end-vertex of L other than a. There are four alternatives: (i)  $h \in L_{11}^{-1}$ , (ii)  $h \not \in L_{11}^{-1}$ , b is a branch vertex of  $K_0^{-1}$ , (iii)  $h \not \in L_{11}^{-1}$ , b is an intermediate vertex of a rib of  $K_0^{-1}$  incident with  $K_0^{-1}$  or with  $K_0^{-1}$ , (iv)  $K_0^{-1}$  incident neither with  $K_0^{-1}$  nor with  $K_0^{-1}$ . These alternatives will be considered in turn.

If (i) is the case then  $\ \Gamma$  contains the two disjoint circuits  $L \cup L_{11}[a,b]$  and  $L_{22} \cup L_{32} \cup L_{33} \cup L_{23}$ . If (ii) is the case then it may be assumed that  $b = x_2$ , in which case  $\ \Gamma$  contains the two disjoint circuits  $L \cup L_{21} \cup L_{11}[a,y_1]$  and  $L_{12} \cup L_{32} \cup L_{33} \cup L_{13}$ . If (iii) is the case then it may be assumed that  $b \in L_{12}$ , in which case  $\ \Gamma$  contains the two disjoint circuits  $L \cup L_{12}[x_1,b] \cup L_{11}[x_1,a]$  and  $L_{22} \cup L_{32} \cup L_{33} \cup L_{23}$ . If (iv) is the case then it may be assumed that  $b \in L_{22}$ , in which case  $\ \Gamma$  contains the two independent circuits  $L \cup L_{22}[x_2,b] \cup L_{21} \cup L_{11}[y_1,a]$  and  $L_{12} \cup L_{32} \cup L_{33} \cup L_{13}$ .

So in each case  $\Gamma$  contains two disjoint circuits. This proves (2).

If a 3-connected graph contains a <5U> then it contains two disjoint circuits. ...(3)

Proof. Let  $\Gamma$  denote the graph, let  $\Omega$  denote a <5U> contained in  $\Gamma$  whose branch vertices are  $w_1, w_2, w_3, w_4, w_5$  and for  $1 \le i \ne j \le 5$  let  $W_{ij}$  (= $W_{ji}$ ) denote the rib of  $\Omega$ 

connecting  $w_i$  and  $w_j$ , the notation being chosen so that  $W_{12}$  contains more than two vertices, and let a denote an intermediate vertex of  $W_{12}$ . By (1)  $\Gamma$  contains at least three (a)( $\Omega$ -a)-paths any two of which have only a in common, so it contains one to which neither of the two neighbours of a in  $\Omega$  belong, W say. Let b denote the end-vertex of W different from a. There are four alternatives: (i)  $b \in W_{12}$ , (ii)  $b \not\in W_{12}$ , b is a branch-vertex of  $\Omega$ , (iii)  $b \not\in W_{12}$ , b is an intermediate vertex of a rib of  $\Omega$  incident with  $w_1$  or with  $w_2$ , (iv) b is an intermediate vertex of a rib of  $\Omega$  incident neither with  $w_1$  nor with  $w_2$ . These four alternatives will be considered in turn.

If (i) is the case then  $\Gamma$  contains the two disjoint circuits  $W \cup W_{12}[a,b]$  and  $W_{34} \cup W_{45} \cup W_{53}$ . If (ii) is the case then it may be assumed that  $b=w_3$ , in which case  $\Gamma$  contains the two disjoint circuits  $W \cup W_{23} \cup W_{12}[a,w_2]$  and  $W_{14} \cup W_{45} \cup W_{51}$ . If (iii) is the case then it may be assumed that  $b \in W_{13}$ , in which case  $\Gamma$  contains the two disjoint circuits  $W \cup W_{13}[b,w_1] \cup W_{12}[w_1,a]$  and  $W_{34} \cup W_{45} \cup W_{53}$ . If (iv) is the case then it may be assumed that  $b \in W_{34}$ , in which case  $\Gamma$  contains the two disjoint circuits  $W \cup W_{34}[b,w_3] \cup W_{23} \cup W_{12}[a,w_2]$  and  $W_{14} \cup W_{45} \cup W_{51}$ .

So in each case  $\Gamma$  contains two disjoint circuits, and (3) is proved.

If a 3-connected graph contains at least six vertices and a <5> then it contains two disjoint circuits. ...(4)

Proof. Let  $\Gamma$  denote the graph, let  $\Phi$  denote a <5> with vertices  $f_1, f_2, \ldots, f_5$  contained in  $\Gamma$ , and let f denote a vertex of  $\Gamma$  which does not belong to  $\Phi$ . By (1)  $\Gamma$  contains three  $(f)(\Phi)$ -paths any two of which have only f in common, let  $F_1, F_2, F_3$  denote three such paths, the notation being

chosen so that  $f_1, f_2, f_3$ , respectively, are their end-vertices. Then  $\Gamma$  contains the two disjoint circuits  $F_1 \cup F_2 \cup (f_1, f_2)$  and  $((f_3, f_4, f_5))$ . This proves (4).

The only planar 3-connected graphs with more than five vertices which do not contain two disjoint circuits are the wheels. ...(5)

**Proof.** Let  $\Gamma$  denote a planar 3-connected graph with more than five vertices which does not contain two disjoint circuits.

 $\Gamma$  contains a <4U> . For let a denote a vertex of  $\Gamma$ ,  $\Gamma$ -a contains at least five vertices, by (4)  $\Gamma$  does not contain a <5> , therefore  $\Gamma$ -a contains two vertices not joined by an edge, b and c say.  $\Gamma$ -a is 2-connected because  $\Gamma$  is 3-connected, so  $\Gamma$ -a contains two (b)(c)-paths which have only b and c in common. Two such paths together constitute a circuit C with at least four vertices. By (1)  $\Gamma$  contains three (a)(C)-paths any two of which have only a in common. These and C together constitute a <4U> . (This is true whether  $\Gamma$  is planar or not.)

Suppose that  $\Theta$  is a <4U> contained in  $\Gamma$ . If  $g \in V(\Gamma)$  and  $g \not\models \Theta$  then by (1)  $\Gamma$  contains three  $(g)(\Theta)$ -paths any two of which have only g in common. if  $G_1, G_2$  and  $G_3$  are any three such  $(g)(\Theta)$ -paths, then the end-vertices of  $G_1, G_2, G_3$  belonging to  $\Theta$  are branch-vertices of  $\Theta$ . For let  $f_1, f_2, f_3, f_4$  denote the branch-vertices of  $\Theta$ , F the rib of  $\Theta$  which connects  $f_i$  and  $f_j$  ( $1 \le i \ne j \le 4$ ,  $F_{ij} = F_{ji}$ ),  $g_1, g_2, g_3$  the end-vertices of  $G_1, G_2, G_3$  belonging to  $\Theta$ , respectively, and assume that g and  $f_4$  are separated by the circuit  $F_{12} \cup F_{23} \cup F_{31}$ . If at most one of  $g_1, g_2, g_3$  is a branch-vertex of  $\Theta$  then it may be supposed that  $g_1 \in F_{12} - f_1 - f_2$  and  $g_2 \in F_{23} - f_2 - f_3$ , in which case  $\Gamma$  contains the two disjoint circuits  $G_1 \cup G_2 \cup F_{12} [f_2, g_1] \cup F_{23} [f_2, g_2]$  and

