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Abstract. We construct cocompact lattices �′
0 < �0 in the group G =

PGLd(�q((t))) which are type-preserving and act transitively on the set of vertices of
each type in the building � associated to G. These lattices are commensurable with the
lattices of Cartwright–Steger Isr. J. Math. 103 (1998), 125–140. The stabiliser of each
vertex in �′

0 is a Singer cycle and the stabiliser of each vertex in �0 is isomorphic to
the normaliser of a Singer cycle in PGLd(q). We show that the intersections of �′

0 and
�0 with PSLd(�q((t))) are lattices in PSLd(�q((t))), and identify the pairs (d, q) such that
the entire lattice �′

0 or �0 is contained in PSLd(�q((t))). Finally we discuss minimality of
covolumes of cocompact lattices in SL3(�q((t))). Our proofs combine the construction
of Cartwright–Steger Isr. J. Math. 103 (1998), 125–140 with results about Singer cycles
and their normalisers, and geometric arguments.

2010 Mathematics Subject Classification. Primary 20E42; Secondary 51E24,
20G44.

1. Introduction. Let �q be the finite field of order q where q is a power of a
prime p, and let K be the field �q((t)) of formal Laurent series over �q, with discrete
valuation ν : K× → �. Let � be the building Ãn(K, ν), as constructed in, for example
[25, Chapter 9] (see also Section 2.2 below). Then � is an affine building of type Ãn,
meaning that the apartments of � are isometric images of the Coxeter complex of type
Ãn. The link of each vertex of � may be identified with the n–dimensional projective
space PG(n, q) over �q.

Let d = n + 1 and let G be the group G = G(K), where G is in the set
{GLd, PGLd, SLd, PSLd}. Then G is a totally disconnected, locally compact group
which acts on � with kernel Z(G). It follows from a theorem of Tits [28] that G/Z(G)
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is cocompact in the full automorphism group of �. If G is GLd or PGLd , then the
G–action is type-rotating and transitive on the vertex set of �, while if G is SLd or
PSLd , then the G–action is type-preserving and transitive on each type of vertex. See
Section 2 below for definitions of these terms.

By definition, a subgroup � ≤ G is a lattice if it is a discrete subgroup such that �\G
admits a finite G–invariant measure, and a lattice � is cocompact if �\G is compact.
In the cases G = PGLd , SLd and PSLd , the centre of G = G(K) is compact, hence G
acts on � with compact vertex stabilisers. A subgroup � ≤ G is then discrete if and
only if � acts on � with finite vertex stabilisers, and if � ≤ G is discrete then � is
a cocompact lattice if and only if, in addition, � acts cocompactly on �. Given any
lattice � and a set A of vertices of � which represent the orbits of �, the Haar measure
μ on G may be normalised so that μ(�\G), the covolume of � in G, is given by the
series

∑
a∈A | Stab�(a)|−1 (see [2]). This is a finite sum if and only if � is cocompact.

The existence of an arithmetic cocompact lattice in G = G(K) is due to Borel–
Harder [3]. By Margulis’ Arithmeticity Theorem [21], if d ≥ 3 then every lattice in
such G is arithmetic. In the rank 1 case, that is, for d = 2, the building � is a tree
of valence q + 1, and there are several additional known constructions of cocompact
lattices in G. For example, Figá-Talamanca and Nebbia [12] constructed lattices in
G = PGL2(�q((t))) which act simply transitively on the set of vertices of the tree �.
Such lattices are necessarily free products of s copies of the cyclic group of order 2,
and t copies of the infinite cyclic group, where s + t = q + 1. The cocompact lattices
of minimal covolume in G = SL2(�q((t))) were constructed in [18, 20]. These lattices
are fundamental groups of finite graphs of finite groups which, using Bass’ covering
theory for graphs of groups [1], are embedded in G. Lubotzky [19] also constructed
a moduli space of cocompact lattices in SL2(�q((t))) which are finitely generated free
groups, using a Schottky-type construction.

If d = 3, then additional constructions of lattices in G may be complicated by the
fact that there exist uncountably many “exotic” Ã2–buildings, that is, buildings of type
Ã2 which are not of the form Ã2(K, ν) for any field K , not necessarily commutative,
with discrete valuation ν (Tits [29]). On the other hand for d ≥ 4, that is, for n ≥ 3,
there are no exotic buildings of type Ãn (Tits [30]).

For d ≥ 3, there exists a chamber-transitive lattice in PSLd(�q((t))) if and only
if d = 3 and q = 2 or q = 8 (see [16] and its references). Lattices in the group G =
PGLd(�q((t))) which act simply transitively on the vertex set of the associated building
� were constructed for the case d = 3 in [6], and for d > 3 in [7]. We will describe the
work of [6] and [7] further below. In addition, in the case d = 3, Ronan [24] constructed
lattices acting simply transitively on the set of vertices of the same type in some, possibly
exotic, Ã2–building, and Essert [11] constructed lattices acting simply transitively on
the set of panels of the same type in some, again possibly exotic, Ã2–building. Essert’s
construction used complexes of groups (see [5]), and had vertex stabilisers cyclic groups
acting simply transitively on the set of points and lines of PG(2, q), the projective plane
over �q. Our work resolves some open questions of [11], as we explain below.

Our main results are Theorems 1 and 2 below. See Section 2.1 below for the
definition of a Singer cycle in PGLd(q); such a group acts simply transitively on the set
of points of PG(d − 1, q). We first construct lattices in PGLd(�q((t))).

THEOREM 1. Let G = PGLd(�q((t))) and let � be the building associated to G. Then
G admits cocompact lattices �′

0 ≤ �0 such that:
� the action of �′

0 and of �0 on � is type-preserving and transitive on each type of vertex;
� the stabiliser of each vertex in �′

0 is isomorphic to a Singer cycle in PGLd(q); and
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� the stabiliser of each vertex in �0 is isomorphic to the normaliser of a Singer cycle in
PGLd(q).

Moreover �′
0 and �0 are generated by their d subgroups which are the stabilisers of the

vertices of the standard chamber in �.

In fact, the stabiliser of each vertex in �′
0 is always contained in a finite subgroup of

G isomorphic to PGLd(q). However for the vertex stabilisers of �0 the situation is
trickier. If (p, d) = 1, then the stabiliser of each vertex in �0 is indeed contained in
a finite subgroup of G isomorphic to PGLd(q). On the other hand, as we discuss in
Section 3.2, if p divides d, then the stabiliser of each vertex in �0 intersects a finite
subgroup of G isomorphic to PGLd(q) in a subgroup of index pa, where d = pab and
(p, b) = 1.

We then construct lattices in PSLd(�q((t))), where we identify the group PSLd(�q((t)))
with a subgroup of PGLd(�q((t))). Our notation continues from Theorem 1.

THEOREM 2. The groups

�′
0 := �′

0 ∩ PSLd(�q((t))) and �0 := �0 ∩ PSLd(�q((t)))

are cocompact lattices in PSLd(�q((t))), necessarily type-preserving. Moreover:
(1) Suppose that (d, q − 1) = 1.

(a) If p does not divide d, then �′
0 = �′

0 and �0 = �0.
(b) If p divides d, then �′

0 = �′
0 and �0 is a proper subgroup of �0.

(2) If (d, q − 1) 
= 1, then �′
0 is a proper subgroup of �′

0 and �0 is a proper subgroup
of �0.

In all cases where �′
0 = �′

0 (respectively, �0 = �0), it follows that �′
0 (respectively, �0)

is a cocompact lattice in PSLd(�q((t))) with properties as described in Theorem 1.

In particular, in Section 4 we give the precise structure of the vertex stabilisers in �0

and �′
0, and we describe the cases in which these lattices can be generated by their

vertex stabilisers.
Since the centre of SLd(�q((t))) is finite and fixes � pointwise, if � is any lattice

in PSLd(�q((t))) then the full pre-image of � under the canonical epimorphism is a
cocompact lattice in SLd(�q((t))). We thus obtain lattices in SLd(�q((t))) as well. Of
course if (d, q − 1) = 1, then the centre of SLd(�q((t))) is trivial, and so, for example,
�′

0 = �′
0 itself is a lattice in SLd(�q((t))).

