SOME RESULTS CONCERNING THE STRUCTURE OF GRAPHS
G. A. Dirac
(received March 25, 1962)
1. Introduction and terminology. The object of this

paper is to present results concerning the structure of
3-connected graphs and of 5-chromatic and é-chromatic graphs

and also a theorem on contraction and a theorem of Turan type.
The Axiom of Choice is assumed.

A graph I': a set V(I) whose elements are called the
vertices of the graph; with each pair of distinct vertices a
and b there is associated a set e(a,b, T) (ze(b,a, "),

e(a,b, ) "V(I') =P ) whose elements are called the edges
joining a and b, efa,b,T") N e(a',b',)=P if {a,b}# {a'.b'} ;
the union of all the sets e(a,b,I') is denoted by E(I'), and
T=V(r) VE(I’). (a,b) denotes an element of e(a,b,T) .

If Ie(a,b, I‘)} < 1 for all a,b e V(I') then the graph contains
no multiple edg—es. If T and M are graphs and V(I'') C V(I')
and E(I'")C E(r) then I'' 1is called a subgraph of T, -

r' C r; if in addition V(') # V{(r) or E(r')# E(I') then

' will be called a proper subgraph of I", I'' CI'. A planar
graph is a graph which corresponds to a line complex imbedded
in the plane without intersection of lines. If W C V(I') then
I'-W will denote the graph obtained from I’ by deleting all
vertices of W and all edges incident with one or two vertices

of W . The valency of a vertex is the number of edges incident
with the vertex.

A graph T will be called \-connected, where A 1is an
integer > 1, if any two vertices a and b of I' are connected
by a set of \ (or more) paths of I', any two of which have no
vertex other than a and b and no edge in common. (A \-connected
graph is also p-connected for 1< pu < \.) For graphs without
multiple edges this property is by—Menger‘ s theorem equivalent
to the following: I is connected, |V(I')| > A+1, and
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VW[W CV(r)and |W| < \.=. I-W is connected] [1].

If A, BCT, A#90,.B#9 and A "B =0 then a path
which has one end-vertex in A and the other in B and has no
other vertex in common with A \w B will be called an (A) (B)-
path.

(W), where WCV (r), will denote - (I"- W), that
is to say the subgraph of I' generated or spanned by the vertices

of W.
((x1, xZ, ...,x%x.)), where i> 2, will denote a circuit
i Z
whose vertices in cyclic order are x1,x2, .. ,xi . The length

of the circuit is 1i .

If Y is a path and p,q are vertices of Y then Y[p,q]
(= Y[q,p]) will denote that part of Y which has p and q as its
two end-vertices; Y[p,p]=p .

A complete k-graph or <k> will denote a graph with
k (> 1) vertices in which each pair of distinct vertices are
joi;ed by exactly one edge, a <1> is a single vertex. A <k->
will denote a <k> with exactly one edge missing.

A wheel will denote a graph which consists of a circuit
together with a vertex not belonging to the circuit and joined
to each vertex of the circuit by at least one edge.

b4 ’ 1 4 ERR A ] -1 1 > ] i
K or K(x1 X, X, VY, yl) where i> 3 will
denote a graph with the i+ 3 vertices x ,xz,x3,y1, LY.
1
in which xi, xz,x3 are each joined to VoY, by exactly
i
one edge and there are no more edges. K(xi, XZ,X3;Y1, ceuyl)

together with one or more edges joining x1 and X, will be

denoted by K CKLKY ey ) KKV
eno vy Kpoor K bepux), x5y, v Kylxpx x5y,

together with one or more edges joining x2 and x_ will be

de Oted b K 3y P ; y v ey ) d
n vy K, or KZ(X1 XZ x3 Yy yi) an
2(x1 R yi) together with one or more edges
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joini d b ’ > 3 3 ..
Joining x, and x by K3 or K3(x1 X, X403,

with six vertices is called a Kuratowski graph and will be

':Y.)‘ A K
1

denoted by K6; a K, with six vertices will be denoted by
1

K6 for 1i=1,2,3.
i

A prism-graph P or P(xi,x , X ’Yi’yz’y3) will denote

23
a graph consisting of the two disjoint circuits ((Xi’ xZ, x3)) and
((y1,y2,y3)) together with the edges (xi,yi), (xz,yz), (x3,y3).

((xi,x ,x3)) and ((y1,y2,y3)) will be called the ends of P .

2

If T is a graph then I'U will denote a graph obtained
from TI" through the process of subdividing edges by inserting
new vertices having valency 2; the vertices having valency > 3
in TU will be called branch-vertices. For convenience it
will be assumed that T'U # T'. <kU> will denote a graph

obtained from a <k> by this process, KU(x1, X1 Xaiy e

.,v.). A path of
i

2 Y)
1
h btained f JX_ LK Y

a graph so obtained from K(x1 X, X35Y,
I"'U connecting two branch-vertices will be called a rib.

If 1“1, ..., I’ are mutually disjoint connected graphs
n

each of which contains at least three vertices, then any graph
constructed from them by the following procedure will be called

a cockade composed of I',,...,T" : anedge (a,,b,) of T
1 n 11 1

and an edge (aZ’bZ) of I‘Z are selected, a, is identified with

a b, with b_, and (a1,b1) with (az,bz); if n> 2 an edge

2’ 1 2
(a,b) of the resulting graph and an edge (a3,b3) of L, are

selected, a is identified with a3, b with b3, and (a,b)

with (a3,b3); and so on with 1“4, C.. ,rn .

2. The 3-connected graphs which do not contain two
disjoint circuits. Recently K. Corrddi and A. Hajnal have
proved that if a finite graph without multiple edges has at least
3k vertices and each vertex has valency > 2k, where k is an
integer > 1, then the graph contains k (or more) mutually
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disjoint circuits [2]. P. Erd8s and the writer have
proved that (a) if the number of vertices is at least 6, all
vertices have valency > 3, and at least four vertices have
valency > 4, then the graph contains two disjoint circuits,
(b) for k> 3, 1if the number of vertices having valency > 2k
exceeds the number having valency < 2k - 2 by at least h

k2 + 2k - 4, then the graph contains k (or more) mutually
disjoint circuits [3]. These results suggest the question, —
which (2k-1)-connected graphs do not contain k mutually
disjoint circuits? This question will here be answered for
the case k =2, graphs with multiple edges being allowed.

THEOREM 1. The only 3-connected graphs with at least
four vertices which do not contain two disjoint circuits are the
<4>'s, the <4>'s with additional edges which are either all
incident with the same vertex, or with two of three vertices
(so that the fourth vertex has valency 3), the <5>'s , the
<5->'s , the <5->'s with additional edges joining vertices
having valency 4 in the <5->, the wheels, the K's , the
Ki' s , the Kz's and the K3' s .