F<sub>13</sub>  $\cup$  F<sub>34</sub>  $\cup$  F<sub>41</sub> contrary to hypothesis. If two of g<sub>1</sub>, g<sub>2</sub>, g<sub>3</sub> are branch-vertices of  $\Theta$  and one is not then it may be supposed that f<sub>1</sub> = g<sub>1</sub> and f<sub>2</sub> = g<sub>2</sub> and either g<sub>3</sub>  $\in$  F<sub>12</sub> - f<sub>1</sub> - f<sub>2</sub> or g<sub>3</sub>  $\in$  F<sub>23</sub> - f<sub>2</sub> - f<sub>3</sub>. Then if g<sub>3</sub>  $\in$  F<sub>12</sub> - f<sub>1</sub> - f<sub>2</sub>  $\Gamma$  contains the two disjoint circuits G<sub>1</sub>  $\cup$  F<sub>12</sub> [f<sub>1</sub>, g<sub>3</sub>]  $\cup$  G<sub>3</sub> and F<sub>23</sub>  $\cup$  F<sub>34</sub>  $\cup$  F<sub>42</sub>, and if g<sub>3</sub>  $\in$  F<sub>23</sub> - f<sub>2</sub> - f<sub>3</sub> then  $\Gamma$  contains the two disjoint circuits G<sub>2</sub>  $\cup$  F<sub>23</sub> [f<sub>2</sub>, g<sub>3</sub>]  $\cup$  G<sub>3</sub> and F<sub>13</sub>  $\cup$  F<sub>34</sub>  $\cup$  F<sub>41</sub>, which is contrary to the hypothesis that  $\Gamma$  does not contain two disjoint circuits. So the three end-vertices of G<sub>1</sub>, G<sub>2</sub>, G<sub>3</sub> are branch-vertices of  $\Theta$ .

Since  $\Theta$  is a <4U> the notation may be chosen so that  $F_{12}$  contains at least one vertex besides  $f_1$  and  $f_2$ ,  $f_5$  say. By (1)  $\Gamma$  contains three  $(f_5)(\Theta-f_5)$ -paths any two of which have only f, in common, so it contains one to which neither of the two neighbours of  $f_5$  in  $\Theta$  belong. Let F denote such a path and f the end-vertex of F different from  $f_5$ .  $f = f_3$  or  $f = f_4$ , for otherwise, since  $f \not\in F_{34} - f_3 - f_4$  because  $\Gamma$  is planar, it may be assumed without loss of generality that  $f \in F_{12}$  or  $f \in F_{13} - f_1 - f_3$ ; if  $f \in F_{12}$  then it may be assumed without loss of generality that  $f \neq f_1$ , in which case  $\Gamma$  contains the two disjoint circuits  $\,F \cup F_{42}[f_{_{5}},f]\,$  and  $F_{13} \cup F_{34} \cup F_{41}$  contrary to hypothesis; if  $f \in F_{13} - f_1 - f_3$ then  $\Gamma$  contains the two disjoint circuits  $F \cup F_{13}[f_1,f] \cup$  $\mathbf{F}_{12}[\mathbf{f}_1,\mathbf{f}_5]$  and  $\mathbf{F}_{23} \cup \mathbf{F}_{34} \cup \mathbf{F}_{42}$  contrary to hypothesis. Therefore  $f = f_3$  or  $f = f_4$ . Suppose that  $f = f_4$ . F contains only one edge. For suppose on the contrary that f' is an intermediate vertex of F. By (1)  $\Gamma$  contains three (f')( $\Theta \cup F$ -f') paths any two of which have only f' in common, so it contains one to which neither of the two neighbours of f' in F belong, E say. Let e denote the end-vertex of E different from f'. The following four alternatives have to be distinguished:

(i)  $e \in F$ ,  $e \neq f_4$ , (ii)  $e = f_4$ , (iii)  $e \in F_{12}[f_1, f_5] - f_5$ , (iv)  $e \in F_{14} - f_1 - f_4$ . If (i) holds then  $\Gamma$  contains the two disjoint circuits  $E \cup F[e, f']$  and  $F_{13} \cup F_{34} \cup F_{41}$ . If (ii) holds then  $\Gamma$  contains the two disjoint circuits  $E \cup F[e, f']$  and  $F_{12} \cup F_{23} \cup F_{31}$ . If (iii) holds then  $\Gamma$  contains the two disjoint circuits  $E \cup F_{12}[e, f_5] \cup F[f', f_5]$  and  $F_{23} \cup F_{34} \cup F_{42}$ . If (iv) holds then  $\Gamma$  contains the two disjoint circuits  $E \cup F_{14}[e, f_1] \cup F_{12}[f_1, f_5] \cup F[f', f_5]$  and  $F_{23} \cup F_{34} \cup F_{42}$ . But by hypothesis  $\Gamma$  does not contain two disjoint circuits, so  $\Gamma$  contains only one edge. By symmetry  $F_{14}, F_{24}, F_{34}$  contain only one edge.

Every vertex of  $\Gamma$  belongs to  $\Theta$  . For suppose on the contrary that  $c \in V(\Gamma)$  and  $c \notin \Theta$ . There are two alternatives to consider: (i) c and  $f_4$  are separated by the circuit  $F_{12} \cup F_{23} \cup F_{31}$ , (ii) (i) is not the case and c and  $f_2$  are separated by the circuit  $F_{14} \cup F_{43} \cup F_{31}$ . If (i) holds then  $\Gamma$ contains three (c)( $\Theta$ )-paths  $G_4$ ,  $G_2$ ,  $G_3$ , any two of which have only c in common, and the notation can be chosen so that  $f_1, f_2, f_3$ , respectively, are their end-vertices.  $\Gamma$  then contains the two disjoint circuits  $G_4 \cup G_3 \cup F_{43}$  and  $F_{24} \cup F \cup F_{12}[f_2, f_5]$ . If (ii) holds then  $\Gamma$  contains three (c)( $\Theta$ )-paths  $G_1^1$ ,  $G_3^1$ ,  $G_4^1$  any two of which have only c in common, and the notation can be chosen so that  $f_4$ ,  $f_2$ ,  $f_4$ , respectively, are their end-vertices.  $\Gamma$  then contains the two disjoint circuits  $G_1' \cup G_3' \cup F_{13}$  and  $F_{24} \cup F \cup F_{12}[f_2, f_5]$ . But by hypothesis  $\Gamma$  does not contain two disjoint circuits, so every vertex of  $\Gamma$  belongs to  $\Theta$ .

of them is joined to  $f_4$ . For let  $f_6$  denote such a vertex, it may be assumed that  $f_6 \in F_{13}$ , then  $f_6$  is joined to  $f_4$  or to  $f_2$  by what was said above, but if  $(f_2,f_6) \in \Gamma$  then  $\Gamma$  contains the two disjoint circuits  $F_{13}[f_3,f_6] \cup F_{23} \cup (f_2,f_6)$  and  $F_{12}[f_1,f_5] \cup F \cup F_{14}$  contrary to hypothesis, so  $(f_2,f_6) \notin \Gamma$  and  $(f_4,f_6) \in \Gamma$ .  $\Gamma$  contains no edge which joins two vertices of  $F_{12} \cup F_{23} \cup F_{31}$  but does not belong to  $F_{12} \cup F_{23} \cup F_{31}$ . For  $F_{12} \cup F_{23} \cup F_{31}$  contains at least five vertices and each of them is joined to  $f_4$ , and  $\Gamma$  does not contain two disjoint circuits. (5) is now proved.