The question of minimality of covolumes for lattices in SLn(�q((t))) was pioneered
for n = 2 by Lubotzky [18]. For n ≥ 3 it has been studied by Golsefidy [27]. They
have shown that in SLn(�q((t))) the minimal covolume is attained on non-cocompact
lattices.

Lubotzky also posed the question of determining the cocompact lattices of
minimal covolume in SL2(�q((t))) (that is, the cocompact lattices whose covolume is
the smallest among all cocompact lattices). In general this question is a bit delicate,
as there is very little known about cocompact lattices in SLn(�q((t))). Our original
motivation was to find cocompact lattices of minimal covolume in SL3(�q((t))). For
this, it is natural to consider vertex stabilisers which are Singer cycles or normalisers
of Singer cycles, since these are the vertex stabilisers of the cocompact lattices of
minimal covolume in SL2(�q((t))) (cf. [18, 20]) and more generally in topological rank
2 Kac–Moody groups G over �q [9], where the minimality result holds under the
conjecture that cocompact lattices in such G do not contain p–elements. In Section 5.1
we show that a lattice � < SLd(�q((t))) is cocompact if and only if it does not contain
any p–elements. This is an analogue of Godement’s Compactness Criterion (or the
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Kazhdan–Margulis Theorem in the case of real Lie groups [17]). We were not able to
find a suitable statement in the literature, hence we provide a complete and elementary
proof. In Section 5.2, we use this criterion to show that when (3, q − 1) = 1 and p = 2,
the lattice �0 is a cocompact lattice in SL3(�q((t))) of minimal covolume. We also show
that when (3, q − 1) = 1 and p = 3, �′

0 is a maximal lattice in SL3(�q((t))), and that
when (3, q − 1) = 1 and p 
= 3, �0 is a maximal lattice in SL3(�q((t))). We conclude the
discussion of covolumes with a conjecture about the cocompact lattice of minimal
covolume in SL3(�q((t))) when (3, q − 1) = 1 and p is odd.

Finally, in Section 6, we discuss how our results answer some open questions
from the work of Essert [11]. For example, Theorem 2 implies that for all q such that
(3, q − 1) = 1, the group SL3(�q((t))) contains a lattice which acts simply transitively on
the set of panels of each type in �.

To obtain the lattices �′
0 and �0 in Theorem 1, we use a construction of Cartwright

and Steger from [7], which generalises work of [6]. This construction gives cocompact
lattices � < �̃ in the automorphism group Aut(Ã) of a certain algebra Ã, such that
Aut(Ã) is isomorphic to PGLd(�q((t))). The lattice � acts simply transitively on the
vertex set of �, and �̃ = H� where H is a finite group which is the stabiliser in �̃ of
a vertex of �. We review and slightly extend this construction in Section 3, assuming
no background in cyclic algebras from the reader. Our treatment applies to any cyclic
Galois extension rather than just the extension of finite fields �qd ⊇ �q. In Section 3.3 we
choose an explicit isomorphism Aut(Ã) → PGLd(�q((t))) and so move our discussion
explicitly into PGLd(�q((t))). We also show that H is isomorphic to the normaliser of a
Singer cycle S in PGLd(q).

We then define �′
0 and �0 to be the subgroups of �̃ generated by suitable �̃–

conjugates of S or H, respectively. Since �̃ is a discrete subgroup of PGLd(�q((t))), it is
immediate that �′

0 and �0 are discrete. Using geometric arguments, we show that �′
0 and

�0 act cocompactly on �, hence are cocompact lattices. The main additional ingredient
in the proof of Theorem 2 is our determination in Section 3 of the intersection of H
with PSLd(�q((t))). This intersection is also used to show that, for certain values of d
and q, in fact �0 = �̃ ∩ PSLd(�q((t))) or �′

0 = �̃ ∩ PSLd(�q((t))). In fact, an anonymous
referee pointed out to us the following result, which is proved in Section 4.3:

THEOREM 3. The lattice �′
0 is the type-preserving subgroup of S�̃, and the lattice �0

is the type-preserving subgroup of �̃. Hence in particular, �′
0 and �0 are commensurable

with �̃.

2. Preliminaries. We briefly recall some definitions and results, and fix notation.

2.1. Singer cycles and projective spaces. The following definitions and results are
taken from [10]. Let q be a power of a prime p and let V be the vector space �d

q ,
for d ≥ 2. A cyclic subgroup S of GLd(q) that acts simply transitively on the set of
non-zero vectors of V is called a Singer cycle of GLd(q). Its generator s is an element
of GLd(q) of order (qd − 1) and so |S| = qd − 1. The image of a Singer cycle of GLd(q)
in PGLd(q) under the canonical epimorphism is called a Singer cycle of PGLd(q). The
intersection of a Singer cycle S of GLd(q) with SLd(q), that is, S ∩ SLd(q), is called a
Singer cycle of SLd(q). Its image under the canonical epimorphism from SLd(q) onto
PSLd(q) is called a Singer cycle of PSLd(q). A Singer cycle of PGLd(q) or of SLd(q) has
order qd−1

q−1 , and a Singer cycle of PSLd(q) has order qd−1
(q−1)δ where δ = (d, q − 1).
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Note that a Singer cycle of PGLd(q) acts simply transitively on the set of 1–
dimensional subspaces of V , and hence acts simply transitively on the set of (d − 1)–
dimensional subspaces of V as well.

We denote by PG(n, q) the projective space of dimension n = d − 1 over the finite
field �q. Recall that the set of points of PG(n, q) is the set of 1–dimensional subspaces
of V , and the set of lines is the set of 2–dimensional subspaces of V .

Thus in particular, a Singer cycle of PGL3(q) acts simply transitively on both the
set of points and the set of lines of the projective plane PG(2, q). If (3, q − 1) = 1, the
order of a Singer cycle of PSL3(q), q3−1

q−1 , coincides with the order of a Singer cycle of
PGL3(q). It follows immediately that in this case, if we identify PSL3(q) with a subgroup
of PGL3(q), the Singer cycles of PSL3(q) and PGL3(q) coincide. On the other hand, if 3
divides q − 1 (that is, (3, q − 1) = 3 
= 1), the order of a Singer cycle of PSL3(q) is q3−1

3(q−1)

and so this subgroup cannot act transitively on the q2 + q + 1 points of the projective
plane PG(2, q). In fact, a simple application of the Orbit-Stabiliser Theorem shows
that even the normaliser of a Singer cycle of PSL3(q) cannot act transitively on the
points of PG(3, q). Moreover, for large enough q, the only p′–subgroups of PSL3(q) that
act transitively on the points of PG(2, q) are Singer cycles and their normalisers and
only when (3, q − 1) = 1. This follows immediately from an inspection of the maximal
subgroups of PSL3(q) that are provided by a result of Hartley and Mitchell (Theorem
6.5.3 of [14]). Hence for large enough q, if 3 divides (q − 1) there are no p′–subgroups
of SL3(q) that act transitively on the set of points of PG(2, q).

2.2. Buildings of type Ãn. We assume basic knowledge of buildings, and extract
from [6] and [7] the facts that we will need. A reference for this theory is [25]. We also
recall the Levi decomposition of a vertex stabiliser in SLd(�q((t))) or PSLd(�q((t))).

Let � be the building Ãn(K, ν) on which G(K) acts, where K = �q((t)), as in
the introduction. Let O := {a ∈ K : ν(a) ≥ 0} = �q[[t]]. A lattice in Kd is a free O–
submodule of Kd of rank d, and two lattices L and L′ are said to be equivalent if
L′ = La for some a ∈ K×. The vertices of � are the equivalence classes of lattices in
Kd . The group G = PGLd(�q((t))) acts transitively on the vertex set of �, so that the
stabiliser of the equivalence class represented by Od is P0 := PGLd(�q[[t]]). Thus we
may identify the vertex set of � with the set of cosets G/P0. For g ∈ GLd(�q((t))), we
denote the image of g in PGLd(�q((t))) by g. The type of the vertex gP0 is ν(det(g))
(mod d).