Proof. The thedrem can easily be verified for graphs
having fewer than six vertices. The proof for graphs with at
least six vertices follows.

The following result is a special case of an extension of
Menger's Theorem proved by the writer [4] :

If I" isa A-connected graph, ae¢ V(I'), ACTI, af A
and A contains at least A\ vertices, then I' contains
X (a)(A)-paths any two of which have only a in common. (1)

The next step is to prove that

6
If a 3-connected graph contains a K U then it contains
two disjoint circuits. ... (2)

. 6
Proof. Let I" denote the graph and KO =K U(x1, xz, x3;
6
yi,yz,y3) a K U contained in I'. For 1< i, j<3 let Lij

denote the rib of KO which connects x., and y,, the notation
1 J
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being chosen so that L contains more than two vertices,

11

and let a denote a vertex in L“—x1-y1. By (1) I contains

at least three (a)(KO-a)—paths any two of which have only a

in common, so it contains one to which neither of the two

neighbours of a in K0 belong, L say. Let b denote the

end-vertex of L other than a. There are four alternatives:
(i) be LM’ (ii) b £ L11, b is a branch vertex of KO s

(iii) b ¢ L“, b is an intermediate vertex of a rib of KO

incident with x, or with Yy (iv) b is an intermediate vertex

of a rib of KO incident neither with X, nor with Yy These

alternatives will be considered in turn.

If (i) is the case then I' contains the two disjoint circuits

L uL“[a,b] and L, VL, VL VLo If (ii) is the case

then it may be assumed that b =x_, in which case T contains

the two disjoint circuits L v L,, VL, [a,y1] and

L uL32 v L uL13 . If (iii).is the case then it may be

12 33
assumed that b e L12 , in which case I' contains the two

disjoint circuits L L, [x1,b] ULM[xi’ a] and
L_.wL VL, VwL__ . If (iv) is the case then it may be

22 32 33 23

assumed that be L in which case I contains the two

22’

independent circuits L LZZ[xz,b] VL 6 vL

, d
21 14yl an

LipgYihy, Y Yy

3"
So in each case I'" contains two disjoint circuits. This
proves (2).

If a 3-connected graph contains a <5U> then it contains
two disjoint circuits.

Proof. Let I denote the graph, let () denote a <5U>

contained in I whose branch vertices are W1’W2’W3’W4’W5

and for 1<ifj<5 let W, (=W,) denote the rib of U
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connecting w, and w_, the notation being chosen so that W12
1 J

contains more than two vertices, and let a denote an inter-

mediate vertex of W By (1) I" contains at least three

12
(a)(fL-a)-paths any two of which have only a in common,
so it contains one to which neither of the two neighbours of
a in fl belong, W say. Let b denote the end-vertex of
W different from a . There are four alternatives:

(i) be W , (i) b# W, ,, b isa branch-vertex of a,

(iii) b ¢ W'12’ b is an intermediate vertex of a rib of fL

incident with W'l or with W, (iv) b is an intermediate

vertex of a rib of L incident neither with w, mor with W,

These four alternatives will be considered in turn.

If (i) is the case then I" contains the two disjoint circuits

W Uwiz[a,b] and W34 UW45 ) W53. If (ii) is the case then

it may be assumed that b=w3, in which case TI" contains the

two disjoint circuits W\/W2 UW1Z[a,w2] and W1 UW, U W

3 4 45 51°

If (iii) is the case then it may be assumed that b€ W1 in which

3,
case I' contains the two disjoint circuits W v W13[b,w1] o

, d .
W12[w1 a] an W34 \JW45 \JW53

may be assumed that be W in which case TI" contains the

If (iv) is the case then it

34’

disioi . , ,
two disjoint circuits W uW34[b w3] U W UWiZ[a Wz] and

23

w Y .
12 ¥ Was Y Wy

So in each case I contains two disjoint circuits, and (3)
is proved.

If a 3-connected graph contains at least six vertices and
a <5> then it contains two disjoint circuits. ... (4)

Proof. Let I' denote the graph, let (I) denote a <5>
with vertices f1’fz’ C.. ,f5 contained in I, and let f denote
a vertex of T" which does not belong to @ By (1) T' contains
three (f)((I)) -paths any two of which have only f in common,

let Fi’ FZ’ F3 denote three such paths, the notation being
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chosen so that f1, fz, f3, respectively, are their end-vertices.

Then I contains the two disjoint circuits F1 UFZ u(f1,f2)

d ((£..f ,f)). i .
an ((3 4 5)) This proves (4)

The only planar 3-connected graphs with more than five
vertices which do not contain two disjoint circuits are the
wheels. ... (5)

Proof. Let I denote a planar 3-connected graph with
more than five vertices which does not contain two disjoint
circuits.

I" contains a <4U> . For let a denote a vertex of I,
I'-a contains at least five vertices, by (4) I does not contain
a <5>, therefore I'-a contains two vertices not joined by an
edge, b and c¢ say. I'-a is 2-connected because T is
3-connected, so I'-a contains two (b){c)-paths which have
only b and c¢ in common. Two such paths together constitute
a circuit C with at least four vertices. By (1) I’ contains
three (a)(C)-paths any two of which have only a in common.
These and C together constitute a <4U> . (This is true
whether I' is planar or not.)

Suppose that ® is a <4U> contained in I'. If ge V(I)
and g# @ then by (1) I contains three (g)(®)-paths any two of
which have only g in common. if Gi’ G2 and G3 are any
three such (g){®)-paths, then the end-vertices of Gi’GZ’G3
,E . f
23 4
denote the branch-vertices of ® , F'j the rib of ® which

i
<itj<4, F . =F), - the
connects fi and fj (1_ 1] < ij ji) g1 gZ g3

belonging to ® are branch-vertices of ® . For let fi’ f

end-vertices of G1, GZ, G3 belonging to ® , respectively,
and assume that g and f4 are separated by the circuit

. If t f - i b ch-
17‘12\J£<"23\JF‘31 If at most one o g, 8, 83 is a branch

-f - f
12 1 2
-f_ -f , in which case I contains the two

23 2 3
L . . £ d
disjoint circuits G1 \JG2 UFiZ [fz, gi] w F23 [ 5 gz] an

vertex of ® then it may be supposed that g, e F

and gz e F
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F13 Y F‘?’4 v F41 contrary to hypothesis. If two of gi, gz, g3

are branch-vertices of ® and one is not then it may be

supposed that f1 =8, and fZ =8, and either g, e F f -f

1271 2

-f - . i -f - f i
23 f2 f3 Then if g € F12 1 5 T" contains

e . . , ¢ i F
the two disjoint circuits G,1 uF12[ " g3]uG3 an 23

F34 \JF42 , and if g3 € F23 - f2 - f3 then TI" contains the

. . £ i F F U
two disjoint circuits G, UF23[2 g3]\JG3 an 13V Fay

which is contrary to the hypothesis that I does not

or g3€F

F .,
41

contain two disjoint circuits. So the three end-vertices of

G ,GZ, G3 are branch-vertices of ©.
1

Since ® is a <4U> the notation may be chosen so that

F12 contains at least one vertex besides f1 and f2’ f5 say.