The graph which consists of a  $K^6(x_1,x_2,x_3;y_1,y_2,y_3)$  together with an edge which does not belong to the  $K^6$  and joins e.g.  $x_4$  and  $y_4$  contains the two disjoint circuits  $((x_1,y_1))$  and  $((x_2,y_2,x_3,y_3))$  ...(6)  $K^6(x_1,x_2,x_3;y_1,y_2,y_3) \cup (x_1,x_2) \cup (y_1,y_2)$  contains the two disjoint circuits  $((x_1,x_2,y_3))$  and  $((y_1,y_2,x_3))$  ...(7)  $K(x_1,x_2,x_3;y_1,y_2,y_3,y_4) \cup (y_1,y_4)$  contains the two disjoint circuits  $((x_1,y_1,y_4))$  and  $((x_2,y_2,x_3,y_3))$  ...(8) If each of the vertices  $x_1,x_2,x_3,x_4$  is joined to each of the vertices  $y_1,y_2,y_3,y_4$  then the graph contains the two disjoint circuits  $((x_1,y_1,x_2,y_2))$  and  $((x_3,y_3,x_4,y_4))$  ...(9)

To complete the proof of Theorem 1 let  $\Gamma$  denote a 3-connected graph which has at least six vertices and does not contain two disjoint circuits. If  $\Gamma$  is planar then  $\Gamma$  is a wheel by (5). Suppose that  $\Gamma$  is not planar. Then by Kuratowski's theorem and (2), (3) and (4)  $\Gamma$  contains a  $K^6 = K^6 (\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3; \mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3)$ , where by (7) the notation can be chosen so that no two of  $\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3$  are joined by an edge. If  $|V(\Gamma)| = 6$  then it follows from (6) that  $\Gamma$  is a  $K^6$  or a  $K_1$  or a  $K_2$  or a  $K_3$ .

Suppose that  $|V(\Gamma)| \ge 7$  and let z denote a vertex of  $\Gamma$  different from  $x_1, x_2, x_3, y_1, y_2, y_3$ . By (1)  $\Gamma$  contains three  $(z)(K^{6})$ -paths  $Z_{1}, Z_{2}, Z_{3}$ , any two of which have only z in common. If e.g.  $Z_1$  has  $x_1$  and  $Z_2$  has  $y_1$  as end-vertex then  $(K^0 - (x_4, y_4)) \cup Z_4 \cup Z_2$  is a  $K^0 U$ , which is not the case by (2); therefore, since no two of  $y_4, y_2, y_3$  are joined by an edge, it may be assumed that  $Z_1, Z_2, Z_3$  have  $x_4, x_2, x_3$ respectively as end-vertices.  $Z_1, Z_2, Z_3$  contain only one edge each, for otherwise  $\Gamma$  would contain a  $K^6U(x_1, x_2, x_3, y_1, y_2, z)$ contrary to (2). By (8)  $e(y_1, z, \Gamma) = e(y_2, z, \Gamma) = e(y_3, z, \Gamma) = \emptyset$ . So if  $|V(\Gamma)| = 7$  then  $\Gamma = K(x_4, x_2, x_3; y_1, y_2, y_3, z)$  or  $\Gamma = K_{1}(x_{1}, x_{2}, x_{3}; y_{1}, y_{2}, y_{3}, z)$  or  $\Gamma = K_{2}(x_{1}, x_{2}, x_{3}; y_{1}, y_{2}, y_{3}, z)$ or  $\Gamma = K_3(x_1, x_2, x_3, y_1, y_2, y_3, z)$ . If  $|V(\Gamma)| \ge 8$  then let u denote any vertex of r different from x1,x2,x3,y1,y2,y3,z. By what has just been said (with u in place of z) and by (6), (7), (8) and (9) u is joined to each of  $x_1, x_2, x_3$  by exactly one edge and u is not joined to y<sub>1</sub>, y<sub>2</sub>, y<sub>3</sub>, z. It follows by (6), (8) and (9) that  $\Gamma$  is a K or a  $K_4$  or a  $K_2$  or a  $K_3$ . The proof of Theorem 1 is now complete.

3. A property of  $\lambda$ -connected graphs. The following two theorems clarify the structure of  $\lambda$ -connected graphs with more than  $\lambda$  vertices.

THEOREM 2. If  $\Gamma$  is a  $\lambda$ -connected graph with more than  $\lambda$  vertices and with some multiple edges then the graph without multiple edges obtained from  $\Gamma$  by deleting all but one of each set of multiple edges is  $\lambda$ -connected.

Theorem 2 is clearly equivalent to

THEOREM 2'. If  $\Gamma$  is a  $\lambda$ -connected graph with more than  $\lambda$  vertices then any two vertices a and b of  $\lambda$  are connected by  $\lambda$  (a)(b)-paths contained in  $\Gamma$  and such that any

two of them have no vertex other than a and b and no edge in common and all or all but one contain more than one edge.

Note concerning Theorem 2'. If  $|e(a,b,\Gamma)| \leq 1$  then the existence of such a set of paths in  $\Gamma$  follows from the definition of  $\lambda$ -connectedness.

Proof of Theorem 2'. Each vertex of  $\Gamma$  is joined to at least  $\lambda$  different vertices of  $\Gamma$ . For let x denote a vertex of  $\Gamma$ . If x is joined to all the other vertices then the assertion is true because  $|V(\Gamma)| \geq \lambda + 1$ ; if x is not joined to the vertex y then  $\Gamma$  contains  $\lambda$  (x)(y)-paths any two of which have only x and y in common and each of which contains three or more vertices, so again the assertion is true. It follows that  $\alpha$  is joined to at least  $\alpha$ -1 vertices other than  $\alpha$ -1 is joined. By (1)  $\alpha$ -1 contains  $\alpha$ -1 ( $\alpha$ -1 is joined. By (1)  $\alpha$ -1 contains  $\alpha$ -1 ( $\alpha$ -1 is joined. By (1)  $\alpha$ -1 contains  $\alpha$ -1 (b) ( $\alpha$ -1 is joined. By (1)  $\alpha$ -1 contains  $\alpha$ -1 constitute  $\alpha$ -1 constitute  $\alpha$ -1 is joined. By (1)  $\alpha$ -1 contains  $\alpha$ -1 constitute  $\alpha$ -1 constit

## 4. P-s and PU-s in graphs.

THEOREM 3. If a 3-connected graph has at least six vertices and is neither a K nor a  $K_1$  nor a  $K_2$  nor a  $K_3$  nor a wheel nor obtainable from a  $K_1$ ,  $K_2$ ,  $K_3$  or a wheel by duplicating edges already present, then corresponding to any two vertices of the graph there is a P or a PU contained in the graph such that either both the vertices belong to the same end of the P or PU, or one belongs to one end and one to the other.

<u>Proof.</u> Let a and b denote two arbitrary vertices of the graph, and if the graph has no multiple edges then let  $\Gamma$  denote the graph while if the graph has multiple edges then let  $\Gamma$  denote the graph without multiple edges obtained from it by deleting all but one of each set of multiple edges; by Theorem 2  $\Gamma$  is a 3-connected graph without multiple edges.  $\Gamma$  is not isomorphic to any of the graphs mentioned in Theorem 1, therefore by Theorem 1  $\Gamma$  contains two disjoint circuits,

 $C_1$  and  $C_2$  say, each of which contains three or more vertices because  $\Gamma$  contains no multiple edges.

Γ contains two disjoint circuits whose union contains a and b. Proof: to see that  $\Gamma$  contains two disjoint circuits whose union contains at least one of a,b suppose that a,b  $\not\in C_1$ ,  $C_2$ . By (1)  $\Gamma$  contains three (a)( $C_1 \cup C_2$ )-paths Y<sub>4</sub>, Y<sub>2</sub>, Y<sub>3</sub> any two of which have only a in common; let y<sub>1</sub>, y<sub>2</sub>, y<sub>3</sub>, respectively, denote their end-vertices other than a. The notation can be chosen so that  $y_1, y_2 \in C_1$ . Let the union of  $Y_1$  and  $Y_2$  and one of the two arcs of  $C_4$  connecting  $y_4$  and  $y_2$  be denoted by  $C_4^1$ .  $C_4^1$  is a circuit containing a, and  $C_4^{\dagger} \cap C_2^{\phantom{\dagger}} = \emptyset$ . To see that  $\Gamma$  contains two disjoint circuits whose union contains a and b suppose that  $b \notin C_1 \cup C_2$ . By (1)  $\Gamma$  contains three (b)( $C_1^{\dagger} \cup C_2^{\dagger}$ )-paths  $Z_1^{\dagger}, Z_2^{\dagger}, Z_3^{\dagger}$  any two of which have only b in common; let z<sub>4</sub>, z<sub>2</sub>, z<sub>3</sub>, respectively, denote their end-vertices other than b. If at least two of  $z_1$ ,  $z_2$ ,  $z_3$  belong to  $C_2$  then let the notation be chosen so that  $z_1, z_2 \in C_2$ . Let the union of  $Z_1$  and  $Z_2$  and one of the two arcs of  $C_2$  connecting  $z_1$  and  $z_2$  be denoted by  $C_2^1$ .  $C_2^1$  is a circuit containing b, and  $C_4^1 \cap C_2^1 = \emptyset$ , so  $C_4'$  and  $C_2'$  are two disjoint circuits in  $\Gamma$  whose union contains a and b. The remaining alternative is that at least two of  $z_4$ ,  $z_2$ ,  $z_3$  belong to  $C_4$ . In that case let the notation be chosen so that  $z_1, z_2 \in C_1^1$ , and let the union of  $Z_1$  and  $Z_2$  and an arc of  $C_4^1$  connecting  $z_4$  and  $z_2$  and containing a be denoted by  $C_4''$ .  $C_4''$  is a circuit containing a and b, and  $C_4'' \cap C_2 = \emptyset$ . The assertion is thereby proved.