Let v0 be the vertex of � identified with the trivial coset of P0. Then v0 is the
vertex of type 0 in the standard chamber of �. For i = 1, . . . , d − 1, the vertex vi of
type i in the standard chamber is a coset of the form giP0 where gi ∈ GLd(�q((t))) has
entries in O, and ν(det(gi)) = i. The set of all vertices adjacent to v0 corresponds to
the elements of the projective space PG(n, q), and moreover we may choose the types
so that for each i = 1, . . . , d − 1, the vertices neighbouring v0 of type i correspond to
the i–dimensional subspaces of V = �d

q .
The action of each g ∈ PGLd(�q((t))) on � induces a permutation of the set of types

of the form i �→ i + c (mod d), where c = ν(det(g)). Any automorphism of � which
induces a permutation of types of the form i �→ i + c (mod d), for some c, is said to
be type-rotating. In particular, a type-rotating automorphism fixes either no type or all
types.
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We will need the following decomposition of vertex stabilisers, which is a special
case of a result for topological Kac–Moody groups in [8].

PROPOSITION 4 (Levi decomposition). Let G = G(�q((t))) where G is SLd or PSLd ,
d ≥ 2, and q is a power of a prime p. Let v be a vertex of the building � associated to G.
Then the stabiliser of v in G has Levi decomposition

Lv � Uv

where Lv is isomorphic to the finite group G(�q), and Uv is pro–p.

3. Generalisation of the Cartwright–Steger construction. We first in Section 3.1
describe the basics of cyclic algebras, following Pierce [23]. We then in Section 3.2
extend the construction of [6] and [7] to general cyclic extensions, using invariant
language. For brevity, we will refer to the construction in [6] and [7] as the Cartwright–
Steger construction. Finally in Section 3.3 we restrict to the case of finite fields and
recall or prove facts that will be useful for our constructions of lattices in Section 4
below. We note that our constructions of lattices require only the finite fields case.

3.1. Basic definitions and properties. Let � ⊇ � be a cyclic Galois extension of
degree d, σ ∈ Gal(�/�) a generator and a ∈ �× an element. The cyclic algebra (�, σ, a)
is generated as a ring by � and an extra element t, with � a subring so that the ring
operations of � are retained in (�, σ, a). The relations involving t are

td = a, tb = σ (b)t for all b ∈ �.

The following are well-known properties of the cyclic algebras:
(1) (�, σ, a) is a central simple algebra over � of dimension d2;
(2) � is a maximal subfield of (�, σ, a); and
(3) the elements 1, t, t2, . . . , td−1 form a basis of (�, σ, a) over �.

In particular, each cyclic algebra defines an element [(�, σ, a)] in the relative Brauer
group Br(�/�). Recall the definitions of the trace and the norm T, N : � → �:

T(a) =
d−1∑
k=0

σ k(a), N(a) =
d−1∏
k=0

σ k(a).

The norm image N(�×) is a subgroup of �×. We also need the following properties [23]:
(4) (�, σ, a) ∼= Md(�) if and only if a ∈ N(�×); and
(5) if a ∈ �× and the order of aN(�×) ∈ �×/N(�×) is d then (�, σ, a) is a division

algebra.
The cyclic extension � ⊇ � gives rise to two further cyclic Galois extensions: the

fields of rational functions �(Y ) ⊇ �(Y ) and the fields of Laurent series �((Y )) ⊇
�((Y )). One can think of them as Galois extensions with the same Galois group, so
that σ acts on the coefficients while σ (Y ) = Y .

3.2. The construction for general cyclic extensions, using invariant language. The
first cyclic algebra of interest to us is

A := (�(Y ), σ, 1 + Y ).
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It is a division algebra, by property (5) [15, p.84]: the equation

N
(

a0 + · · · + amY m

b0 + · · · + bkY k

)
= (1 + Y )n

with am 
= 0 
= bk gets rewritten as

N(am)Y md + O(Y md−1) = (N(bk)Y kd + O(Y kd−1))(Y n + O(Y n−1)).

Comparing the highest terms, md = kd + n. Hence n must be divisible by d, for (1 + Y )n

to be a norm of some element. Since N(1 + Y ) = (1 + Y )d , the order of (1 + Y )N(�×)
is exactly d. By (5), A is a division algebra.

The second cyclic algebra of interest is

Ã := (�((Y )), σ, 1 + Y ) ∼= �((Y )) ⊗�(Y ) A.

It is isomorphic to the matrix algebra Md(�((Y ))) by (4). To observe this, let us note
that the trace T : �((Y )) → �((Y )) is surjective. Indeed, pick any x ∈ �((Y )) with
nonzero trace T(x) = β ∈ �((Y )), then for every α ∈ �((Y )) we have T(αβ−1x) = α.
This allows to solve the equation

N(1 + x1Y + x2Y 2 + · · · ) = 1 + Y

recursively: x1 is a solution of T(x1) = 1, and each consecutive term xn will be a solution
of T(xn) = fn(x1, . . . , xn−1) for a certain function fn of all the previously found terms.

We would like to write an explicit isomorphism 
 from Ã to a matrix algebra.
Observe that in Ã for any a, b ∈ �((Y ))

(at)b = σ (b)at and (at)d = aσ (a)t2(at)d−2 = · · · = N(a)td = N(a)(1 + Y ).

Hence, if X ∈ �((Y )) is a solution of N(X) = 1 + Y then∑
j

ajtj �→
∑

j

ajXjt̂j

is an isomorphism from Ã to (�((Y )), σ, 1). The latter is known as the skew group
algebra and admits an explicit isomorphism to the matrix algebra End�((Y ))(�((Y ))
given by at̂j : b �→ aσ j(b). Composing these isomorphisms, we arrive at an explicit
isomorphism


 : Ã → End�((Y ))(�((Y )))

given by




⎛
⎝∑

j

ajtj

⎞
⎠ : b �→

∑
j

ajXjσ j(b), b ∈ �((Y )). (1)

We will abuse notation by denoting various restrictions of 
, for instance to
A, by the same letter. On the level of multiplicative groups we have an injective
homomorphism


 : A× → GL�((Y ))(�((Y ))).
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By the Skolem–Noether Theorem, every �(Y )–linear automorphism of A is inner, so
we have another injective group homomorphism


 : Aut(A) ∼= A×/Z(A×) → PGL�((Y ))(�((Y ))).

Now we are ready to introduce the Cartwright–Steger groups [6, 7]. Let A0 be
the �[Y−1]–span of the elements tm, m < d in A. Notice that it is not a subring:
td = 1 + Y 
∈ A0. The “big” Cartwright–Steger group �̃ is defined as

�̃ := {γ ∈ Aut(A) | γ (A0) ⊆ A0}.
Why is �̃ a subgroup? To show this we choose a �(Y )–basis B of A consisting of
the elements atm, m < d, a ∈ �. The basis B is also a �((Y ))–basis of Ã. Writing
automorphisms in this basis gives an injective homomorphism

� : Aut(A) → GL�(Y )(A) → GL�((Y ))(Ã) ∼= GLd2 (�((Y ))).

Moreover, each �(γ ) is an automorphism of Ã. By the Skolem–Noether Theorem,
�(γ )(x) = yγ xyγ

−1 for a certain yγ ∈ Ã ∼= Md(�((Y ))). It follows that det(�(γ )) =
det(yγ )d det(yγ )−d = 1 [7, p.129]. Thus, we can restrict the image of � to the special
linear group:

� : Aut(A) → SLd2 (�((Y ))).

Clearly, γ ∈ �̃ if and only if the coefficients of �(γ ) lie in �[Y−1]. Thus,

�̃ = �−1(SLd2 (�[Y−1]))

is a subgroup. Since γ ∈ �̃ is �(Y )–linear, we have γ (Y−1A0) ⊆ Y−1A0 for any γ ∈ �̃.
Thus γ defines a linear map 
(γ ) ∈ End�(A+) where A+ = A0/Y−1A0. The map 
 is
a semigroup homomorphism from a group, so its image consists of invertible elements:


 : �̃ → GL�(A+) ∼= GLd2 (�).

In essence, 
 is the Y–degree zero term of �: the basis B defined above gives an
�–basis of A+. The basis B has a partial order coming from the degree of t in [atj] =
atj + Y−1A0. Let T be the group of “unitriangular” transformations in this basis, that
is,

T = {π ∈ GL�(A+) | ∀a ∈ �, j < d π ([atj]) = [atj] +
j−1∑
i=0

[aiti], ai ∈ �}.