By (1) I contains three (fs)(a-f5)-paths any two of which have
only f5 in common, so it contains one to which neither of the
two neighbours of f5 in ® belong. Let F denote such a path
and f the end-vertex of F different from f_. f=f3 or

5

f:f4 , for otherwise, since f§ }?34 - f3 - f4 because T is

planar, it may be assumed without loss of generality that

fe 1:‘12 or fe F13-f1-f3; if fe FiZ then it may be

assumed without loss of generality that f # f1 , in which case
I’ contains the two disjoint circuits F uF12[f5, f] and
F _VF_ v is; i - -

13 34 F41 contrary to hypothesis; if fe F13 f1 f3
then I' contains the two disjoint circuits F v F13[f1, fl v

F O|f f d is.
12[ L 5] and F,, WF_  F,  contrary to hypothesis

23 42

Therefore f = f3 or f= f4. Suppose that f = f4. F contains only

one edge. For suppose on the contrary that f' is an inter-
mediate vertex of F. By (1) I’ contains three (f')}(® v F-f')
paths any two of which have only f' in common, “so it contains
one to which neither of the two neighbours of f' in F belong,
E say. Let e denote the end-vertex of E different from f'.
The following four alternatives have to be distinguished:
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(i) e« F,e#f4, (ii)e:f4, (iii) e € f,f]-1

12[ 5 5°

(iv) e € ]5‘14 - f1 - f4. If (i) holds then I contains the two

disjoint circuits E  Fle,f'] and FyVF, wF, I (ii)

holds then I' contains the two disjoint circuits E v Fle, {']

. If (did 1d i
and FinFZ_“) \JF31 If (iii) holds then T contains the two

disjoint circuits E UF12[6’£5] v F[f, £5] and F23 uF34 uF42.

If (iv) holds then T contains the two disjoint circuits

E £ Fo[f ,f]UF[f f d F F F .
VE et IO F LI ] OFE E] and F, o wF, OF,

But by hypothesis I does not contain two disjoint circuits, so

i I dge. t F .F
F contains only one edge. By symmetry 14 Foy F34

contain only one edge.

Every vertex of I' belongs to ® . For suppose on the
contrary that c ¢ V(I') and c ¢ ® . There are two alternatives
to consider: (i) ¢ and f4 are separated by the circuit
F12 \JF23 UF31, (ii) (i) is not the case and c¢ and f2 are

: i i F _UF_, . If (i) holds th
separated by the circuit F14u 43 31 If (i) holds then T

contains three (c)(®)-paths Gi’ GZ, G any two of which have

3!
only ¢ in common, and the notation can be chosen so that

f1 fz f3 respectively, are their end-vertices. TI" then

contains the two disjoint circuits G1 UG3 u F13 and

F. UF uF [f If (ii) holds then TI" contains three

24 25

(c)(®)-paths Gi, G3, G4 any two of which have only ¢ in

common, and the notation can be chosen so that f1’ f3, f4,

respectively, are their end-vertices. I then contains the

two disjoint circuits G‘1 uG‘3 uF13 and F24 v F UFiz[fZ’fS] .

But by hypothesis I’ does not contain two disjoint circuits, so
every vertex of I" belongs to @ .

© contains one or more vertices other than f i £
1’ 2 3774’ 5
> 6.
because |[V(T')| > 6. They all belong to F o, WF, WF,
because F14, F24, 17‘34 and F contain only one edge. Each
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of them is joined to f4. For let f, denote such a vertex, it

6
may be assumed that f() € F13, then f6 is joined to £4 or to
f2 by what was said above, but if (fz, f6
the two disjoint circuits F13[f3’f6] uF23 u(fz, fé) and

)e " then TI' contains

Fof £
12[1 5

, f
and (f4

J]OF uF14 contrary to hypothesis, so (fz, fé) ¢ T
6) € I". T contains no edge which joins two vertices

of vE _UVUF but does not belong to F12 VF, v

F12 23 31 23 F31 ’

For F v F v F contains at least five vertices and each
12 23 31

of them is joined to f4, and I’ does not contain two disjoint

circuits. (5) is now proved.

6
Th h which sists of a K » X, XY
e graph which consists of a (x‘1 x2 x3 yi yz

together with an edge which does not belong to the kb and

joins e. g. x1 and Yy contains the two disjoint circuits

,y3)

b ) d 3 b ) . e .
(ko) and ((x,,7,,%,7,)) (6)
6
K (xi,xz,x3;y1,y2,y3) u(x1,x2) u(yi,yz) contains the two
disjoint circuits ((xi,xz,y:,))) and ((yi,yz,x?))} ... (7
K(Xi’XZ’X3;Y1’ yz,y3,y4) U(Yi’yél) contains the two disjoint
circuits ((xi,y1,y4)) and ((xZ,yz,x3,y3)) ... (8)
If each of the vertices X, X x3,x4 is joined to each of the
vertices y1,y2,y3,y4 then the graph contains the two disjoint
i .t 3 bl b d 3 b 7 AL
circuits ((x,,y,,%,,y,)) and ((x,,y,,%,,y,) 9)

To complete the proof of Theorem 1 let I" denote a 3-
connected graph which has at least six vertices and does not
contain two disjoint circuits. If T is planar then I" is a wheel
by (5). Suppose that T" is not planar. Then by Kuratowski's

6 6
theorem and (2), (3) and (4) I" contains a K =K (xi,xz,x3;y1,y
where by (7) the notation can be chosen so that no two of
Yy Y, ¥, are joined by an edge. If |V(T')| =6 then it follows
6

6 6 6
from (6) that T" isa K or a K4 or a K2 or a K3 .

2’ Y3)
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Suppose that 'V(l“)[ > 7 and let z denote a vertex of T

different from x ,x_ ,x_, , s . By (1 i
1772773 Y1 YZ Y3 v (1) T contains three

6
(z)(K )-paths Z1, ZZ, Z3, any two of which have only z in

common. If e.g. Z1 has x, and Z2 has y, as end-vertex

6 6
then (K -(xi,yi)) uZ1 UZZ is a K U, which is not the case

by (2); therefore, since no two of v are joined by an

1"VZ’Y3
edge, it may be ass dthat Z ,Z2_,7Z h , ,
g i v ume a > 3 ave x1 x2 x3

respectively as end-vertices. Zi’ ZZ, 23 contain only one

edge each, for otherwise I would contain a K U(x1, XZ’X3’Y1’y2’ z)

contrary to (2). By (8) e(y1, z,T") = e(yz, z,T) = e(y3, z,T)=90 .