The following result is a special case of an extension of Menger's Theorem [4]:

If  $\Gamma$  is a  $\lambda$ -connected graph and  $A \subset \Gamma$ ,  $B \subset \Gamma$ ,

 $|V(A)| \ge \lambda$ ,  $|V(B)| \ge \lambda$  and  $A \cap B = \emptyset$  then  $\Gamma$  contains  $\lambda$  or more mutually disjoint (A)(B)-paths. ...(10)

To complete the proof of Theorem 3, let C and C' be two disjoint circuits contained in  $\Gamma$  such that  $a,b\in C\cup C'$ .  $|V(C)|\geq 3$  and  $|V(C')|\geq 3$  because  $\Gamma$  contains no multiple edges. Therefore by (10) with  $\lambda=3$ ,  $\Gamma$  contains three mutually disjoint (C)(C')-paths. These C and C' together constitute a P or PU with C and C' as its two ends. Theorem 3 is thereby proved.

THEOREM 4. A finite graph with at least three vertices which contains neither a P nor a PU is either a <3>, <4>, <5>, K $_3$  or wheel, or a <3>, <4>, <5>, K $_3$  or wheel with some or all edges duplicated an arbitrary number of times, or a cockade composed of such graphs, or else it can be obtained from a graph coming under one of these categories by deleting edges.

<u>Proof</u> by induction over the number of vertices. The theorem is obviously true for graphs with fewer than six vertices. Let  $\Gamma$  denote a finite graph with at least six vertices which contains neither a P nor a PU, and suppose that the theorem is true for graphs which have fewer vertices than  $\Gamma$ . Let  $\Gamma$  denote a graph with the following properties:  $V(\Gamma^+) = V(\Gamma)$ ,  $\Gamma \subseteq \Gamma^+$ ,  $\Gamma^+$  contains neither a P nor a PU, if a and b are any two vertices of  $\Gamma^+$  not joined by an edge in  $\Gamma^+$  then  $\Gamma^+ \cup (a,b)$  contains a P or a PU;  $\Gamma^+ = \Gamma$  possibly, and if  $\Gamma^+ \neq \Gamma$  then  $\Gamma$  can be obtained from  $\Gamma^+$  by deleting edges.

 $\Gamma^{+} \text{ is 2-connected.} \quad \text{Proof (by reductio ad absurdum):}$  Suppose that  $\Gamma^{+} \text{ is not 2-connected.} \quad \Gamma^{+} \text{ is obviously connected.}$  Therefore, since  $|V(\Gamma)| \geq 6, \text{ by Theorem 2 and Menger's}$  Theorem  $\Gamma^{+} \text{ contains a cut-vertex, c say.} \quad \text{It follows that}$   $\Gamma^{+} = \Gamma' \cup \Gamma'', \quad \text{where} \quad |V(\Gamma')| \geq 2 \quad \text{and} \quad |V(\Gamma'')| \geq 2 \quad \text{and}$   $\Gamma' \cap \Gamma'' = c. \quad \text{Let a' and a'', respectively, denote vertices}$  of  $\Gamma' \text{ and } \Gamma'' \text{ joined to c.} \quad (a', a'') \notin \Gamma^{+}, \text{ therefore}$ 

 $\Gamma^+ \cup (a',a'')$  contains a P or a PU,  $P_o$  say, to which (a',a'') belongs. The branch vertices of  $P_o$  either all belong to  $\Gamma'$  or all belong to  $\Gamma''$  because a P is 3-connected. Suppose that the branch-vertices of  $P_o$  all belong to  $\Gamma'$ . Then one of the ribs of  $P_o$  includes (a',a'') and an (a'')(c)-path Y belonging to  $\Gamma''$ . It follows that  $(a',c) \not\models P_o$ , because if two ribs join the same pair of branch-vertices then at least one of them passes through a third branch-vertex but all branch-vertices of  $P_o$  belong to  $\Gamma'$ . Since  $(a',c) \not\models P_o$  and all branch-vertices of  $P_o$  belong to  $\Gamma'$ , the graph obtained from  $P_o$  through replacing  $(a',a'') \cup Y$  by (a',c) is a P or a PU contained in  $\Gamma'$ , and therefore in  $\Gamma^+$ . This contradicts the definition of  $\Gamma^+$ , therefore  $\Gamma^+$  is 2-connected.

If  $\Gamma^+$  is 3-connected then by Theorem 3  $\Gamma^+$  is either a <4>, <5>, K3 or wheel, or a <4>, <5>, K3 or wheel with some or all edges duplicated, so Theorem 4 is true for  $\Gamma$ . Suppose in what follows that  $\Gamma^+$  is not 3-connected. Then by Theorem 2 and Menger's Theorem  $\Gamma^+$  contains two vertices a and b such that  $\Gamma^+$  -a-b is disconnected. Since  $\Gamma^+$  is 2-connected it follows that  $\Gamma^+$  =  $\Gamma_1 \cup \Gamma_2$ , where  $|V(\Gamma_1)| \ge 3$ ,  $|V(\Gamma_2)| \ge 3$ , and  $V(\Gamma_1 \cap \Gamma_2) = \{a,b\}$ . a and b are joined by at least one edge in  $\Gamma^+$ . Proof (by reductio ad absurdum): If  $(a,b) \not\models \Gamma^+$  then  $\Gamma^+ \cup (a,b)$  contains a P or a PU,  $P_1$  say, to which (a,b) belongs. The branch-vertices of  $P_1$  either all belong to  $\Gamma_1$  or all belong to  $\Gamma_2$  because a P is 3-connected. Suppose that the branch vertices of  $P_1$  all belong to  $\Gamma_1$ . It follows that  $P_1 \cap (\Gamma_2 - a - b) = \emptyset$  because  $(a,b) \in P_1$ . Let  $P_1 \cap (\Gamma_2 - a - b) = \emptyset$  because  $P_1 \cap (P_2 - a - b) = \emptyset$  because  $P_1 \cap (P_2 - a - b) = \emptyset$  because  $P_1 \cap (P_2 - a - b) = \emptyset$  because  $P_1 \cap (P_2 - a - b) = \emptyset$  because  $P_1 \cap (P_2 - a - b) = \emptyset$  because  $P_1 \cap (P_2 - a - b) = \emptyset$  because  $P_1 \cap (P_2 - a - b) = \emptyset$  because  $P_1 \cap (P_2 - a - b) = \emptyset$  because  $P_1 \cap (P_2 - a - b) = \emptyset$  because  $P_1 \cap (P_2 - a - b) = \emptyset$  because  $P_1 \cap (P_2 - a - b) = \emptyset$  because  $P_1 \cap (P_2 - a - b) = \emptyset$  because  $P_1 \cap (P_2 - a - b) = \emptyset$  because  $P_1 \cap (P_2 - a - b) = \emptyset$  because  $P_1 \cap (P_2 - a - b) = \emptyset$  because  $P_1 \cap (P_2 - a - b) = \emptyset$  because  $P_1 \cap (P_2 - a - b) = \emptyset$  because  $P_1 \cap (P_2 - a - b) = \emptyset$  because  $P_1 \cap (P_2 - a - b) = \emptyset$  because  $P_1 \cap (P_2 - a - b) = \emptyset$  because  $P_1 \cap (P_2 - a - b) = \emptyset$  because  $P_1 \cap (P_2 - a - b) = \emptyset$  because  $P_1 \cap (P_2 - a - b) = \emptyset$  because  $P_1 \cap (P_2 - a - b) = \emptyset$  because  $P_1 \cap (P_2 - a - b) = \emptyset$  because  $P_1 \cap (P_2 - a - b) = \emptyset$  because  $P_1 \cap (P_2 - a - b) = \emptyset$  because  $P_1 \cap (P_2 - a - b) = \emptyset$  because  $P_1 \cap (P_2 - a - b) = \emptyset$  because  $P_1 \cap (P_2 - a - b) = \emptyset$  because  $P_1 \cap (P_2 - a - b) = \emptyset$  because  $P_1 \cap (P_2 - a - b) = \emptyset$  because  $P_1 \cap (P_2 - a - b) = \emptyset$ 