Finally, the “small” Cartwright–Steger group is

� := 
−1(T) ≤ �̃.

(Since not all of T may be in the image of 
, we should perhaps write that � =

−1(T) ∩ Im(
).)

LEMMA 5. If γ ∈ � then

γ (t) = t + O(Y−1) and γ (td−1) = td−1 + O(Y−1)

https://doi.org/10.1017/S0017089514000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089514000287


COCOMPACT LATTICES ON Ãn BUILDINGS 249

where O(Y−1) denotes a polynomial in negative degrees of Y with coefficients in A0.

Proof. By definition of �,

γ (t) = t + a + O(Y−1) and γ (td−1) = td−1 + bd−2td−2 + · · · + b1t + b0 + O(Y−1)

for some a, bi ∈ �×. Let us analyse the key equation

1 + Y = γ (1 + Y ) = γ (td) = γ (t)γ (td−1).

Since td = 1 + Y we get the equation

(a + σ (bd−2))td−1+ (abd−2 + σ (bd−3))td−2+ · · · + (ab1 + σ (b0))t1 + ab0 + O(Y−1) = 0.

If a = 0 then we immediately conclude that all σ (bi) = 0. Hence all bi = 0 and we are
done. If a 
= 0 then we conclude that all b0 = 0. Then b1 = 0. Recursively, all bi = 0
and we are done. �

To contemplate the difference between � and �̃, let us introduce another group H:
as a set H consists of γ ∈ Aut(A) that are conjugations by atj, where a ∈ � and j < d.

PROPOSITION 6.
(1) H is a subgroup of �̃.
(2) H ∩ � = {1}.
(3) H� is a subgroup of �̃ and � is normal in H�.

As recalled in Section 3.3 below, in the case of finite fields H� = �̃, which may or may
not hold over arbitrary fields. This is an interesting question.

Proof. Let us calculate in A, writing x ∼ y when x and y give the same conjugation
in Aut(A). Since 1 + Y ∼ 1,

(atj)−1 = td−ja−1(1 + Y )−1 ∼ σ d−j(a−1)td−j and

(atj)(bti) = aσ j(b)ti+j ∼ aσ j(b)ti+j−d,

showing that H is a subgroup of Aut(A). If γ ∈ H is a conjugation by atj, where a ∈ �

and j < d, then

γ (bti) = atjbtitd−ja−1(1 + Y )−1

= aσ j(b)td+ia−1(1 + Y )−1

= aσ i(a−1)σ j(b)ti.

Thus H is a subgroup of �̃. Moreover, γ ∈ � if and only if b = aσ i(a−1)σ j(b) for all b
and i if and only if a ∈ � and j = 0 if and only if γ = 1. This proves (2).

Finally, it suffices to check that γ�γ −1 ⊆ � where γ is a conjugation by x, and x
is either t or a ∈ �×. If β ∈ �, then

γβγ −1(y) = xβ(x−1)β(y)(xβ(x−1))−1.

Note that elements of � are characterised by the fact that

β(bti) = bti + O(ti−1) + O(Y−1)
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for all b ∈ � and i ∈ {0, 1, . . . , d − 1}, where O(ti−1) denotes a polynomial in
1, t, . . . , ti−1 with coefficients in � andO(Y−1) denotes a polynomial in negative degrees
of Y with coefficients in A0.

If x = a then

β(a) = a + O(Y−1), β(a−1) = a−1 + O(Y−1)

by the definition of � and

xβ(x−1) = 1 + O(Y−1), (xβ(x−1))−1 = β(x)x−1 = 1 + O(Y−1).

Finally,

γβγ −1(y) = (1 + O(Y−1))(bti + O(ti−1) + O(Y−1))(1 + O(Y−1))

= bti + O(ti−1) + O(Y−1)

because there would not be enough powers of t to cancel all of the Y−j using td = 1 + Y
and produce at least an i-th power of t.

Similarly, if x = t then

β(t) = t + O(Y−1), β(t−1) = (1 + Y )−1(td−1 + O(Y−1))

by Lemma 5. Since (1 + Y )−1 = Y−1 − Y−2 + Y−3 − · · · ,

xβ(x−1) = 1 + O(Y−1), (xβ(x−1))−1 = β(x)x−1 = 1 + O(Y−1).

Finally,

γβγ −1(y) = bti + O(ti−1) + O(Y−1)

as in the case of x = a. �
It would be useful for us to know how the image 
(�̃) intersects with

PSL�((Y ))(�((Y ))). We can understand this for the image of H. By (�×)k we denote
the subgroup of the multiplicative group �× consisting of k-th powers. Let γ : A× →
Aut(A) be the homomorphism assigning the conjugation by x to each x ∈ A×.

PROPOSITION 7. Let p be the characteristic of �. Denote by Ordp(m) the largest
power of p that divides an integer m (or 1 if p = 0). Then


(H) ∩ PSL�((Y ))(�((Y )))

= {
(γ (atk)) | a ∈ �×, N(a) ∈ (�×)d, Ordp(k) ≥ Ordp(d)}.

Proof. The element 
(γ (atk)) is in PSL�((Y ))(�((Y ))) if and only if one can multiply

(atk) by a scalar matrix zId , z ∈ �((Y )), so that the determinant of the product is 1.
Now the product

z
(atk) : b �→ zaXkσ k(b), ∀b ∈ �((Y ))

is a composition of four linear maps

(b �→ zb) ◦ (b �→ ab) ◦ (b �→ Xkb) ◦ σ k
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so its determinant is the product of four determinants:

det(z
(atk)) = zd · N(a) · (1 + Y )k · (−1)(d−1)k.

Here we use the fact that the determinant of the multiplication (b �→ ab) is the norm
N(a). In particular, we see three norms, including N(z) = zd and N(Xk) = (1 + Y )k.
From Galois theory, we know that the action of σ on �((Y )) is conjugate to the
permutation matrix of a cycle of length d that gives the last determinant.

Thus, we just need a d-th root of (−1)kN(a)(1 + Y )k in �((Y )). The free term of
such a root is a d-th root of N((−1)ka). Therefore it is necessary and sufficient to have
d-th roots of both N((−1)ka) and (1 + Y )k. The existence of the former is equivalent to
N((−1)ka) ∈ (�×)d , while the existence of the latter is equivalent to Ordp(k) ≥ Ordp(d).

The last statement needs an explanation. Write d = Ordp(d)d ′. Extracting a d ′-th
root of (1 + Y )k can be done because d ′ is invertible in �: the equation

(1 + x1Y + x2Y 2 + · · · )d ′ = (1 + Y )k

can be solved recursively: x1 is a solution of d ′x1 = k, and each consecutive term xn will
be a solution of d ′xn = fn(x1, . . . , xn−1) for a certain function fn of all the previously
found terms. It remains to contemplate extracting of the p-th root in characteristic p:
since

(1 + x1Y + x2Y 2 + · · · )p = 1 + xp
1Y p + xp

2Y 2p + · · ·
this can be done if and only if (1 + Y )k is already a p-th power, that is, if and only if p
divides k.

Finally, since 
(γ ((−1)katk)) = 
(γ (atk)) we can replace (−1)ka with a. �

3.3. Application to the case of finite fields, and summary of useful results. While
the algebraic properties of the construction in Section 3.2 above are upheld in any
cyclic extension, we would like to move to its topological and metric properties. For
this, from now on we assume that the extension � ⊇ � is a finite field extension �qd ⊇ �q

with q = pa, p a prime.

PROPOSITION 8. Let � = �qd and � = �q. Then∣∣
(H) :
(

(H) ∩ PSL�((Y ))(�((Y )))

)∣∣ = δ · Ordp(d)

where δ is the greatest common divisor of d and (q − 1) (note that δ is a divisor of
(qd − 1)/(q − 1)).

Proof. Clearly atk ∼ btm (with k, m < d) if and only if ab−1 ∈ � and k = m. Thus,
we can compute the contributions to the index from a and from t separately. The powers
of t of degrees Ordp(d), 2 Ordp(d), . . . , d − Ordp(d) are exactly those that produce
elements of the subgroup. So, Ordp(d) is the contribution from t. The contribution
from a is the index∣∣�× : �×N−1((�×)d)

∣∣ = ∣∣�× : N−1((�×)d)
∣∣ = ∣∣�× : (�×)d

∣∣ = n.

