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DEFINING RELATIONS IN ORTHOGONAL GROUPS OF
CHARACTERISTIC TWO

GEORG GUNTHER AND WOLFGANG NOLTE

Introduction. It is well-known that a group is uniquely determined by a
system of generators, and a set of defining relations on those generators. Clearly
it is of interest to find relations that are as simple as possible. In this paper,
this question is dealt with for certain orthogonal groups of characteristic 2,
which are generated by involutions.

Let V be a vector space over a field K of characteristic 2 (we always exclude
the prime field K = GF(2)). Let Q be a quadratic form over V, and let S be
the set of orthogonal transformations of (1, Q) whose path is 1-dimensional
and not contained in the radical of . Letting O* be the group generated by .S,
we shall show that every relation among generators in .S is a consequence of
relations of length 2, 3, or 4. Similar results for char K ## 2 were proved in the
regular case by Becken [4] and by Ahrens, Dress and Wolff [1] in the general
case. Furthermore, K. Meyer [17] solved this problem for orthogonal groups
of characteristic 2 for dim V < o, |K| = 4-dim V, again in the regular case.
In this paper, we solve the problem for the most general case for char K = 2
(Theorem 6.1).

In the last part of this paper, we treat a similar question for orthogonal
groups which are generated by a subset T of S: we let ¥ be a subspace of V,
and let T be the set of those isometries in S whose paths belong to V. Then
we can prove a similar theorem (Theorem 8.3) for the group G which is
generated by 7. A similar investigation in the case that char K # 2 was
made by Nolte [18].

We remark in conclusion that similar results are also known for unitary and
symplectic groups. We refer here to papers by Becken [4], Ellers [11], Gotzky
[12], and Spengler [23].

In §1, we gather some known results about isometries in metric vector
spaces. Using these results, we prove a number of preliminary lemmas about
the behaviour of certain products of simple isometries. In § 3, we find four
types of fundamental relations between simple isometries, and with their aid
set up an equivalence relation on the set of relations which we examine in
detail in § 4. All of § 5 is devoted to proving the main lemma of this paper
(Lemma 5.9); we then use this lemma in § 6 to prove Theorem 6.1, which
states that every relation in the group O* between simple isometries is in fact
a consequence of the elementary relations introduced in § 3.

Received June 1, 1977 and in revised form January 15, 1979.
1217

https://doi.org/10.4153/CJM-1979-103-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1979-103-x

1218 GEORG GUNTHER AND WOLFGANG NOLTE

1. Isometries in metric vector spaces. Let (V, Q) be a metric vector space
over a field K, where the metric in 1" is given by the quadratic form Q and its
associated bilinear form f. Throughout this paper, we exclude the case that
K = GF(2). The isometries of 1" are those transformations in GL (V) that
preserve Q, and hence also preserve f. With each isometry =, we have two
associated subspaces

B(r): = {r(x) — x| x € V}, called the path of =, and
F(r): = {x € V]x(x) = x}, called the fix of =.

Il

An isometry ¢ is stmple if dim B(s) = 1; in particular, every non-singular
vector p not in rad V has associated with it the unique involutary simple
isometry ¢, for which B(s,) = {(p) and F(o,) = pt. Wherever we write the
symbol ¢,, we shall be referring to such a simple isometry. We let S: =
{¢| dim B(¢) = 1, and B(¢) & rad V, and B(c¢) non-singular}. Let O* =
O*(V, Q) be the group of isometries of V generated by S.

We admit the possibility that 17 might be infinite-dimensional. In this
context, we state the following.

LemMA 1.1. Let (V, Q) be a metric vector space.

(@) If U is a finite-dimensional subspace of V, then there exists a finite-
dimensional subspace T containing U such that V = T + T+,

(b) Suppose V= T + T+, and we have simple isometries oo;,1 = 1,..., k
witha; € T. Then o4, . . . 04, = 1 1f and only if

(U'ax e Uak)‘|T = 1|T-

The proof of (a) goes as given in [18] for the case of general characteristic;
the proof of (b) is immediate. This lemma allows us to reduce the general case
to the case of finite dimension. For this reason, unless explicitly stated to the
contrary, we restrict ourselves to the case that 17 is finite-dimensional.

For easy reference, we gather some well-known results in the next lemma.

For proofs, we refer to [1], [2], [6], [10], [11] and [14].

LemMmA 1.2. Let 0,, 0, € S, and let o, B € O*.

(@) o, = oy tf and only if (a) = ().

(b) Op0a0py = Ogp(a)-

(c) If {a) #= (b), then a L b if and only if c,0p = 0po,.

(d) B(@B) € B(a) + B(B). In particular, if @ = a4, - . . 04y, then

Ba) C {a,...,a;).

(e) Fla) S Ba)*™
(f) If A s a subspace of V, then

dim 4+ = dim V — dim 4 + dim (4 M rad V).
(g) If char K = 2, then dim (4 /rad A) 1s even for all subspaces 4.
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In the special case that V is regular, we can refine (d) and (e) of Lemma 1.2
to obtain.