of these two paths. Since  $P_1 \cap (\Gamma_2 - a - b) = \emptyset$  the graph obtained from  $P_1$  through replacing (a,b) by Z is a PU contained in  $\Gamma^+$ . This contradicts the definition of  $\Gamma^+$ , so a and b are joined by at least one edge in  $\Gamma^+$ . It may therefore be assumed that  $(a,b) \in \Gamma_1 \cap \Gamma_2$ . From this and the induction hypothesis it follows that Theorem 4 is true for  $\Gamma$ . The theorem is therefore proved.

Remark concerning Theorem 4. Not every cockade composed of the graphs described in Theorem 4 has the property that if two independent vertices are joined by an edge then the resulting graph contains a P or a PU!

THEOREM 5. (a) If a planar graph with at least six vertices is 3-connected and is neither a wheel nor obtainable from a wheel by duplicating edges, then corresponding to any two vertices there is a P or PU contained in the graph such that the union of its two ends includes the two vertices.

(b) If a planar graph with at least six vertices has no multiple edges and triangulates the whole plane, then corresponding to any two circuits, in particular corresponding to any two disjoint <3>-s, there is a P or a PU contained in the graph which has the two circuits as its ends.

<u>Proof.</u> (a) follows from Theorem 3 because a K is not planar. (b) follows from (10) with  $\lambda$  = 3 provided the graph is 3-connected. Now a graph which triangulates the whole plane and contains at least six vertices is obviously 2-connected, and if it is not 3-connected then it contains a cut-set  $\{a,b\}$ , and since the graph triangulates the whole plane it follows that  $|e(a,b)| \geq 2$ , which is contrary to hypothesis; therefore Theorem 5 is proved.

5. A theorem of Turán type concerning K<sup>6</sup>-s, K<sup>6</sup>U-s,

P-s and PU-s. The following theorem includes as a particular case the graphs obtained from planar graphs without multiple edges which triangulate the whole plane by adding an edge joining two non-neighbouring vertices.

THEOREM 6. If a graph without multiple edges has

 $n \ge 6$  vertices and at least 3n-5 edges then it contains a  $K^6$  or a  $K^0$  unless it is a cockade composed of <5>-s (such a cockade has exactly 3n-5 edges).

Proof. A theorem of K. Wagner [5] states that any finite graph without multiple edges with at least three vertices which contains neither a K nor a K U is either a <3,>,<4>,<5>or a graph with at least six vertices which triangulates the whole plane, or a cockade composed of such graphs, or else it can be obtained from a graph belonging to one of these categories by deleting edges. A <k> has less than 3k-5 edges if 3 < k < 4 and exactly 3k-5 edges if k = 5, while a graph with m(>3) vertices which has no multiple edges and triangulates the whole plane has exactly 3m-6 edges. A cockade with n vertices composed of such graphs contains at most 3n-6 edges, unless the cockade is composed entirely of <5>-s, in which case the total number of edges is 3n-5 this can be proved very easily by induction over the number of graphs of which the cockade is composed. Therefore a graph which satisfies the conditions of Theorem 6 contains a K or a K<sup>b</sup>U unless it is a cockade composed of <5>-s.

By Theorem 4 any finite graph without multiple edges which contains at least three vertices and neither a P nor a PU is either a <3>, <4>, <5>,  $K_3$  without multiple edges or wheel without multiple edges, or a cockade composed of such graphs, or else it can be obtained from a graph belonging to one of these categories by deleting edges. A wheel without multiple edges having  $m \ge 4$  vertices contains exactly 2m-2 edges, a  $K_3$  without multiple edges having  $m \ge 6$  vertices contains exactly 3m-6 edges. A cockade with  $n \ge 6$  vertices composed of 3>-s, 4>-s, 5>-s, 4>-s, without multiple edges and wheels without multiple edges contains at most 3n-6 edges unless it is composed of 5>-s only. So by Theorem 4 a graph which satisfies the conditions of Theorem 6 contains a P or PU unless it is a cockade composed of 5>-s.

## 6. A theorem concerning homomorphism.

Definitions. The graph  $\Gamma$  can be contracted into the graph  $\Delta$  if there exists a mapping  $\Phi$  of  $V(\Gamma)$  onto  $V(\Delta)$  such that 1.  $(\forall x)[x \in V(\Delta) \Rightarrow \Gamma(\Phi^{-1}(x))]$  is connected,

2.  $(\forall x, x') [x, x' \in V(\Delta) \Rightarrow \Gamma \text{ contains } | e(x, x', \Delta) | (\phi^{-1}(x))$   $(\phi^{-1}(x'))\text{-edges}]$ . The graph  $\Gamma$  is homomorphic to the graph  $\Delta$ , for short  $\Gamma$  hom.  $\Delta$ , if  $\Gamma$  can be contracted into a graph of which  $\Delta$  is a subgraph. These definitions differ from the analogous definitions for graphs without multiple edges [6][7] in that multiple edges of  $\Delta$  are here significant; if  $\Delta$  contains no multiple edges then the present definition is equivalent to the definitions in [6] and [7].

The following is a generalisation of a result of K. Wagner [8].

THEOREM 7. If  $\Delta$  is a subgraph of a graph into which the graph  $\Gamma$  is contracted by the mapping  $\emptyset$ , and if  $\Delta$  contains no vertex of valency > 3, then  $\Gamma \supseteq \Delta'$  or  $\Gamma \supseteq \Delta' \cup U$ , where there is an isomorphism I between  $\Delta$  and  $\Delta'$  such that for each vertex x of  $\Delta$   $I(x) \in \emptyset^{-1}(x)$ .

Proof. Let  $\Gamma' = \bigcup_{\mathbf{x} \in V(\Delta)} \Gamma(\phi^{-1}(\mathbf{x}))$  and let  $\Gamma''$  be a subgraph of  $\Gamma$  obtained by adding  $|e(\mathbf{x}, \mathbf{x}', \Delta)| (\phi^{-1}(\mathbf{x}))(\phi^{-1}(\mathbf{x}'))$ -edges of  $\Gamma$  to  $\Gamma'$  for all pairs  $\mathbf{x}, \mathbf{x}' \in V(\Delta)$ . Any vertex of  $\phi^{-1}(\mathbf{x})$  which is joined to at least one vertex not in  $\phi^{-1}(\mathbf{x})$  by one or more edges of  $\Gamma''$  will be called a <u>clasp-vertex</u> of  $\phi^{-1}(\mathbf{x})$ .  $\phi^{-1}(\mathbf{x})$  has at most three clasp-vertices because  $v(\mathbf{x}, \Delta) < 3$ .