The first equality holds because �× ⊆ N−1((�×)d). Indeed, N(a) = ad ∈ (�×)d for
all a ∈ �×. The second equality holds since N is surjective and (�×)d has index n
in �×. �
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Using the explicit expression for 
 at (1) above, one can construct an explicit image
of H in the locally compact, totally disconnected group G = PGLd(�q((t))) under 
.
Interestingly enough, if (p, d) = 1, one can see that 
(H) can be realised as a subgroup
of PGLd(q) naturally embedded in PGLd(�q[[t]]). However, if p | d, this is not possible
and 
(H) ∩ PGLd(q) is a subgroup of index Ordp(d) in 
(H). This difference comes
from the fact that in the former case X (a solution of N(X) = 1 + Y ) can be realised
over �q, while in the latter case this is not possible.

So far we have been working in Aut(Ã). However, it will now be convenient to
switch our discussion explicitly into G = PGLd(�q((t))). To avoid excessive notations,
we identify �̃ with its image 
(�̃) in G. From now on we call this image �̃. Likewise,
we call �̃v, now in G, again by H (instead of using 
(H)).

We now recall the facts about �̃ that will be useful for us. Most of them can be
derived from Section 3.2 but, as they already appear in [7], we just restate them. We
have:

(1) �̃ is a cocompact lattice of PGLd(�q((t)));
(2) � acts simply transitively on the set of vertices of the building � associated to

PGLd(�q((t)));
(3) H = �̃v for a vertex v of �;
(4) |H| = qd−1

q−1 d; and

(5) �̃ = H�.
We will now discuss the structure of H and some of its properties.

LEMMA 9. Let H = �̃v for a vertex v of � the building associated to G =
PGLd(�q((t))). Then the following conditions hold:

(1) H is a subgroup of Gv
∼= PGLd(�q[[t]]);

(2) H contains a normal cyclic subgroup S of order qd−1
q−1 where S is a Singer cycle of

PGLd(q);
(3) H ∼= NPGLd (q)(S); and
(4) if we identify PSLd(�q((t))) with a subgroup of G, then

|H ∩ PSLd(�q((t)))| = d
Ordp(d)

· qd − 1
(q − 1)(d, q − 1)

.

Proof. Part (1) follows immediately from the fact that H = �̃v, hence H ≤ Gv, and
the fact that Gv

∼= PGLd(�q[[t]]), as discussed in Section 2.2.
For (2), using the notation of Proposition 6, let S be the image of mE× in PGLd(q).

Obviously, S is a cyclic subgroup of H of order qd−1
q−1 . Now from the proof of (1) of

Proposition 6, it follows that S indeed is normal in H. Moreover, as S is an abelian
subgroup of PGLd(q) of order qd−1

q−1 , Proposition 2.2 of [10] implies that S is a Singer
cycle of PGLd(q).

To prove (3), we have H ≤ Gv
∼= PGLd(�q[[t]]) ∼= Uv � PGLd(q) where Uv is a

pro–p group. If (p, d) = 1, then (|H|, p) = 1 and so H ∩ Uv = 1. Suppose that p | d.
Assume that H ∩ Uv 
= 1. Then there exists 1 
= h ∈ H ∩ Uv, an element of order p. It
follows that [h, S] ≤ Uv ∩ S = 1 since on the one hand h ∈ Uv � Gv and S ≤ Gv, while
on the other, h normalises S and (p, |S|) = 1. Thus h centralises S. Using calculations
from the proof of Proposition 6(1) we observe that S is self-centralising in H. We
have reached a contradiction that proves that H ∩ Uv = 1. It follows immediately that
H ∼= H ≤ Gv := Gv/Uv

∼= PGLd(q).
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Now H contains a normal subgroup S ∼= S which is a Singer cycle of Gv, by
Proposition 2.2 of [10]. Moreover, |H| = |NPGLd (q)(S)|. Therefore (3) holds.

Finally using (1), (2) and (3) together with Proposition 8, we conclude that (4)
holds. �

4. The lattices �0 and �′
0. In this section we prove our main results, Theorems 1

and 2, for all d ≥ 3. We construct and establish the properties of the lattices �′
0 ≤ �0 in

PGLd(�q((t))) in Section 4.1, and investigate the intersections �′
0 := �′

0 ∩ PSLd(�q((t)))
and �0 := �0 ∩ PSLd(�q((t))) in Section 4.2. We then discuss the relationship between
�0 and �′

0 and the Cartwright–Steger lattices in Section 4.3.

4.1. Lattices in PGLd(�q((t))). Recall the construction of the cocompact lattice
�̃ ≤ PGLd(�q((t))) described in Section 3 above. This construction appears in [7]. As
noted in Section 3.3(5) above, the lattice �̃ is a product of a vertex stabiliser H of
order d qd−1

q−1 and a vertex-regular lattice �. Denote by �̃′ the subgroup of �̃ which is
the product of � with the Singer cycle S < H guaranteed by Lemma 9 above. Then
by construction, S is a vertex stabiliser in �̃′. (Since � ≤ �̃′ ≤ �̃, the group �̃′ is also a
cocompact lattice in PGLd(�q((t))).)

For i = 0, . . . , d − 1 let vi be the vertex of type i in the standard chamber, as in
Section 2.2 above. Let Ni be the stabiliser of vi in �̃, and let Si be the stabiliser of vi in
�̃′. Then each Ni ∼= H and each Si ∼= S. We now define

�′
0 := 〈S0, . . . , Sd−1〉 ≤ �̃′

to be the subgroup of �̃′ generated by S0, . . . , Sd−1, and

�0 := 〈N0, . . . , Nd−1〉 ≤ �̃

to be the subgroup of �̃ generated by N0, . . . , Nd−1. Clearly �′
0 ≤ �0.

We claim that �′
0 and �0 are cocompact lattices in PGLd(�q((t))). Recall from the

introduction that � < G is a cocompact lattice in G if it is a discrete subgroup of G
which acts cocompactly on �. Hence it suffices to show that �0 is a discrete subgroup
of PGLd(�q((t))) and that �′

0 acts cocompactly on �. The following lemma is immediate,
since by construction �0 is a subgroup of the discrete group �̃ ≤ PGLd(�q((t))).

LEMMA 10. �0 is a discrete subgroup of PGLd(�q((t))).

To show that �′
0 acts cocompactly on �, we first consider the action of the groups

Si which generate �′
0.

LEMMA 11. For i = 0, . . . , d − 1 and j = i − 1, i + 1 (mod d), the group Si acts
simply transitively on the vertices neighbouring vi of type j.

Proof. From the discussion of Singer cycles in Section 2.1 and types in Section
2.2, the group S0 acts simply transitively on the vertices neighbouring v0 of
type j, for j = −1, 1 (mod d). Now �̃′ consists of type-rotating automorphisms,
since the Cartwright–Steger lattice �̃, which contains �̃′, consists of type-rotating
automorphisms. By construction and the definition of type-rotating, for i = 1, . . . , d −
1 the group Si is the image of S0 under conjugation by an element of �̃′ which adds i
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(mod d) to each type. Thus for i = 1, . . . , d − 1, the group Si acts simply transitively
on the vertices neighbouring vi of type j = i − 1, i + 1 (mod d). �

PROPOSITION 12. For i = 0, . . . , d − 1, the group �′
0 acts transitively on the vertices

of type i in �.

Proof. We will show that �′
0 acts transitively on the vertices of type 0 in �. The

same argument will apply for types i = 1, . . . , d − 1. It suffices to show that for each
vertex w0 of type 0, there is an element of �′

0 which takes w0 to v0. We prove this by
induction on the distance δ(w0, v0) ∈ 2�.

If δ(w0, v0) = 2 we consider the following cases.
(1) w0 is adjacent to v1. By Lemma 11 above, S1 acts transitively on the type 0

neighbours of v1, and so the claim follows in this case.
(2) w0 is adjacent to some vertex s0v1 with s0 ∈ S0. Then s−1

0 w0 is adjacent to v1,
and we apply the argument from Case (1).

