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ON KLEINIAN GROUPS WITH THE SAME SET OF AXES
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Abstract

J. W. Anderson (1996) asked whether two finitely generated Kleinian groups G1, G2 ⊂ Isom(Hn) with
the same set of axes are commensurable. We give some partial solutions.
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1. Introduction

In 1990, Mess [7] showed that if G1, G2 are finitely generated nonelementary
Fuchsian groups having the same nonempty set of simple axes, then G1, G2 are
commensurable. By using some technical results of arithmetic Kleinian groups, Long
and Reid [6] gave an affirmative answer to this question in the case G1, G2 are
arithmetic Fuchsian groups. The general case of this question is still open so far.
We consider the following analogue of the question proposed by Anderson [4] for
higher-dimensional Kleinian groups.

QUESTION. If G is a group of isometries of Hn , denote by Ax(G) the set of axes
of elements of G. If G1 and G2 are finitely generated and discrete, does Ax(G1)

= Ax(G2) imply that G1 and G2 are commensurable?

A very simple example shows that the answer to this question is negative in
general. That is, G1 and G2 having the same set of axes cannot guarantee they are
commensurable.

EXAMPLE. Let A, B ∈ PSL(2, C) be given by

A =

[
2 0
0 1

2

]
, B =

[
3 0
0 1

3

]
.
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It is clear A and B have the same axis. So Ax(〈A〉)= Ax(〈B〉). Obviously, one has
〈A〉 ∩ 〈B〉 = I , [〈A〉 : I ] =∞ and [〈B〉 : I ] =∞.

In the above example, 〈A〉 and 〈B〉 are finitely generated (and even geometrically
finite) Kleinian groups. The groups 〈A〉 and 〈B〉 have the same set of axes, but they
are not commensurable. Following on from the above example, it is interesting to
explore the conditions which imply two Kleinian groups are commensurable. The
main purpose of this note is to prove that G1 and G2 are commensurable under some
stronger conditions.

The main results of this note are the following two theorems.

THEOREM 1.1. Let G1, G2 ⊂ Isom(Hn) be finitely generated, torsion-free Kleinian
groups. Then G1 and G2 are commensurable if and only if Ax(G1)= Ax(G2)

= Ax(G1 ∩ G2).

THEOREM 1.2. Let G1, G2 ⊂ Isom(Hn) be geometrically finite, purely hyperbolic
Kleinian groups. Suppose 〈G1, G2〉 is also Kleinian. Then G1 and G2 are
commensurable if and only if 3(G1)=3(G2).

The note is organized as follows. In Section 2, we gather some well-known facts
about Kleinian groups. In Section 3, we prove Theorems 1.1 and 1.2.

2. Preliminaries

First, we recall some terminologies. For more details see [3, 8].
Let Bn denote the closed ball Hn

∪ Sn−1, whose boundary Sn−1 is identified via
the stereographic projection with Rn−1 =Rn−1

∪∞. Let Mob(Sn−1) denote the
group of all Möbius transformations of the n − 1-sphere Sn−1, that is, compositions
of inversions in Sn−1. The group Mob(Sn−1) admits an extension to the hyperbolic
n-space Hn , so that Mob(Sn−1)= Isom(Hn), the isometry group of Hn . A discrete
subgroup G ⊂Hn is called a Kleinian group. The discontinuity set �(G) of a group
G ⊂Hn is the largest open subset in ∂Hn on which G acts properly discontinuously.
Its complement ∂Hn

\�(G) is the limit set 3(G) of the group G. A discrete
group whose limit set contains fewer than three points is called elementary and
nonelementary otherwise. The elements of Isom(Hn) are classified in terms of their
fixed-point sets. An element g 6= id in Isom(Hn) is elliptic if it has a fixed point in
Hn , parabolic if it has exactly one fixed point which lies in ∂Hn , hyperbolic if it has
exactly two fixed points which lie in G. G is purely hyperbolic if G contains neither
parabolic nor elliptic elements. The unique geodesic joint of two fixed points of the
hyperbolic element g, which is invariant under g, is called the axis of the hyperbolic
element and is denoted by Ax(g). For a discrete group G, let Ax(G) denote the set of
all the axes of hyperbolic elements of G. Two Kleinian groups G1 and G2 are said to
be commensurable, if both the indices

[G1 : G1 ∩ G2], [G1 : G1 ∩ G2]

are finite.
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For a nonelementary Kleinian group G, Hull(3(G))⊂Hn is defined as the
convex hull of the limit set 3(G), that is Hull(3(G)) is the smallest convex
set which is invariant under G. Let Mn

=Hn/G be the quotient orbifold, and
Mn = (Hn

∪�(G))/G its closure. The quotient Hull(3(G))/G is called the convex
core of Mn . A Kleinian group is called geometrically finite if it has a finite-sided
fundamental polyhedron P ⊂Hn , algebraically finite if it is finitely generated. It
is clear that geometrical finiteness implies algebraical finiteness and geometrical
finiteness is preserved for a finite-index subgroup. For a nonelementary Kleinian
group G, geometrical finiteness is equivalent to the fact that, for some ε > 0, the
ε-neighborhood of convex core Hull(3(G))/G has finite volume. Here we call the
subset

Hullε(3(G)/G)= {p ∈ Mn
| d(p, Hull(3(G))/G)≤ ε}

the ε-neighborhood of convex core.