Let  $\Gamma^{\text{\tiny{III}}}$  be a subgraph of  $\Gamma^{\text{\tiny{II}}}$  obtained as follows: For each vertex x of  $\Delta$ 

- (i) If  $\phi^{-1}(x)$  contains only one clasp-vertex, X(x) say, then every vertex of  $\phi^{-1}(x)$  other than X(x) is deleted from  $\Gamma^{11}$ .
- (ii) If  $\phi^{-1}(x)$  contains two clasp-vertices then let these be  $Y_1(x)$  and  $Y_2(x)$ , the notation being chosen so that  $Y_2(x)$  is in  $\Gamma''$  joined to one vertex only outside  $\phi^{-1}(x)$ ; a  $(Y_1(x))$   $(Y_2(x))$ -path is selected in  $\Gamma(\phi^{-1}(x))$ , and all vertices of

 $\phi^{-1}(x)$  which do not belong to this path are deleted from  $\Gamma''$ .

(iii) If  $\phi^{-1}(x)$  contains three clasp-vertices then let them be  $Z_1(x)$ ,  $Z_2(x)$  and  $Z_3(x)$ . Either  $\Gamma(\phi^{-1}(x))$  contains a path which joins two of them and passes through the third, or  $\Gamma(\phi^{-1}(x))$  contains no such path. In the first case let the notation be chosen so that  $Z_3(x)$  is an intermediate vertex of a path in  $\Gamma(\phi^{-1}(x))$  joining  $Z_1(x)$  and  $Z_2(x)$ ; all the vertices of  $\phi^{-1}(x)$  which do not belong to the path are deleted from  $\Gamma^{\text{II}}$ . In the second case let R(x) denote a  $(Z_1(x))(Z_2(x))$ -path and S(x) an  $(R(x))(Z_3(x))$ -path contained in  $\Gamma(\phi^{-1}(x))$  and let Z(x) denote the vertex common to R(x) and S(x); all vertices of  $\phi^{-1}(x)$  which belong neither to R(x) nor to S(x) are deleted from  $\Gamma^{\text{II}}$ .

It is easy to see that  $\Gamma'''$  is isomorphic to  $\Delta$  or to a  $\Delta$ U, the vertex X(x),  $Y_1(x)$ ,  $Z_3(x)$  or Z(x) in  $\Gamma'''$ , as the case may be, corresponding to the vertex x of  $\Delta$ . This proves Theorem 7.

Note that Theorem 7 is true whether  $\Delta$  is finite or infinite. The condition that  $\Delta$  contains no vertex of valency  $\geq 4$  is essential, this is illustrated by the following very simple example:  $V(\Delta) = \{x,y\}, \ |e(x,y,\Delta)| = 4; \ V(\Gamma) = \{x',y_1,y_2\}, \ |e(x',y_1,\Gamma)| = |e(x',y_2,\Gamma)| = 2, \ |e(y_1,y_2,\Gamma)| = 1. \ \Gamma \text{ hom. } \Delta$  with  $\phi(x') = x$ ,  $\phi(y_1) = \phi(y_2) = y$ , but  $\Gamma$  obviously does not contain a subgraph isomorphic to  $\Delta$  or to a  $\Delta U$ ; other simple examples can easily be found, including ones in which  $\Gamma$  and  $\Delta$  have no multiple edges.

# 7. Concerning the structure of 5-chromatic and 6-chromatic graphs.

<u>Definitions.</u> A graph is said to be k-colourable, k being a positive integer, if the vertices of the graph can be divided into k mutually disjoint (colour) classes in such a way that no two vertices in the same class are joined by an edge;

such a partitioning of the vertices is called a k-colouring. A graph is said to have chromatic number k or to be k-chromatic if it is k-colourable and not (k-1)-colourable. A k-chromatic graph  $\Gamma$  is called vertex-critical if for each vertex a of  $\Gamma$   $\Gamma$ -a is (k-1)-chromatic. A k-chromatic graph is called contraction-critical if it is connected and not homomorphic to any graph having fewer vertices and chromatic number  $\geq k$ . It is easy to see that if a graph is contraction-critical then it is vertex-critical. (Contraction-critical graphs are sometimes called irreducible graphs, particularly in the theory of 5-chromatic planar graphs.)

A theorem of de Bruijn and Erdős [9] states that if k is a positive integer and every finite subgraph of an infinite graph is k-colourable, then the whole graph is k-colourable. It follows that all vertex-critical k-chromatic graphs have a finite number of vertices and every k-chromatic graph contains a vertex-critical k-chromatic subgraph. It is easy to see that any vertex-critical k-chromatic graph is connected and contains no cut-vertex, and each of its vertices is joined to at least k-1 others.

The writer has proved elsewhere [10], [11], [12] that

If a vertex-critical k-chromatic graph contains an < l>, where l < k, then the graph is homomorphic to an < l+1> ...(11)

Every contraction-critical k-chromatic graph with  $k \ge 5$ , other than a  $\langle k \rangle$ , is 5-connected. ...(12)

Every 4-chromatic graph contains a <4> or a <4U>. ...(13)

The following theorem is concerned with the case in which two vertices form a cut-set in a vertex-critical graph.

THEOREM 8. If  $\Gamma$  is a vertex-critical k-chromatic graph, where  $k \geq 3$ , and the two vertices p and q of  $\Gamma$  are such that  $\Gamma$ -p-q is disconnected, then  $(p,q) \not\models \Gamma$  and  $\Gamma = \Gamma' \cup \Gamma''$  where  $\Gamma' \cap \Gamma'' = \{p,q\}$ , and the notation can be chosen so that

A. In every (k-1)-colouring of  $\Gamma'$  p and q have the same colour and in every (k-1)-colouring of  $\Gamma''$  p and q have different colours.

- B.  $\Gamma' \cup (p,q)$  is k-chromatic and vertex-critical.
- C. The graph obtained from  $\Gamma''$  by identifying p with q is k-chromatic and vertex-critical.
- D.  $\Gamma$ -p-q consists of two connected components, both of which are joined to p and to q in  $\Gamma$ .

<u>Proof.</u> Let  $\Gamma$ -p-q =  $\Gamma_1 \cup \Gamma_2$  where  $\Gamma_1 \neq \emptyset$ ,  $\Gamma_2 \neq \emptyset$  and  $\Gamma_1 \cap \Gamma_2 = \emptyset$ , and let  $\Gamma' = \Gamma - \Gamma_2$  and  $\Gamma'' = \Gamma - \Gamma_1$ . Then  $\Gamma = \Gamma' \cup \Gamma''$  and  $V(\Gamma' \cap \Gamma'') = \{p,q\}$ .  $\Gamma'$  and  $\Gamma''$  are both (k-1)-colourable because  $\Gamma$  is vertex-critical.  $\Gamma'$  and  $\Gamma''$  can not be (k-1)-coloured with the same k-1 colours in such a way that the two colcurings match over p and q, for  $\Gamma$  is not (k-1)-colourable. Therefore  $(p,q) \not\models \Gamma$  and the notation can be chosen so that in every (k-1)-colouring of  $\Gamma'$  p and q have the same colour and in every (k-1)-colouring of  $\Gamma''$  the colour of p is different from the colour of q. This proves that  $(p,q) \not\models \Gamma$ ,  $\Gamma' \cap \Gamma'' = \{p,q\}$ , and  $\Lambda$  is true.