So if |V(T')| =7 then I‘:K(xi,xz,x3;y1.y2,y3,z) or

=K ) 3 H ) ) 3 = ’ ’ 3 ’ ) »
DK o X3V oYY g 2) or DEEG0x % X35y Y50 Y50 2)
= X X 5Y Y Y., Z). f |V >
or T K3(x1 x2 x3 y1 yz y3 z) I ! (FH > 8 then let u
denote a vertex of different from x ,x ,x , , , , Z.
n ny r of I different fro 2123y1y2y3z

By what has just been said (with u in place of z) and by

(6), (7), (8) and (9) u is joined to each of xi’XZ’XB by

exactly one edge and u 1is not joined to V'Y, Yy 2 It follows

by (6), (8) and (9) that I isa K or a K1 or a K2 or a K3.

The proof of Theorem 1 is now complete.

3. A property of A-connected graphs. The following
two theorems clarify the structure of \-connected graphs with

more than N vertices.
THEOREM 2. If I is a \A-connected graph with more
than N\ vertices and with some multiple edges then the graph

without multiple edges obtained from [ by deleting all but one
of each set of multiple edges is \-connected.

Theorem 2 is clearly equivalent to
THEOREM 2'. If T is a A-connected graph with more

than X\ vertices then any two vertices a and b of X are
connected by \ (a)(b)-paths contained in T" and such that any
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two of them have no vertex other than a and b and no edge in
common and all or all but one contain more than one edge.

Note concerning Theorem 2'. If !e(a,b, T)| <1 then the
existence of such a set of paths in I follows from the definition
of \-connectedness.

Proof of Theorem 2'. Each vertex of I'" is joined to at
least A different vertices of I". For let x denote a vertex
of . If x is joined to all the other vertices then the

assertion is true because ]V(r)] > X+ 1; if x is not joined

to the vertex y then I'" contains BN (x)(y)-paths any two of
which have only x and y in common and each of which

contains three or more vertices, so again the assertion is true.
It follows that a is joined to at least A-1 vertices other than b.

Let ai, R ,a)\ 1 denote vertices different from b to which a

is joined. By (1) T contains X\ (b) ({a,ai,...,a)\ 1.} )- paths

any two of which have only b in common. These together with

a and the edges (a,ai), (a,az),...,(a,ax 1) constitute X\

(a)(b)-paths with the required properties.

4. P-s and PU-s in graphs.

THEOREM 3. If a 3-connected graph has at least six vertices
and is neither a K nor a K1 nor a KZ nor a K_ nor a wheel
nor obtainable from a K, Ki,KZ, K3 or a wheel by duplicating
edges already present, then corresponding to any two vertices
of the graph there isa P or a PU contained in the graph
such that either both the vertices belong to the same end of the
P or PU, or one belongs to one end and one to the other.

Proof. Let a and b denote two arbitrary vertices of
the graph, and if the graph has no multiple edges then let T°
denote the graph while if the graph has multiple edges then let
I’ denote the graph without multiple edges obtained from it by
deleting all but one of each set of multiple edges; by Theorem 2
T is a 3-connected graph without multiple edges. T is not
isomorphic to any of the graphs mentioned in Theorem 1,
therefore by Theorem 1 I contains two disjoint circuits,
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C1 and C2 say, each of which contains three or more vertices

because I contains no multiple edges.

T contains two disjoint circuits whose union contains a
and b. Proof: to see that I contains two disjoint circuits
whose union contains at least one of a,b suppose that

a,b £ Ci,CZ. By (1) I contains three (a)(C1 UCZ)—paths

Yi’ YZ, Y3 any two of which have only a in common; let

yi,yz,y3, respectively, denote their end-vertices other than
a. The notation can be chosen so that yi,yz € C1. Let the

union of Y1 and Y‘2 and one of the two arcs of C1 connecting

vy and Y, be denoted by C'1. C‘1 is a circuit containing a,
and C’1 /\CZ =P . To see that I contains two disjoint circuits
whose union contains a and b suppose that b ¢ C‘1 uCZ.

By (1) I contains three (b)(C‘1 uCZ)-paths Z ,2Z_,Z_ any

1 2 3

two of which have only b in common; let 20250 Za

respectively, denote their end-vertices other than b.  If at

least two of Zyr 2,12, belong to C‘2 then let the notation be

s . i f Z d Z d
chosen so that z1 22 € C2 Let the union o 1 an > an

one of the two arcs of C2 connecting z, and z, be denoted

by C'Z. C'2 is a circuit containing b, and C’1 f'\C'Z =P, so

C'1 and C:Z are two disjoint circuits in I whose union contains

a and b. The remaining alternative is that at least two of

Zy 2,0 25 belong to C'i. In that case let the notation be chosen
so that 2,2, € C'1, and let the union of Z1 and Z2 and an
arc of C'1 connecting z, and z, and containing a be denoted

by C‘i" C'1' is a circuit containing a and b, and C'i' r\C2=(D.

The assertion is thereby proved.

The following result is a special case of an extension of
Menger's Theorem [4]:

If ' isa A-connected graphand ACTI, BCT,
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IV(A)I >\, ]V(B)l > X and A n"B =0 then I contains \ or
more muatually disjoint (A)(B)-paths. ... (10)

To complete the proof of Theorem 3, let C and C' be
two disjoint circuits contained in I" such that a,be C v C'.
]V(C)[ > 3 and ]V(C' )[ > 3 because I' contains no multiple
edges. “Therefore by (10)_with N =3, T contains three mutually
disjoint (C)(C')-paths. These C and C' together constitute
a P or PU with C and C' as its two ends. Theorem 3 is
thereby proved.

THEOREM 4. A finite graph with at least three vertices
which contains neither a P nor a PU is either a <3>,<4>,<5>,

K3 or wheel, or a <3>,<4>,<5>,K3 or wheel with some or all

edges duplicated an arbitrary number of times, or a cockade
composed of such graphs, or else it can be obtained from a
graph coming under one of these categories by deleting edges.

Proof by induction over the number of vertices. The
theorem is obviously true for graphs with fewer than six vertices.
Let T denote a finite graph with at least six vertices which
contains neither a P nor a PU, and suppose that the theorem

is true for graphs which have fewer vertices than I'. Let 1“+
denote a graph with the following properties: V(I‘+) =V(r) ,

rc P+, P+ contains neither a P nora PU, if a and b are
any two vertices of I‘+ not joined by an edge in I‘+ then

I‘+ “(a,b) containsa P or a PU; 1“+ =T possibly, and if

+ +
I” # I then I can be obtained from I' by deleting edges.