3. Proof of the theorems

PROOF OF THEOREM 1.1. We only need to show that [G1 : G1 ∩ G2]<∞, and the
proof of [G2 : G1 ∩ G2]<∞ is similar. We claim that for every element g ∈ G1, there
exists a positive integer N such that gN

∈ G1 ∩ G2. Indeed, let l ∈ Ax(G1) be an axis
of some element g ∈ G1. Since Ax(G1)= Ax(G1 ∩ G2), l is also the axis of some
element h ∈ G1 ∩ G2. Therefore h and g have the same axis l. By the discreteness of
elementary groups, 〈h, g〉 is a cyclic group. Then there exists a primitive element f of
G1 such that h = f N1 and g = f N2 . It follows that gN1 = f N1 N2 ∈ G1 ∩ G2. If every
element of G is of finite order, then G is finite. By the above arguments, it follows that
G1 ∩ G2 is a normal subgroup of G1. Every element g(G1 ∩ G2) is of finite order in
G1/G1 ∩ G2, then G1/G1 ∩ G2 is a finite group. That is, [G1 : G1 ∩ G2]<∞.

Conversely, if G1 and G2 are commensurable, then it is easy to see that Ax(G1)

= Ax(G2)= Ax(G1 ∩ G2). 2

REMARK 3.1. Susskind and Swarup [10] proved that if G1 is a geometrically finite
subgroup of a Kleinian group G, 3(G1)=3(G), then [G : G1]<∞. In the proof of
Theorem 1 we actually prove that if G1 is a subgroup of finitely generated Kleinian
group G and Ax(G1)= Ax(G), then G1 is a normal subgroup of G and [G : G1]<∞.

In the proof Theorem 1.2, we consider geometrically finite Kleinian groups.
Although this finiteness is equivalent to algebraical finiteness in the two-dimensional
case, the concepts do not coincide in the three-dimensional case.

PROOF OF THEOREM 1.2. In order to to prove this theorem, it suffices to make use
of a main result of Susskind and Swarup [10] (see also the discussion in Anderson [1])
which says if G1 and G2 are geometrically finite, purely hyperbolic subgroups of
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a Kleinian group, then 3(G1) ∩3(G2)=3(G1 ∩ G2). We have 3(G1)=3(G2)

=3(G1 ∩ G2). Since we have 3(G1)=3(G2) in this theorem, then

Hullε(3(G1))/G1 = Hullε(3(G1 ∩ G2))/G1.

Observe that

[G1 : G1 ∩ G2] Vol(Hullε(3(G1))/G1)= Vol(Hullε(3(G1 ∩ G2))/G1 ∩ G2).

The group 〈G1, G2〉 is Kleinian by the assumption, G1 and G2 are two geometrically
finite discrete subgroups of 〈G1, G2〉, and so G1 ∩ G2 is finitely generated. This
follows from the main result of Hempel [5]. The group G1 ∩ G2 is a finitely generated
subgroup of a geometrically finite group G1 or G2. It follows that G1 ∩ G2 is
geometrically finite by a result of Thurston which says that every finitely generated
subgroup of a geometrically finite Kleinian group of the second kind is geometrically
finite [2]. Therefore, we can conclude that

Vol(Hullε(3(G1))/G1) <∞

and
Vol(Hullε(3(G1 ∩ G2))/G1 ∩ G2) <∞.

Hence
[G1 : G1 ∩ G2]<∞.

For the same reasons,
[G2 : G1 ∩ G2]<∞.

This completes the proof of Theorem 1.2. 2

REMARK 3.2. Susskind [9] provided an example of an infinitely generated
intersection of geometrically finite hyperbolic groups. That is to say, there exists two
geometrical finite Kleinian groups J and H such that J ∩ H is infinitely generated;
moreover, 〈J, H〉 is not discrete. In his example, J and H are ‘elementary’
hyperbolic groups in the sense that they both leave invariant the same two-dimensional
hyperplane. Then he asked that whether there exist examples of co-compact, finite
volume or nonelementary groups which produce a similar result concerning the need
for 〈J, H〉 to be discrete. If G1 and G2 are not ‘elementary’ hyperbolic groups, it is
possible that there is no need for the discreteness of 〈G1, G2〉 in Theorem 1.2.
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