Let  $\Gamma^{!!!}$  denote the graph obtained from  $\Gamma^{!!}$  by identifying p with q, i.e. the graph obtained from  $\Gamma^{!!}$ -p-q by adjoining a vertex r not belonging to  $\Gamma$  and edges according to the rule  $|e(r,x,\Gamma^{!!!})|=|e(p,x,\Gamma^{!!})|+|e(q,x,\Gamma^{!!})|$  for each vertex x of  $\Gamma^{!!}$ -p-q.  $\Gamma^{!!}$ -p-q is (k-1)-colourable.  $\Gamma^{!!!}$  is not (k-1)-colourable, because if it were then  $\Gamma^{!!}$  could be (k-1)-coloured in such a way that p and q have the same colour by colouring  $\Gamma^{!!}$ -p-q(= $\Gamma^{!!!}$ -r) as it is coloured in a (k-1)-colouring of  $\Gamma^{!!!}$  and then giving p and q the colour of r. Hence  $\Gamma^{!!!}$  is k-chromatic. Let u denote an arbitrary vertex of  $\Gamma^{!!!}$ , it will be shown that  $\Gamma^{!!!}$ -u is (k-1)-colourable. If u = r then

 $\Gamma^{!!!}$  -  $u = \Gamma^{!!}$ -p-q, and  $\Gamma^{!!}$ -p-q is (k-1)-colourable because  $\Gamma$  is vertex-critical. Suppose that  $u \neq r$ .  $\Gamma$ -u is (k-1)-colourable, therefore since in every (k-1)-colouring of  $\Gamma^{!}$  p and q have the same colour,  $\Gamma^{!!}$ -u can be coloured with k-1 colours in such a way that p and q have the same colour; a (k-1)-colouring of  $\Gamma^{!!!}$ -u is obtained by giving r the colour which p and q have in such a (k-1)-colouring of  $\Gamma^{!!}$ -u. This proves C.

Each connected component of  $\Gamma$ -p-q is joined to p and to q because  $\Gamma$  is connected and contains no cut-vertex. If  $\Gamma_1$  had more than one connected component then two vertices joined by an edge (namely p and q) would constitute a cut-set of the vertex-critical k-chromatic graph  $\Gamma' \cup (p,q)$ , but this contradicts what has already been proved; so  $\Gamma_1$  is connected. If  $\Gamma_2$  had more than one connected component then r would be a cut-vertex of  $\Gamma'''$ , but  $\Gamma''''$  is vertex-critical and therefore contains no cut-vertex; so  $\Gamma_2$  is connected. This proves D.

Note. A k-chromatic graph is called edge-critical if every proper subgraph is (k-1)-colourable. Theorem 8 remains true if 'vertex-critical' is everywhere replaced by 'edge-critical', the proof is practically the analogue of the above proof of Theorem 8.

THEOREM 9. Any vertex-critical 5-chromatic graph either contains a P or a PU, or else each edge of the graph belongs to some <5> or <5U> contained in the graph.

<u>Proof</u> (by induction over the number of vertices n): the theorem is clearly true for n=5. Suppose that it is true for  $5 \le n \le m-1$ , where  $m \ge 6$ , and let  $\Gamma$  denote a vertexcritical 5-chromatic graph with m vertices. If  $\Gamma$  is 3-connected then it contains a P or a PU since by Theorem 3 all 3-connected graphs which contain neither a P nor a PU nor a <5> are 4-colourable ( $\Gamma \not D <5>$  because  $\Gamma$  is 5-chromatic and vertex critical and  $m \ge 6$ ). Suppose that  $\Gamma$  is not 3-connected. Then by Menger's Theorem  $\Gamma$  contains two vertices P and P such that P-P-P is disconnected. In the notation of Theorem 8 P P P P is 5-chromatic and vertex-critical, therefore by the induction hypothesis P P P P0 either contains a P1 or a P1, or each edge of P1 P1 P2 belongs to some P3 or P4 contained in P1 P1 P2 or P3. If

 $\Gamma' \cup (p,q)$  contains a P or a PU then so does  $\Gamma$  because (p,q) can be replaced by a (p)(q)-path contained in  $\Gamma^{tt}$ . (It follows at once from Theorem 8 D that  $\Gamma'$  and  $\Gamma''$  are connected, therefore they contain (p)(q)-paths.) Suppose that  $\Gamma' \cup (p,q)$  contains neither a P nor a PU, and let (a,b)denote any edge of  $\Gamma$  (a, b, p, q need not all be distinct). If  $(a,b) \in \Gamma^{!}$  then by the induction hypothesis  $\Gamma^{!} \cup (p,q)$  contains a <5> or a <5U> to which (a,b) belongs. It follows that T contains a <5U> to which (a,b) belongs because (p,q) can be replaced by a (p)(q)-path contained in  $\Gamma''$ . Suppose that  $(a,b) \notin \Gamma'$ ; then  $(a,b) \in \Gamma''$ . By the induction hypothesis  $\Gamma' \cup (p,q)$  contains a <5> or a <5U> to which (p,q) belongs. If a, b, p, q are all distinct then, since  $\Gamma$  contains no cutvertex, by (10) the notation can be chosen so that  $\Gamma^{11}$  contains an (a)(p)-path A and a (b)(q)-path B such that  $A \cap B = \emptyset$ . By replacing (p,q) with  $A \cup B \cup (a,b)$  it is seen that  $\Gamma$ contains a <5U> to which (a,b) belongs. There remains the alternative that p = a and  $b \in \Gamma^{tt} - p - q$ . By Theorem 8 D  $\Gamma''$ -p is connected, therefore  $\Gamma''$ -p contains a (b)(q)-path, C say. By replacing (p,q) with  $C \cup (a,b)$  it is seen that  $\Gamma$ contains a <5U> to which (a,b) belongs.

Hence Theorem 9 is true for  $\Gamma$ , and therefore the theorem is true generally.

THEOREM 10. If  $\Gamma$  is any contraction-critical-5-chromatic graph other than a <5> or a <5> with some edges duplicated, and if a,b,c,d are any four vertices of  $\Gamma$ , then  $\Gamma$ -a-b contains a P or PU whose two ends together include c and d.

<u>Proof.</u> It may be assumed that  $\Gamma$  contains no multiple edges, since replacing each set of multiple edges by a single edge does not change the chromatic number of a graph.

It follows from (12) that  $\Gamma$ -a-b is 3-connected. Hence, by Theorem 3,  $\Gamma$ -a-b contains a P or PU whose two ends together include c and d unless  $\Gamma$ -a-b is a K, K<sub>1</sub>, K<sub>2</sub>, K<sub>3</sub> or a wheel. It will be shown below that  $\Gamma$ -a-b is not a K, K<sub>1</sub>, K<sub>2</sub>, K<sub>3</sub> or wheel.  $\Gamma$ -a-b is not a K because a K is 2-chromatic and  $\Gamma$  is 5-chromatic.

Suppose that  $\Gamma$ -a-b =  $K_1(x_1, x_2, x_3; y_1, y_2, \dots, y_i)$ . Then  $(a,b) \in \Gamma$  because a  $K_1$  is 3-chromatic and  $\Gamma$  is 5-chromatic. a and b are both joined to  $x_1$  and to  $x_2$  in  $\Gamma$  because if e.g.  $(a,x_2) \notin \Gamma$  then a 4-colouring C of  $\Gamma$  could be obtained thus:  $C(x_2) = 1$ ,  $C(x_1) = C(x_3) = 2$ ,  $C(y_1) = C(y_2) = \dots = C(y_i) = 3$ , C(a) = 1, C(b) = 4, whereas  $\Gamma$  is 5-chromatic. Therefore  $\Gamma(a,b,x_1,x_2) = <4>$ , hence by (11)  $\Gamma$  hom. <5>, and this is contrary to hypothesis. So  $\Gamma$ -a-b is not a  $K_1$ .

Suppose that  $\Gamma$ -a-b =  $K_2(x_1, x_2, x_3; y_1, y_2, \dots, y_i)$ . Then  $(a,b) \in \Gamma$  because a  $K_2$  is 3-chromatic and  $\Gamma$  is 5-chromatic.  $(x_2,a) \in \Gamma$  and  $(x_2,b) \in \Gamma$  because if e.g.  $(x_2,a) \notin \Gamma$  then a 4-colouring  $\Gamma$  of  $\Gamma$  defined as above would exist.  $(y_1,a)$ ,  $(y_1,b) \in \Gamma$  by (12). Therefore  $\Gamma(a,b,x_2,y_1) = <4>$ , hence by (11)  $\Gamma$  hom. <5>, contrary to hypothesis. So  $\Gamma$ -a-b is not a  $K_2$ .