+
T is 2-connected. Proof (by reductio ad absurdum):

+ +
Suppose that I" 1is not 2-connected. I 1is obviously connected.
Therefore, since |V(I')] > 6, by Theorem 2 and Meanger's

+
Theorem I' contains a cut-vertex, c¢ say. It follows that
+
T =r'wvwr', where IV(}_‘“ )] > 2 and [V(r”)[ > 2 and
I''" "I'"'=c. Let a' and a'', respectively, denote vertices

+
of I and I'" joinedto c . (a',a')¢ T, therefore
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+ .
r wia',a') containsa P ora PU, P say, towhich
o

(a',a'") belongs. The branch vertices of PO either all belong

to I'' or all belong to I''"" because a P is 3-connected.
Suppose that the branch-vertices of PO all belong to I''.

Then one of the ribs of P includes (a',a') and an
o
(a'')(c)-path Y belonging to I'''. It follows that (a',c)f P ,
o

because if two ribs join the same pair of branch-vertices then
at least one of them passes through a third branch-vertex but
all branch-vertices of P belongto I''. Since (a',c)f P

o o

and all branch-vertices of PO belong to I'', the graph
obtained from P through replacing (a',a") v Y by (a',c)
o}
+
isa P ora PU contained in I'', and therefore in I" .

. .. + + .
This contradicts the definition of ", therefore I is
2-connected.

+ +
If T 1is 3-connected then by Theorem 3 I 1is either a
<4>,<5>, K3 or wheel, or a <4>,<5>, K3 or wheel with some

or all edges duplicated, so Theorem 4 is true for T . Suppose
in what follows that I‘+ is not 3-connected. Then by Theorem 2
and Menger's Theorem 1‘+ contains two vertices a and b
such that I‘+ -a-b is disconnected. Since 1"+ is 2-connected

+
it follows that T :1‘1 ul“z, where [V(l“i)[ > 3, ]V(I‘Z)[ > 3,

and V(l“1 ~ I‘Z) = {a,b}. a and b are joined by at least one
. + N +
edge in I . Proof (by reductio ad absurdum): If (a,b) £ I then

+
I (a,b) containsa P ora PU, P, say, to which (a,b)

1

belongs. The branch-vertices of P1 either all belong to ri

or all belong to I‘Z because a P is 3-connected. Suppose that

the branch vertices of P1 all belong to T It follows that

PJ1 /\(I‘Z-a-b) =P because (a,b) e Pi. Let d denote a vertex

of T,-a-b(#9). By (1) I contains an (a)(d)-path and a (b)(d)-

path which have only d in common, let Z denote the union
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of these two paths. Since P1 f‘\(I‘Z-a-b) = the graph obtained

from P{l through replacing (a,b) by Z is a PU contained in
+

T . This contradicts the definition of T, so a and b are

+
joined by at least one edge in T". It may therefore be assumed

that (a,b) e 1“1 ~ 1“‘2 . From this and the induction hypothesis
it follows that Theorem 4 is true for T . The theorem is

therefore proved.

Remark concerning Theorem 4. Not every cockade
composed of the graphs described in Theorem 4 has the property
that if two independent vertices are joined by an edge then the
resulting graph contains a P or a PU!

THEOREM 5. (a) If a planar graph with at least six
vertices is 3-connected and is neither a wheelnor obtainable
from a wheel by duplicating edges, then corresponding to any
two vertices there is a P or PU contained in the graph such
that the union of its two ends includes the two vertices.

(b) If a planar graph with at least six vertices has no multiple
edges and triangulates the whole plane, then corresponding to
any two circuits, in particular corresponding to any two disjoint
<3>-s, thereisa P or a PU contained in the graph which
has the two circuits as its ends.

Proof. (a) follows from Theorem 3 because a K is not
planar. (b) follows from {10) with X\ =3 provided the graph
is 3-connected. Now a graph which triangulates the whole plane
and contains at least six vertices is obviously 2-connected, and
if it is not 3-connected then it contains a cut-set {a,b} , and
since the graph triangulates the whole plane it follows that
‘e(a,b)[ > 2, which is contrary to hypothesis; therefore
Theorem 5 is proved.

5. A theorem of Turén type concerning K6- s, KéU—s,
FP-s and PU-s. The following theorem includes as a particular
case the graphs obtained from planar graphs without multiple
edges which triangulate the whole plane by adding an edge
joining two non-neighbouring vertices.

THEOREM 6. If a graph without multiple edges has
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n > 6 vertices and at least 3n-5 edges then it contains a K

6
ora KU anda P ora PU, unless it is a cockade comvnosed
of <5>-s (such a cockade has exactly 3n-5 edges).

Proof. A theorem of K. Wagner [5] states that any finite
graph without multiple edges with at least three vertices which

contains neither a K6 nor a KéU is either a <3,>, <4>, <5>
or a graph with at least six vertices which triangulates the
whole plane, or a cockade composed of such graphs, or else
it can be obtained from a graph belonging to one of these
categories by deleting edges. A <k> has less than 3k-5
edges if 3 < k<4 and exactly 3k-5 edges if k=5, while

a graph with m(>3) vertices which has no multiple edges and
triangulates the whole plane has exactly 3m-6 edges.

A cockade with n vertices composed of such graphs contains
at most 3n-6 edges, unless the cockade is composed entirely
of <5>-s, in which case the total number of edges is 3n-5 —
this can be proved very easily by induction over the number of
graphs of which the cockade is composed. Therefore a graph

which satisfies the conditions of Theorem 6 contains a K or

6
a K U unless it is a cockade composed of <5>-s.

By Theorem 4 any finite graph without multiple edges
which contains at least three vertices and neither a P nor a

PU is either a <3>, <4>, <5>, K3 without multiple edges or

wheel without multiple edges, or a cockade composed of such
graphs, or else it can be obtained from a graph belonging to
one of these categories by deleting edges. A wheel without
multiple edges having m(>4) vertices contains exactly 2m-2
edges, a K3 without maltiple edges having m(>6) vertices

contains exactly 3m-6 edges. A cockade with n (>6) vertices
composed of <3>-s5,<4>-5,<5>-5, K3-s without multiple edges

and wheels without multiple edges contains at mcst 3n-6 edges
unless it is composed of <5>-s only. So by Theorem 4 a graph
which satisfies the conditions of Theorem 6 contains a P or PU
unless it is a cockade composed of <5>-s.