(3) w0 is adjacent to vi where i ∈ {2, . . . , d − 1}. Then there is a vertex v′
i−1 of type

(i − 1) so that vi, w0 and v′
i−1 are mutually adjacent. Since Si acts transitively

on the type (i − 1) neighbours of vi, we have that siv
′
i−1 = vi−1 for some si ∈ Si.

Thus siw0 is adjacent to vi−1. By repeating this argument, we obtain after finitely
many steps that for some γ ∈ �0 we have γw0 adjacent to v1, and we may then
apply the argument from Case (1).

(4) w0 is adjacent to a vertex v′
i 
= vi of type i ∈ {2, . . . , d − 1}, with δ(v0, v

′
i) =

δ(v′
i, w0) = 1. Choose a vertex v′

1 of type 1 so that v0, v′
1 and v′

i are mutually
adjacent. Then there is an s0 ∈ S0 such that s0v

′
1 = v1, and hence s0v

′
i is a

neighbour of v1 of type i. Now choose a vertex v′
2 of type 2 so that v1, v′

2 and
s0v

′
i are mutually adjacent. Then there is an s1 ∈ S1 such that s1v

′
2 = v2, and

hence s1s0v
′
i is a neighbour of v2 of type i. By repeating this argument, we

obtain that γ v′
i is a neighbour of vi−1 of type i, for some γ ∈ �′

0. Then there is
an si−1 ∈ Si−1 such that si−1γ v′

i = vi. Thus si−1γw0 is a neighbour of vi, and so
we may apply the argument from Case (3).

Now suppose that δ(w0, v0) = 2k. Then there is a vertex w′
0 of � of type 0 such that

δ(w0, w
′
0) = 2(k − 1) and δ(w′

0, v0) = 2. By the base case of the induction there is an
element γ ∈ �̂0 such that γw′

0 = v0. But then δ(γw0, v0) = δ(γw0, γw′
0) = δ(w0, w

′
0) =

2(k − 1) so by inductive assumption there is a γ ′ ∈ �̂0 such that γ ′γw0 = v0, as
required. �

COROLLARY 13. �′
0 acts cocompactly on �.

Proof. By Proposition 12 above, �′
0 has finitely many (at most d) orbits of vertices

on �. Since � is locally finite, this implies that �′
0 acts cocompactly. �

We have established the claim that �′
0 and �0 are cocompact lattices in PGLd(�q((t))).

To finish the proof of Theorem 1, we further describe the actions of �′
0 and �0 on �.

COROLLARY 14. The action of �′
0 and of �0 is type-preserving and transitive on each

type of vertex in �. For i = 0, . . . , d − 1, the stabiliser of vi in �′
0 is the group Si, and in

�0 is the group Ni.

Proof. Each Ni is a subgroup of the type-rotating group �̃ and stabilises a vertex
of type i, hence each Ni fixes all types. It follows that �0 and thus �′

0 is type-preserving.
By Proposition 12, the action of �′

0 and thus of �0 is transitive on each type of vertex
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of �. For i = 0, . . . , d − 1, the stabiliser of vi in �′
0 is Si since by construction

Si ≤ Stab�′
0
(vi) ≤ Stab�̃′ (vi) = Si.

Similarly, the stabiliser of vi in �0 is Ni. �

4.2. Lattices in PSLd(�q((t))). We will first prove that �0 := �0 ∩ PSLd(�q((t)))
is a cocompact lattice in PSLd(�q((t))). The proof that �′

0 := �′
0 ∩ PSLd(�q((t))) is a

cocompact lattice in PSLd(�q((t))) is similar.
Since �0 is discrete, it is immediate that �0 is a discrete subgroup of PSLd(�q((t))).

Now �0 acts cocompactly on �, so to show that �0 act cocompactly on � it suffices
to show that �0 is of finite index in �0.

Consider the determinant homomorphism det : GLd(�q((t))) → �q((t))×, with kernel
SLd(�q((t))). This homomorphism induces a well-defined homomorphism

det : PGLd(�q((t))) → �q((t))×/(�q((t))×)d

where (�q((t))×)d is the subgroup of �q((t))× consisting of dth powers of invertible elements
of �q((t)). The kernel of det is PSLd(�q((t))).

The group �0 is finitely generated by torsion elements, since each Ni is finite.
Hence the restriction of det to �0 has finite image. But the kernel of this restriction is
�0 ∩ PSLd(�q((t))) = �0. Thus �0 has finite index in �0, as required. We conclude that
�0 is a cocompact lattice in PSLd(�q((t))).

We now describe these intersections �0 and �′
0. We list the outcomes for various

pairs of d and q in the next statement, which follows from Proposition 8 and Lemma
9 above. Recall that Si is a Singer cycle of PGLd(q), hence Si ∼= C qd −1

q−1
, and that Ni ∼=

C qd −1
q−1

� Cd .

LEMMA 15. Let q = pa, a ∈ �, d ≥ 3, and i ∈ {0, . . . , d − 1}.
(1) Suppose that (d, q − 1) = 1.

(a) If p does not divide d, then

Ni ∩ PSLd(�q((t))) ∼= C qd −1
q−1

� Cd

is equal to Ni. Hence �′
0 = �′

0 and �0 = �0.
(b) If p divides d, then

Ni ∩ PSLd(�q((t))) ∼= C qd −1
q−1

� C d
Ordp(d)

is a proper subgroup of Ni. Moreover, Si ≤ Ni ∩ PSLd(�q((t))). Hence �′
0 = �′

0
and �0 is a proper subgroup of �0.

(2) Suppose that (d, q − 1) 
= 1.
(a) If p does not divide d, then

Ni ∩ PSLd(�q((t))) ∼= C qd −1
(q−1)(d,q−1)

� Cd

is a proper subgroup of Ni. Moreover, Si is not contained in Ni ∩ PSLd(�q((t))).
Hence �′

0 is a proper subgroup of �′
0 and �0 is a proper subgroup of �0.
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(b) If p divides d, then

Ni ∩ PSLd(�q((t))) ∼= C qd −1
(q−1)(d,q−1)

� C d
Ordp(d)

is a proper subgroup of Ni. Moreover, Si is not contained in Ni ∩ PSLd(�q((t))).
Hence �′

0 is a proper subgroup of �′
0 and �0 is a proper subgroup of �0.

In each case in which �′
0 = �′

0 (respectively, �0 = �0), the same arguments as in
Section 4.1 above show that �′

0 (respectively, �0) is a cocompact lattice in PSLd(�q((t))),
with action as described in Corollary 14 above. This completes the proof of Theorem
2.

On the other hand, if �′
0 is a proper subgroup of �′

0 (respectively, �0 is a proper
subgroup of �0), then all that we can say about the action is that, since �′

0 (respectively,
�0) is a type-preserving cocompact lattice, it has finitely many orbits of vertices of
each type. In particular, we do not know whether �′

0 (respectively, �0) acts transitively
on the set of vertices of � of each type. For instance, if d = 3 and (d, q − 1) 
= 1,
then by Lemma 9(4) above, H ∩ PSL3(�q((t))) has order (q2 + q + 1). Moreover, as
H ∩ PSL3(�q((t))) = H ∩ PSL3(�q[[t]]), H is a normaliser of a Singer cycle of PSL3(q).
Thus as discussed in Section 2.1, H ∩ PSL3(�q((t))) cannot act transitively on the set of
points and the set of lines of the projective plane over �q. Hence the arguments used
to prove Proposition 12 above cannot be applied in this case.

4.3. Relationships between �0 and �′
0 and the Cartwright–Steger lattice. In this

section we establish some relationships between the lattices �0 and �′
0 that we

constructed in Section 4.1 above, and the Cartwright–Steger lattice �̃.
We first prove Theorem 3 of the introduction. Recall from Section 3.3 above that

�̃ = H�. In Section 4.1 above, we denoted by �̃′ the product S�. Since �̃ and �̃′

are type-rotating, they have finite index (normal) subgroups consisting of all type-
preserving elements. Thus the following result establishes Theorem 3.

PROPOSITION 16. The lattice �0 is the type-preserving subgroup of �̃, and the lattice
�′

0 is the type-preserving subgroup of �̃′.