 $\Gamma\text{-a-b}$  is not a  $\mbox{K}_{3}$  because a  $\mbox{K}_{3}$  contains <4>-s and  $\Gamma$  does not.

coloured with the colours 1, 2, 3 and a, b, v with the colour 4, whereas  $\Gamma$  is 5-chromatic. Consequently  $\Gamma(a,b,u_1,u_2)=<4>$ , which leads to a contradiction. So  $\Gamma$ -a-b is not a wheel.

Hence Theorem 10 is true.

THEOREM 11. A 5-chromatic graph is either homomorphic to a <5>, or else if any two of its vertices are deleted then the remaining graph contains a  $\,P\,$  or a  $\,PU\,$ .

<u>Proof.</u> It is sufficient to establish the theorem for vertex-critical graphs. Let  $\Lambda$  be a vertex-critical 5-chromatic graph and let m and n denote two vertices of  $\Lambda$ .  $\Lambda$  is finite and therefore homomorphic to a contraction-critical 5-chromatic graph,  $\Gamma$  say ( $\Lambda=\Gamma$  possibly); let  $\emptyset$  denote the mapping and let a denote  $\emptyset(m)$  and b denote  $\emptyset(n)$  (a = b possibly). If  $\Gamma \supseteq <5>$  then the theorem is true. Suppose that  $\Gamma \not \supseteq <5>$ . Then by Theorem 10  $\Gamma$ -a-b contains a P or a PU . Therefore  $\Lambda$ -m-n is homomorphic to a P or a PU . Consequently by Theorem 7  $\Lambda$  contains a P or a PU . Theorem 11 is thereby proved.

THEOREM 12. Corresponding to any vertex of a vertex-critical 6-chromatic graph there exists in the graph a P or a PU containing the vertex.

Suppose first that  $f \in \Gamma'$ . By Theorem 8 B  $\Gamma' \cup (p,q)$  is 6-chromatic and vertex-critical, therefore by the induction hypothesis  $\Gamma' \cup (p,q)$  contains a P or a PU to which f belongs. It follows that  $\Gamma$  contains a P or a PU to which f belongs, since (p,q) can be replaced by a (p)(q)-path

contained in  $\Gamma^{11}$ , if necessary. (It follows from Theorem 8 D that  $\Gamma^{1}$  and  $\Gamma^{11}$  are connected.)

Suppose secondly that  $f \notin \Gamma'$ , so that  $f \in \Gamma''$ -p-q.  $\Gamma'$  is connected and therefore contains a (p)(q)-path, R say. Let  $\Gamma'''$  denote the graph obtained from  $\Gamma''$  by identifying p with q, and let r denote the vertex of  $\Gamma'''$  not belonging to  $\Gamma''$  (see the proof of Theorem 8),  $r \neq f$ .  $\Gamma'' \cup R$  is contracted into a graph of which  $\Gamma'''$  is a subgraph by the mapping  $\emptyset$  defined by  $\emptyset(x) = x$  if  $x \notin R$  and  $\emptyset(x) = r$  if  $x \in R$ . By Theorem 8 C  $\Gamma'''$  is 6-chromatic and vertex-critical. Hence by the induction hypothesis  $\Gamma'''$  contains a P or a PU to which f belongs. Therefore by Theorem 7  $\Gamma'' \cup R$  contains a P or a PU to which f belongs.

Hence  $\Gamma$  contains a P or a PU to which f belongs. Theorem 12 is thereby proved.

The results established in this section may be applied to graphs with higher chromatic number with the help of the following general rule:

Let  $\Gamma$  denote a vertex-critical k-chromatic graph, where  $k \geq 3$ , and let g denote any vertex of  $\Gamma$ . Let  $\Gamma$  be coloured with the colours  $1,2,\ldots,k$  in any permissible way subject to the condition that colour 1 is given to g only, and let  $C_i$  denote the set of those vertices of  $\Gamma$  which have colour i for  $i=1,\ldots,k$ . Then for  $1 \leq \ell \leq k-1$   $\Gamma = C_{\ell+1} = C_{\ell+2} = \ldots = C_k$  contains a vertex-critical  $\ell$ -chromatic graph to which g belongs. For  $\Gamma = C_{\ell+1} = \ldots = C_k$  is  $\ell$ -chromatic and  $\Gamma = C_{\ell+1} = \ldots = C_k$ . Consequently for example Theorem 12 can also be formulated thus: Corresponding to any vertex of a vertex-critical graph with chromatic number  $\geq 6$  there exists in the graph a  $\Gamma$ - or a  $\Gamma$ - or a  $\Gamma$ - or  $\Gamma$ 

The following rule is the analogue of the above for edge-critical graphs: Let  $\Gamma$  denote an edge-critical k-chromatic graph, where  $k \geq 3$ , and let (a,b) denote any edge of  $\Gamma$ . Let  $\Gamma$ -(a,b) be coloured with the colours  $1,\ldots,k-1$  in any permissible way subject to the condition that a and b are given the colour 1, and let  $D_i$  denote the set of those vertices

of  $\Gamma$  which have colour i for i = 1,..., k-1. ( $\Gamma$ -(a,b) is (k-1)-colourable because  $\Gamma$  is edge-critical, and in any (k-1)-colouring of  $\Gamma$ -(a,b) the colour of a is the same as the colour of b because  $\Gamma$  is k-chromatic.) Then for  $2 \le \ell \le k-1$   $\Gamma$ -  $D_{\ell}$ -...-  $D_{k-1}$  contains an edge-critical  $\ell$ -chromatic graph to which (a,b) belongs. For  $\Gamma$ -  $D_{\ell}$ -...-  $D_{k-1}$  is  $\ell$ -chromatic and  $\Gamma$ -(a,b)-  $D_{\ell}$ -...-  $D_{k-1}$  is ( $\ell$ -1)-chromatic.

#### REFERENCES

- K. Menger, Kurventheorie, Leipzig 1932, 221-228.
   G. Hajos, Zum Mengerschen Graphensatz, Acta Szeged 7(1934), 44.
- K. Corradi and A. Hajnal, On the maximum number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar.
- 3. G.A. Dirac and P. Erdös, On the maximum number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar.
- 4. G.A. Dirac, Extensions du théoreme de Menger, C.R. Acad. Sci., Paris, 250, fasc. 26(1960), 4252.
- 5. K. Wagner, Über eine Erweiterung eines Satzes von Kuratowski, Deutsche Math. 2 (1937), 280.
- 6. K. Wagner, Bemerkungen zu Hadwiger's Vermutung, Math. Ann. 141 (1960), 433.
- 7. G. A. Dirac, A contraction theorem for abstract graphs, Math. Ann. 144 (1961), 93.
- 8. K. Wagner, loc. cit. 6, 436, Lemma 1.4.
- 9. N. G. de Bruijn and P. Erdős, A colour problem for infinite graphs and a problem in the theory of relations, Proc. Koninkl. Akad. Wetenschappen A (1951), 371.

- 10. G.A. Dirac, Theorems related to the four colour conjecture, Journal London Math. Soc. 29(1954), 144, Theorem 1.
- G. A. Dirac, A property of 4-chromatic graphs and some remarks on critical graphs. Journal London Math. Soc. 27(1952), 87. Bernhardine Zeidl, Über 4- und 5-chrome Graphen, Monatsh. Math. 62 (1958), 212.
- 12. G. A. Dirac, Trennende Knotenpunktmengen und Reduzibilität abstrakter Graphen, Crelle 204 (1960), 128.

Universität Hamburg