6. A theorem concerning homomorphism.

Definitions. The graph I’ can be contracted into the
graph A if there exists a mapping ¢ of V(I') onto V{A)
such that 1. (Vx)[xe V(A)= l'((b-i(x)) is connected],
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2. (Vx,x'") [x,x' € V(A)= T contains |e(x,x',A)| (¢_1(x))
(¢_I(x' ))-edges]. The graph I is homomorphic to the graph

A, for short ' hom. A, if T can be contracted into a graph
of which A is a subgraph. These definitions differ from the
analogous definitions for graphs without multiple edges [6][7]

in that multiple edges of A are here significant; if A contains
no multiple edges then the present definition is equivalent to the
definitions in [6] and [7].

The following is a generalisation of a result of K. Wagner

[8].

THEOREM 7. If A 1is a subgraph of a graph into which
the graph [ is contracted by the mapping ¢ , and if A
contains no vertex of valency > 3, then "DA' or I'DA'U,
where there is an isomorphism [ between A and A—' such

-1
that for each vertex x of A I(x)e Q (x).
w

-1
P f. ' = "
roof. Let I" x e V(A) 0 "(x)) and let I''' be a

subgraph of TI" obtained by adding ]e(x,x' ,A)] (¢—1(X))(¢_1(x' ))-
edges of I to I'' for all pairs x,x' € V(A). Any vertex of
¢_1(x) which is joined to at least one vertex not in ¢-1(x) by

one or more edges of TI''" will be called a clasp-vertex of

-1 -1
® (x). 0 (x) has at most three clasp-vertices because

v(x,A) < 3.

Let T'''"'" be a subgraph of I''"' obtained as follows:

For each vertex x of A
. -1 .
(1) If ¢ (x) contains only one clasp-vertex, X(x) say,
-1

then every vertex of ¢ (x) other than X{x) is deleted from
rll

. -1 .

(ii) If ¢ (x) contains two clasp-vertices then let these
be Y1(x) and Yz(x) , the notation being chosen so that YZ(X)
is in T''" joined to one vertex only outside ¢_1(x); a (Yi(x))

. . -1
(YZ(X))-path is selected in I‘(Q (x)) , and all vertices of
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q) (x) which do not belong to this path are deleted from T'.

-1
(i11) If ¢ (x) contains three clasp-vertices then let them
. -1
be Z1(x), ZZ(X) and Za(x). Either I(¢ (x)) contains a path
which joins two of them and passes through the third, or

-1
I‘(Q (x)) contains no such path. In the first case let the
notation be chosen so that Z3(x) is an intermediate vertex of

-1
a path in I‘(q) (x)) joining Zi(x) and ZZ(X); all the vertices

-1
of (I) (x) which do not belong to the path are deleted from 't
In the second case let R(x) denote a (Zi(x))(ZZ(x))—path and

-1
S(x) an (R(x))(Z3(x))-path contained in 1‘(¢ (x)) and let
Z(x) denote the vertex common to R(x) and S(x); all vertices

-1
of q) (x) which belong neither to R(x) nor to S(x) are
deleted from T1'.

It is easy to see that I'''"' is isomorphic to A or to a
AU, the vertex X(x), Yi(x), Z3(X) or Z(x) in ', as the
case may be, corresponding to the vertex x of A . This

proves Theorem 7.

Note that Theorem 7 is true whether A 1is finite or
infinite. The condition that A contains no vertex of valency
> 4 is essential, this is illustrated by the following very simbnle
example: V(A) ={x,y}, |e(x,y,4) | =4; V(1) ={x ’yi’YZ}’
fe(x' ,yi, I‘)l = ,e(x' ,yz, I“)l =2, ,e(yi,yz,r‘)‘ =1 . TIhom. A
with Q(x' ) = x, ¢(y1) = @(yz) =y , but I obviously does not
contain a subgraph isomorphic to A or toa AU; other simpvle

examples can easily be found, including ones in which T" and A
have no multiple edges.

7. Concerning the structure of 5-chromatic and

6-chromatic graphs.

Definitions. A graph is said to be k-colourable, k
being a positive integer, if the vertices of the graph can be
divided into k mutually disjoint (colour) classes in such a way
that no two vertices in the same class are joined by an edge;
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such a partitioning of the vertices is called a k-colouring. A
graph is said to have chromatic number k or to be k-chromatic
if it is k-colourable and not (k-1)-colourable. A k-chromatic
graph T is called vertex-critical if for each vertex a of T
T-a is (k-1)-chromatic. A k-chromatic graph is called
contraction-critical if it is connected and not homomorphic to
any graph having fewer vertices and chromatic number > k.

It is easy to see that if a graph is contraction-critical then it

is vertex-critical. (Contraction-critical graphs are sometimes
called irreducible graphs, particularly in the theory of
5-chromatic planar graphs.)

A theorem of de Bruijn and Erd8s [9] states that if k is
a positive integer and every finite subgraph of an infinite graph
is k-colourable, then the whole graph is k-colourable. It
follows that all vertex-critical k-chromatic graphs have a
finite number of vertices and every k-chromatic graph contains
a vertex-critical k-chromatic subgraph. It is easy to see that
any vertex-critical k-chromatic graph is connected and
contains no cut-vertex, and each of its vertices is joined to at
least k-1 others.

The writer has proved elsewhere [10], [11], [12] that

If a vertex-critical k-chromatic graph contains an <{ >,
where £ <k, then the graph is homomorphic to an <f +1> .. (11)

Every contraction-critical k-chromatic graph with k> 5,
other than a <k>, 1is 5-connected. ... (12)

Every 4-chromatic graph contains a <4> or a <4U>. ... (13)

The following theorem is concerned with the case in which
two vertices form a cut-set in a vertex-critical graph.

THEOREM 3. If I' is a vertex-critical k-chromatic
graph, where k>3, and the two vertices p and g of I’
are such that I~p-q is disconnected, then (p,q)# T and

r=r' vwr" where I'" ~T" ={p,q}, and the notation can be
chosen so that

A. In every (k-1)-colouring of T'' p and g have the
same colour and in every (k-1)-colouring of I"'"' p and g have
different colours.
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B. I'' w(p,q) is k-chromatic and vertex-critical.

C. The graph obtained from TI'" by identifying p with g
is k-chromatic and vertex-critical.

D. Ip-q consists of two connected components. both of
which are joinedto p andto q in I.

Proof. Let I-p-q = L, YL, where I‘1 0, T, # 9 and

I‘1 f\l‘zzw, and let T =T- rZ and T" =T- ri. Then

T=r' vr" and V(I''* ~"r")={p,q}. I'' and T'" are both
(k-1)-colourable because T is vertex-critical. ' and "
can not be (k-1)-coloured with the same k-1 colours in such
a way that the two colcurings match over p and q, for T

is not (k-1)-colourable. Therefore (p,q)# I and the notation
can be chosen so that in every (k-1)-colouring of T"' p and g
have the same colour and in every (k-1)-colouring of I''' the
colour of p is different from the colour of q . This proves
that (p,q)¢ ', ' ~nTr"={p,q}, and A is true.