Proof. Denote by �̃0 the type-preserving subgroup of �̃. Since �0 ≤ �̃ and �0 is
type-preserving, we have that �0 ≤ �̃0. By Corollary 14 above, �0 acts transitively on the
vertices of each type in �. Hence �̃0 acts transitively on the vertices of each type in �.
Now let v be any vertex of � and let x ∈ �̃0. Then there is a y ∈ �0 so that xy−1 · v = v.
In particular, xy−1 is an element of Stab�̃0

(v). But Stab�0 (v) ≤ Stab�̃0
(v) ≤ Stab�̃(v)

and as Stab�0 (v) = Stab�̃(v) = Ni for some i, we have that Stab�0 (v) = Stab�̃0
(v). Thus

xy−1 ∈ Stab�0 (v) and so x ∈ Stab�0 (v)y ⊂ �0. Therefore �̃0 ≤ �0. Thus �0 = �̃0, the
type-preserving subgroup of �̃, as required.

The proof for �′
0 is similar. �

In the case that (d, q − 1) = 1, we can also specify the relationship between �0 and
�′

0 and the Cartwright–Steger lattice �̃ as follows.

LEMMA 17. Assume that (d, q − 1) = 1. If p does not divide d, then �0 = �̃ ∩
PSLd(�q((t))), while if p divides d, then �′

0 = �̃ ∩ PSLd(�q((t))).

Proof. If p does not divide d, then by Lemma 15(1)(a) above, the lattice �0 is
contained in PSLd(�q((t))). Since we constructed �0 as a subgroup of �̃, it follows that
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�0 ≤ �̃ ∩ PSLd(�q((t))). Now let g ∈ �̃ ∩ PSLd(�q((t))). Then as the action of PSLd(�q((t)))
on � is type-preserving, the vertex gv0 has type 0. Since �0 acts transitively on vertices
of type 0, there is a g0 ∈ �0 such that g−1

0 gv0 = v0. Thus as �0 ≤ �̃, the element
h := g−1

0 g is in Stab�̃(v0). But Stab�0 (v0) = Stab�̃(v0) = N0, and thus g = g0h ∈ �0.
Hence �0 = �̃ ∩ PSLd(�q((t))) as required.

The proof that if p divides d then �′
0 = �̃ ∩ PSLd(�q((t))) is similar. �

5. Minimality of covolumes. In Section 5.1 we discuss whether cocompact lattices
in the matrix groups we have been considering can contain p–elements. We then in
Section 5.2 discuss minimality of covolumes of cocompact lattices in G = SL3(�q((t))).

5.1. Cocompact lattices, do they contain p–elements? We begin by establishing
an analogue for G = SLd(�q((t))) of Godement’s Cocompactness Criterion (or the
Kazhdan-Margulis Theorem) [4, 17, 22]. We will use the general result contained
in Proposition 18 below. A similar statement can be found in, for example, [13,
page 10]. The proof in [13] requires a compact fundamental domain, that cannot
be assured in our case. Hence, for the sake of completeness, we exhibit a variation
of their argument here. The existence of a discrete cocompact subgroup will make
the group G locally compact, but we still formulate the result for a topological group
because local compactness is not used in the proof.

PROPOSITION 18. Let G be a topological group and � a discrete cocompact subgroup
of G. If u ∈ �, then

uG := {gug−1 | g ∈ G}

is a closed subset of G.

Proof. Let giug−1
i , gi ∈ G, be a net converging to v ∈ G. Since � is cocompact,

the set {gi�} admits a convergent subnet, so without loss of generality, gi� → g�.
Thus, there exist such xi ∈ � that gixi → g. Since giug−1

i = (gixi)(x−1
i uxi)(gixi)−1,

the net x−1
i uxi converges to g−1vg. Since all x−1

i uxi are elements of the discrete
subgroup �, the net must stabilise, hence, x−1

j uxj = g−1vg for some j, and so we arrive
at v ∈ uG. �

It is an interesting question whether cocompact lattices in groups defined over a
field of characteristic p contain p–elements. In [18] Lubotzky uses Proposition 18 above
to show that cocompact lattices in SL2(�q((t))), where q = pa, contain no p–elements.
In fact, this statement can be generalised in the following way.

PROPOSITION 19. Let G = SLd(�q((t))) where q = pa with p prime and d ≥ 2. Let �

be a lattice in G. Then � is cocompact if and only if � does not contain any elements of
order p.

Proof. First suppose that � is non-cocompact and let A be a set of vertices of the
building for G which represent the orbits of �. Then by the remarks in the introduction,
A is infinite and the series μ(�\G) = ∑

a∈A | Stab�(a)|−1 converges, hence � contains
vertex stabilisers of arbitrarily large order. The Levi decomposition (Proposition 4
above) then implies that � must have elements of order p.

https://doi.org/10.1017/S0017089514000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089514000287


258 INNA CAPDEBOSCQ, DMITRIY RUMYNIN AND ANNE THOMAS

For the converse, by Proposition 18 above, it is enough to show that if u ∈ G is a
p–element then there is g ∈ G such that gkug−k → I as k → ∞, where I is the identity
matrix in G.

So let u ∈ G be such that up = I 
= u. Since we are working over a field of
characteristic p, it follows that (u − I)p = 0 and thus u is a unipotent element
of G = SLd(�q((t))) (recall that by definition, unipotent elements are those with all
eigenvalues equal to 1). Thus u is conjugate in G to a matrix with all 1s on the diagonal
and all below-diagonal elements 0. Without loss of generality we may assume that u
itself has all 1s on the diagonal and all below-diagonal elements 0. It is then not hard
to construct a suitable diagonal matrix g ∈ G such that gkug−k converges to I . For
example, for d = 3, g can be taken to be the following matrix:⎛

⎝t2 0 0
0 t 0
0 0 t−3

⎞
⎠ .

�
The proof of Proposition 19 makes essential use of the fact that in SLd(�q((t))), an

element of order p is a good unipotent element (cf. [26]). However, one needs to be
careful about cocompact lattices in other matrix groups!

Let us look again at the Cartwright–Steger lattice �̃ in PGLd(�q((t))). As we saw, �̃ =
�H where H is a finite subgroup of PGLd(�q((t))) of order d (qd−1)

(q−1) . Suppose that p divides

d (for example, if p = 3 = d). Then obviously H, and thus �̃, contains an element
h̃ ∈ H of order p. On the other hand, �̃ is a cocompact lattice in PGLd(�q((t))). What is
going on? The answer comes from the fact that under the natural map GLd(�q((t))) →
PGLd(�q((t))), h̃ is the image of an element h ∈ GLd(�q((t))) of infinite order. In particular,
h̃ is not a good unipotent element and the proof of Proposition 19 above does not work.
In fact the conjugacy class of h̃ in PGLd(�q((t))) is closed, so there is no contradiction
with Proposition 18 above.

5.2. Minimality of covolumes. As discussed in the introduction, our original
motivation was to find cocompact lattices of minimal covolume in SL3(�q((t))), and
this led us to considering vertex stabilisers which are Singer cycles or normalisers of
Singer cycles. We now consider covolumes of cocompact lattices in the special case that
G = SL3(�q((t))) and (3, q − 1) = 1. Notice that in particular, SL3(�q((t))) = PSL3(�q((t))).

By Theorem 2 and the remarks in the introduction, we have that �′
0 is a cocompact

lattice in G of covolume

μ(�′
0\G) =

2∑
i=0

1
| Stab�′

0
(vi)| =

2∑
i=0

1
|Si| = 3

q2 + q + 1
.

Also, if p 
= 3, then �0 is a cocompact lattice in G of covolume

μ(�0\G) =
2∑

i=0

1
| Stab�0 (vi)| =

2∑
i=0

1
|Ni| = 3

3(q2 + q + 1)
= 1

q2 + q + 1
.

Now let � be any cocompact lattice in G = SL3(�q((t))). Then by Proposition 19
above, each vertex stabiliser in � is a finite p′–subgroup of a vertex stabiliser in G.
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The Levi decomposition (Proposition 4 above) then implies that each vertex stabiliser
in � is isomorphic to a p′–subgroup of SL3(q) = PSL3(q). We thus consider maximal
p′–subgroups of PSL3(q), in Lemma 20 below.