Hence TI'' w(p,q) is k-chromatic. Let t denote an
arbitrary vertex of T'' W (p;q), it will be shown that I'' ‘W (p,qg)-t
is (k-1)-colourable. If t=p or t=q then T"w(p,q)-tC I"-t,
and T"-t is (k-1)-colourable because I is vertex-critical.
Suppose that t#p and t#q. I-t is (k-1)-colourable,
consequently since in every (k-1)-colouring of T'" the colour
of p is different from the colour of q, TI'' -t can be (k-1)-
coloured in such a way that the colour of p is different from the
colour of q, so I'' w(p,q)-t is (k-1)-colourable. This proves
B.

Let I'''! denote the graph obtained from TI''' by identifying
p with g, 1i.e. the graph obtained from I'''-p-q by adjoining a
vertex r not belonging to I and edges according to the rule
Ie(r, x, ) I = }e( p,x, T") l + ]e(q, x, ") ’ for each vertex x
of r''-p-q. I'''-p-q is (k-1)-colourable. TI'''' 1is not (k-1)-
colourable, because if it were then TI''"' could be (k-1)-coloured
in such a way that p and q have the same colour by colouring

r'-p-q(=I''"'-r) as it is coloured in a (k-1)-colouring of I'!"
and then giving p and q the colour of r. Hence T''' is
k-chromatic. Let u denote an arbitrary vertex of r''"' , it

will be shown that I"''''-u is (k-1)-colourable. If u=r then
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' -u=r'"-p-q, and r''*-p-q is (k-1)-colourable because I"is
vertex-critical. Suppose that u# r. I'-u is (k-1)-colourable,
therefore since in every (k-1)-colouring of "' p and q have the
same colour, TI'''-u can be coloured with k-1 colours in such
a way that p and q have the same colour; a (k-1)-colouring
of I'''"'-u is obtained by giving r the colour which p and q
have in such a (k-1)-colouring of I'''-u. This proves C.

Each connected component of I'-p-q is joined to p and
to q because T 1is connected and contains no cut-vertex. If

1“1 had more than one connected component then two vertices

joined by an edge (namely p and q) would constitute a cut-set
of the vertex-critical k-chromatic graph I ‘U(p,qg), but this

contradicts what has already been proved; so ]:‘1 is connected.

If rZ had more than one connected comvonent then r would be
a cut-vertex of I'''', but T'''' is vertex-critical and therefore

contains no cut-vertex; so I‘Z is connected. This proves D.

Note. A k-chromatic graph is called edge-critical if

every proper subgraph is (k-1)-colourable. Theorem 8 remains
true if 'vertex-critical' is everywhere replaced by 'edge-
critical', the proof is practically the analogue of the above

proof of Theorem 8.

THEOREM 9. Any vertex-critical 5-chromatic graph
either contains a P or a PU, or else each edge of the graph
belongs to some <5> or <5U> contained in the graph.

Proof (by induction over the number of vertices n): the
theorem is clearly true for n=5. Suppose that it is true for
5<n<m-1, where m > 6, andlet " denote a vertex-
critical 5-chromatic gra}h with m vertices. If I is
3-connected then it contains a P or a PU since by Theorem 3
all 3-connected graphs which contain neither a P nor a PU
nor a <5> are <4-colourable (" D <5> because I is
5-chromatic and vertex critical and m > 6). Suppose that T
is not 3-connected. Then by Menger's _'i‘heorem I contains
two vertices p and q such that I~p-q is disconnected. In
the notation of Theorem 8 I'' \w(p,q) is 5-chromatic and
vertex-critical, therefore by the induction hypothesis TI'' v (p,q)
either contains a P or a PU, or each edge of I'' W (p,q)
belongs to some <5> or <5U> contained in T' w({p,q). If
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T'' \U(p,q) containsa P or a PU then so does I because
(p,q) can be replaced by a (p)(q)-path contained in T'. (It
follows at once from Theorem 8 D that ' and TI'" are
connected, therefore they contain (p)(q)-paths.) Suppose that
' v (p,q) contains neither a P nor a PU, and let (a,b)
denote any edge of T (a,b,p,q need not all be distinct). If
{a,b) e I'' then by the induction hypothesis I'' U (p, q) contains
a <5> or a <5U> to which (a,b) belongs. It follows that T
contains a <5U> to which (a,b) belongs because (p,q) can be
replaced by a (p)(q)-path contained in TI'''. Suppose that
(a,b)# T''; then (a,b)e I''". By the induction hypothesis

T'' w(p,q) contains a <5> or a <5U> to which (p,q) belongs.
If a,b,p,q are all distinct then, since I" contains no cut-
vertex, by (10) the notation can be chosen so that I'''" contains
an (a)(p)-path A and a (b)(q)-path B suchthat A "B =0 .
By replacing (p,q) with A B \(a,b) it is seen that T
contains a <5U> to which (a,b) belongs. There remains

the alternative that p=a and be¢ I''-p-q. By Theorem 8 D
I'"'-p is connected, therefore TI'''-p contains a (b)(g)-path,

C say. By replacing (p,q) with C ‘U(a,b) it is seen that T
contains a <5U> to which (a,b) belongs.

Hence Theorem 9 is true for I, and therefore the
theorem is true generally.

THEOREM 10. If T is any contraction-critical-
5-chromatic graph other than a <5> or a <5> with some
edges duplicated, and if a,b,c,d are any four vertices of
I", then I'-a-b contains a P or PU whose two ends
together include ¢ and d.

Proof. It may be assumed that I" contains no multiple
edges, since replacing each set of multiple edges by a single
edge does not change the chromatic number of a graph.

IV(I‘)I > 8. For if not, then [V(I‘)[ =6 or IV(I“)I =7.
It ]V(r)' =6 then by (12) I'=<6>, which is contrary to
hypothesis. Suppose that |V(I')| =7. By (12), and because
the sum of the valencies of all the vertices is equal to 2 IE(I‘), ,
it follows that some vertex of I", x say, is joined to all the
others. I'-x is 4-chromatic, therefore by (13) it contains a
<4> or a <4U>. Consequently I' contains a <5> or a <5U>
and so I is not contraction-critical. This contradiction proves
that |V(T)|> 8.
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It follows from (12) that " -a-b is 3-connected. Hence,
by Theorem 3, I-a-b containsa P or PU whose two ends

together include ¢ and d unless T'-a-b isa K’Ki’KZ’K3

or a wheel. It will be shown below that I"-a-b 1is not a
K’Ki’KZ’K_’; or wheel. I'-a-b is nota K because a K is

2-chromatic and T is 5-chromatic.