Note that since � is type-preserving, � has at least one orbit of vertices of each type
i = 0, 1, 2. It follows that if | Stab�(vi)| ≤ q2 for each i, then μ(�\G) > μ(�′

0\G) and so
� is not a cocompact lattice of minimal covolume. Similarly, if p 
= 3 and | Stab�(vi)| <

3(q2 + q + 1) for each i, then μ(�\G) > μ(�0\G) and so again � is not a cocompact
lattice of minimal covolume. Hence in the next statement we consider only maximal
p′–subgroups H of PSL3(q) with |H| > q2 in the case p = 3, and |H| ≥ 3(q2 + q + 1)
otherwise.

LEMMA 20. Let K = PSL3(q), where q = pa > 72 with p prime and a ∈ �. Assume
that (3, q − 1) = 1 and q > 72. Let H be a maximal p′–subgroup of K.

(1) If p = 2 and |H| ≥ 3(q2 + q + 1), then H is the normaliser of a Singer cycle of K
and |H| = 3(q2 + q + 1).

(2) If p = 3 and |H| > q2 then one of the following holds:
(a) H is a subgroup of the normaliser of a maximal split torus of K and |H| =

2(q − 1)2;
(b) H is the normaliser of a Singer cycle of K and |H| = (q2 + q + 1); or
(c) H is a subgroup of a Levi complement of a maximal parabolic subgroup of K

and |H| = 2(q2 − 1).
(3) If p ≥ 5 and |H| ≥ 3(q2 + q + 1), then one of the following holds:

(a) H is the normaliser of a maximal split torus of K and |H| = 6(q − 1)2; or
(b) H is the normaliser of a Singer cycle of K and |H| = 3(q2 + q + 1).

Proof. The result follows immediately from the theorem of Hartley and Mitchell
(cf. Theorem 6.5.3 of [14]). �

From this, the following minimality result in characteristic 2 is immediate:

PROPOSITION 21. Suppose that (3, q − 1) = 1 and that p = 2. Then for q large enough,
the lattice �0 is a cocompact lattice of minimal covolume in G = SL3(�q((t))).

Proof. Let � be any cocompact lattice in SL3(�q((t))) and assume that q > 72.
By Lemma 20 and the discussion preceding it, for i = 0, 1, 2, we have | Stab�(vi)| ≤
| Stab�0 (vi)| = 3(q2 + q + 1) and so μ(�\G) ≥ μ(�0\G) as required. �

It would be nice either to prove or to disprove Proposition 21 in an arbitrary
characteristic p. At the moment of writing, we cannot do it, for reasons we now
explain.

A lattice �′ ≤ G = SL3(�q((t))) is said to be maximal if for every lattice � ≤ G such
that �′ ≤ �, in fact �′ = �. It is clear that a cocompact lattice of minimal covolume
must be a maximal lattice. In fact, the following is true.

PROPOSITION 22. Suppose that (3, q − 1) = 1. Then for q large enough, if p = 3, the
lattice �′

0 is a maximal lattice in G = SL3(�q((t))) and if p ≥ 5, the lattice �0 is a maximal
lattice in G = SL3(�q((t))).

Proof. We give the proof for p ≥ 5. The proof for p = 3 is similar. Suppose that �

is a lattice in G such that �0 ≤ �. Then � is cocompact, since �0 is cocompact. Since
� is type-preserving and �0 is transitive on each type of vertex, � is transitive on each
type of vertex. By Lemma 20, the vertex stabilisers in �0 are maximal p′–subgroups
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of PSL3(q). It follows that for i = 0, 1, 2 we have Stab�(vi) = Stab�0 (vi) and hence
μ(�\G) = μ(�0\G). Thus � = �0 as required. �

For p ≥ 5, we have found a candidate besides �0 for the cocompact lattice of
minimal covolume. Let H1 be the normaliser of a maximal split torus of PSL3(q). Using
complexes of groups (see [5]), for p odd and (3, q − 1) = 1 we are able to construct a
group �1 which acts transitively on the set of vertices of each type in some building
of type Ã2 (possibly exotic), so that each vertex stabiliser in �1 is isomorphic to
H1. However, for p ≥ 5 we do not know whether �1 embeds in G = SL3(�q((t))) as a
cocompact lattice acting transitively on the set of vertices of each type in the building
for G, with Stab�1 (vi) ∼= H1 for i = 0, 1, 2. (For p = 3, the whole group H1 cannot be a
vertex stabiliser, since it contains an element of order 3.) If there is such an embedding
of �1, then by the same arguments as for Proposition 22, �1 is a maximal lattice in G,
and it will have a smaller covolume than �0:

μ(�1\G) =
2∑

i=0

1
| Stab�1 (vi)| =

2∑
i=0

1
|6(q − 1)2|

= 3
6(q − 1)2

= 1
2(q − 1)2

<
1

q2 + q + 1
.

Hence, we would like to finish this section with the following question and
conjecture.

QUESTION. Does G = SL3(�q((t))) admit a lattice �1 as described above?

CONJECTURE. Let (p, 3) = 1 = (3, q − 1) and G = SL3(�q((t))). Then either �0 is a
cocompact lattice of minimal covolume, or G admits a cocompact lattice �1 as described
above, and �1 is a cocompact lattice of minimal covolume.

6. Relationship with the work of Essert. Recall from the introduction that Essert
[11] constructed cocompact lattices which act simply transitively on the set of panels
of the same type in some Ã2–building, possibly exotic. Such lattices are said to be
panel-regular. We now conclude by addressing some open questions from [11].

Let � be the building Ã2(K, ν), for some field K with discrete valuation ν, and let
G = G(K) where G is in the set {PGL3, SL3, PSL3}. With the exception of one lattice
which is realised explicitly in the group SL3(�2((t))) (see the Remark in [11, Section 5.3]),
it is an open question in [11] whether the panel-regular lattices constructed there are
lattices in the full automorphism group Aut(�) of any building � of the form Ã2(K, ν),
and whether they can be embedded in any G = G(K) (see the Introduction to [11]).
We consider these questions in the case that K = �q((t)). Note that since G/Z(G) is
cocompact in Aut(�), if � is a panel-regular lattice in G, then � will be a panel-regular
lattice in Aut(�).

PROPOSITION 23. For all q, the group PGL3(�q((t))) admits a panel-regular lattice,
hence the full automorphism group of the building � = Ã2(�q((t)), ν) admits a panel-
regular lattice.

Proof. Consider the lattice �′
0 ≤ PGL3(�q((t))) constructed in Section 4.1 above, in

the case d = 3. Since the vertex stabilisers of �′
0 are Singer cycles of PGL3(q), and �′

0
acts transitively on the set of vertices of each type in �, it follows that the lattice �′

0 acts
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simply transitively on the set of panels of each type in �. Hence �′
0 is a panel-regular

lattice in PGL3(�q((t))) and thus in Aut(�). �
COROLLARY 24. Assume (3, q − 1) = 1. Then SL3(�q((t))) admits a panel-regular

lattice.

Proof. We showed in Section 4.2 above that in this case, the lattice �′
0 is also

contained in PSL3(�q((t))) = SL3(�q((t))). By the proof of Proposition 23 above, the
lattice �′

0 is panel-regular. Hence for all q such that (3, q − 1) = 1, there is a panel-
regular lattice in SL3(�q((t))). �

On the other hand:

PROPOSITION 25. If 3|(q − 1) and q is large enough, SL3(�q((t))) does not admit a
panel-regular lattice.

Proof. Suppose that 3 | (q − 1). From the Levi decomposition (Proposition 4
above) and Proposition 19 above, if � is a cocompact lattice in SL3(�q((t))), then the
vertex stabilisers in � are isomorphic to p′–subgroups of SL3(q). However, when q is
large enough and 3 | (q − 1), there is no p′–subgroup of SL3(q) which acts transitively
on the points of the projective plane (see Section 2.1). Hence no vertex stabiliser in
� can act transitively on the set of adjacent panels of the same type. Thus if q is
large enough and 3 | (q − 1), there is no lattice � < SL3(�q((t))) which acts (simply)
transitively on the set of panels of the same type. Thus in this case, SL3(�q((t))) does not
admit a panel-regular lattice. �
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C̃2, Algebr. Geom. Topol. 13 (2013), 1531–1578.

https://doi.org/10.1017/S0017089514000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089514000287


262 INNA CAPDEBOSCQ, DMITRIY RUMYNIN AND ANNE THOMAS
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