Suppose that I‘—a-b:Ki(xi,x VX Gy LY ,...,yi). Then

2 371 °2
(a,b) ¢ T because a K1 is 3-chromatic and T is 5-chromatic.

a and b are both joined to X, and to X, in I because if
e.g. (a,xz)f/ T then a 4-colouring C of T could be obtained

. = = = pt = .. . = = 3’
thus: C(x,) =1, Clx,) =Clx;) =2, Cly,) =Cly,) Cly,)
C(a) =1, C(b) =4, whereas I is 5-chromatic. Therefore
I‘(a,b,x1,x2) =<4>, hence by (11) T hom. <5>, and this is

contrary to hypothesis. So I'-a-b is nota K1 .

Suppose that I‘-a-szZ(xi,x VX 5V sY.se-.,v.) . Then
1

27371 72
(a,b)e I" because a K2 is 3-chromatic and T is 5-chromatic.

(xz,a) € I and (xz,b) € I because if e. g. (XZ’ a)d I then a
4-colouring C of T defined as above would exist. (y1, a) ,
(yi’b) € T by (12). Therefore r‘(a,b,xz,yi) =<4> , hence by
(11) Thom. <5>, contrary to hypothesis. So I -a-b is not
a KZ.

T'-a-b 1is not a K3 because a K3 contains <4>-s and

T does not.

Suppose that I"-a-b is a wheel consisting of the circuit

((ui, uz, RN ui)) together with the vertex v, which does not
belong to the circuit and is joined to every vertex of the circuit
by one edge. Uy,---,u, are joined to a andto b in T by
i
(12). It follows that (a,v) ¢ I and (b,v) ¢ I, since T"D<4> .
Hence (a,b)e I for otherwise ui’ uz, ...,u, could be
1
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coloured with the colours 1,2,3 and a,b,v with the colour 4,

whereas T is 5-chromatic. Consequently I'(a,b,u ,uz) =<4>,

1
which leads to a contradiction. So I'-a-b is not a wheel.

Hence Theorem 10 is true.

THEOREM 11. A 5-chromatic graph is either homo-
morphic to a <5>, or else if any two of its vertices are
deleted then the remaining graph contains a P or a PU.

Proof. It is sufficient to establish the theorem for
vertex-critical graphs. Let /\ be a vertex-critical 5-chromatic
graph and let m and n denote two vertices of /. /\ is finite
and therefore homomorphic to a contraction-critical 5-chromatic
graph, T say (/\ =T possibly); let ¢ denote the mapping and
let a denote @(m) and b denote P(n) (a =b possibly). If
I D<5> then the theorem is true. Suppose that I' D <5> .

Then by Theorem 10 I'-a-b containsa P ora PU . There-
fore A\ -m-n is homomorphic toa P ora PU . Consequently
by Theorem 7 /\ containsa P ora PU. Theorem 11 is
thereby proved.

THEOREM 12. Corresponding to any vertex of a vertex-
critical 6-chromatic graph there exists in the grapha P or a
PU containing the vertex.

Proof (by induction over the number of vertices n). The
theorem is clearly true for n=6 . Suppose that it is true for
6<n<m-1, where m > 7, andlet " denote a vertex-critical
6-chromatic graph with ‘m vertices. If T is 3-connected then
the assertion of Theorem 12 for I follows from Theorem 3.
Suppose that I" is not 3-connected. Then by Menger's Theorem
I contains two vertices p and q such that I'-p-q is
disconnected. The notation of Theorem 8 will be adopted.

Let f denote a vertex of I'. To prove Theorem 12 it will be
shown that I" contains a P or a PU to which f belongs.

Suppose first that fe I''. By Theorem 8 B I' w(p,q)
is 6-chromatic and vertex-critical, therefore by the induction
hypothesis T'' \U(p,q) containsa P or a PU to which f{
belongs. It follows that I containsa P or a PU to which
f belongs, since (p,q) can be replaced by a (p)(q)-path
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contained in I'", 1if necessary. (It follows from Theorem 8 D
that "' and T'' are connected.)

Suppose secondly that f¢ "', so that fe I'''-p-q. I
is connected and therefore contains a (p)(q)-path, R say.
Let I''''" denote the graph obtained from TI''' by identifying
p with g, and let r denote the vertex of T'''"' not belonging
to T'"' (see the proof of Theorem 8), r # f. T'""WUR is
contracted into a graph of which I'''" is a subgraph by the
mapping § defined by §(x) =x if x¢ R and Q(x)=r if xe R.
By Theorem 8 C I'"'"' is 6-chromatic and vertex-critical.
Hence by the induction hypothesis I''!' containsa P or a PU
to which f belongs. Therefore by Theorem 7 I''' ‘W R contains
a P ora PU towhich f belongs.

Hence I containsa P ora PU to which f belongs.
Theorem 12 is thereby proved.

The results established in this section may be applied to
graphs with higher chromatic number with the help of the
following general rule:

Let I denote a vertex-critical k-chromatic graph, where
k>3, andlet g denote any vertexof I'. Let I" be coloured
with the colours 1,2,...,k in any permissible way subject to
the condition that colour 1 is given to g only, and let Ci denote

the set of those vertices of I which have colour i fori=1,...,k.

hen f 1<¢4 < k-1 - - I
Then for <L < in C£+1 Cg+2

a vertex-critical { -chromatic graph to which g belongs.

For T - Cl PR Ck is f -chromatic and I - Cl FURERE

is (£ -1)-chromatic. Consequently for example Theorem

- C. contains
k pruinteuinbt—

-C. -
k8

12 can also be formulated thus: Corresponding to any vertex of
a vertex-critical graph with chromatic numbher > 6 there exists
in the graph a P or a PU containing the vertex.

The following rule is the analogue of the above for edge-
critical graphs: Let I' denote an edge-critical k-chromatic
graph, where k>3, and let (a,b) denote any edge of I .
Let T -(a,b) be coloured with the colours 1,...,k-1 in any
permissible way subject to the condition that a and b are
given the colour 1, and let Di denote the set of those vertices
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of T which have colour i for i=1,...,k-1. (I -(a,b) is
(k-1)-colourable because I' is edge-critical, and in any (k-1)-
colouring of TI"-(a,b) the colour of a is the same as the colour
of b because T is k-chromatic.) Then for 2<f <k-1T-D_ -

L
- Dk 1 contains an edge-critical f -chromatic graph to which
(a,b) belongs. For F-Dl - .. - Dk " is £ -chromatic and
r- (a,b) - D,q - .. - Dk-i is (£ -1)-chromatic.
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