Lemma 1.3. Let (V, Q) be a regular metric vector space, and let « € O*. Then

(a) F(o) = B(a)t and B(a) = F(a)*t.

(b) Given o € S, we have B(ao) = B(a) + B(o) if and only if B(¢) & B(a),
and dim B(ae) = dim B(a) — 1if and only if B(c) C B(a).

The next lemma will turn out to be of considerable importance in our
development. Define

Qrad V: = {x € rad V| Q(x) = 0}.

LEMMA 1.4, Let m =04y . . . 04y Let A = {ay, . . ., ax) and suppose dim 4 = k.
Then
(@) F(r) = AL,

(b) dim B(r) = dim 4 — dim (4 N rad V).
(©) If dim (4 N Qrad V) = k — 1, then B(z) C Qrad V if and only if k
s even.

Proof. (a) The proof given in 1.4 of [13] goes through if we replace 7, by
(Qg))™

(b) This follows easily from (a) and 1.2 f.

(¢) Ifdim (A N\ Qrad V) = k—1=dim 4 — 1, then by (b), dim B(x) = 1,
and so 7 is simple. When X = ¥V @ Z and ¥ 1 Z we shall write X = YOUZ.
Then 4 = (a)® (4 N Qrad V), so that {a;) = (a + q;) for suitable g, €
A M Qrad V. A simple computation shows that

7r(x)=x—%§(aa+ql—q2+q3...iqk),

wherea = 1 ora = 0 as k is odd or even. This proves (c).

We finally state a lemma which gives some information about the occurence
of singular vectors in a subspace.

LEMMA 1.5. Let A be a non-singular subspace of V. Suppose A contains a
singular subspace B with dim B = dim A — 1. Then one of the following holds:

(a) B C rad A4 and every singular vector of A lies in B.

(b) B & rad A. Then A contuins a second singular subspace C with dim C =
dimA — 1,and rad 4 = B M\ C. Al singular vectors in A lie in B'\J C, and
o,(B) = C for any p € A.

Proof. We refer to [14], where this lemma is proved in the case that V is
regular, and remark that the proof is identical in case rad V = 0.

This lemma is of interest if char K = 2, for then (a) implies that 4 is
isotropic (by (g) of Lemma 1.2), and (b) implies that 4 is not isotropic.
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2. Preliminary lemmas. For the remainder of this paper, we shall assume
that K is some field of characteristic 2, excluding always the prime field GF(2).

(2.1) () Suppose A 1s a 2-dimensional, non-singular subspace, and suppose A
contains a singular, non-zero vector. If A is isotropic, then it contains exactly one
singular, 1-dimensional subspace. If A is non-isotropic, it contains two distinct
singular 1-dimensional subspaces.

(b) Suppose A is a 3-dimenstonal non-singular subspace containing a 2-
dimensional singular subspace B. If A is isotropic, then all singular vectors in A
are contained in B; if A is non-isotropic, it contains a second 2-dimensional
singular subspace C, such that all singular vectors in A are contained in B \J C.
Inthiscase, B\ C =rad 4.

It is a simple thing to compute products g,040.. If ¢ = aa + Bb for some
a, 3 € K, than the vector

d: = (BO®) + af(a, b))a + aQ()b
is easily seen to be non-singular (Q(d) = Q(a)Q(b)Q(c)). In fact, we have

*) ouroa(x) = & +igi(’%)-d forallx € V7.
If d € rad V, then f(x, d) = 0 and o400, = 1;if d ¢ rad V, we obtain the
familiar formula .00, = 04

We state next the following.

LEMMA 2.2, Let 7 be an isometry. Then B(w) Mrad V C Qrad V. In particu-
lar, if B(w) = (p), then either p ¢ rad V and Q(p) # 0 (implying that = is the
simple isometry a,) or p € Qrad V.

For the proof of this, we refer to Lemma 3 in [10].

In the rest of this section, we make some statements about products of two,
three, or four simple isometries. First we look at products ¢,0,, where {(a, b ) M
rad V = (r). By 1.4 b and ¢, and by 2.2, we deduce that B(c.0,) = () if and
only if r € Qrad V.

If » is non-singular, we obtain

LEmMMA 2.3. Let 0,0, be an isometry such that {¢,b) N\rad V = (r) is non-
singular. Then .0, = o, for some ¢ € {(a, ). Conversely, if c,0, = o, then the
vectors a, b, ¢ are linearly dependent, but pairwise independent, and {(a, b, ¢) M
rad V is non-singular. In particular, if (e, b) Nrad V = (r) with Q(r) # 0,
then we can express b uniquely asb = aa + Br, and 0,0, = o, wherec = Q(b)a +
aQ(a)b.

Proof. For the first part we use 1.4 and 2.2 to deduce that B(s,05) # (r),
and hence 0,0, = o, for some ¢ € {(a, b). Conversely, if o,0, = o, then 1.2 d
and 1.4 b imply that dim (¢, b) M rad ¥V = 1, and the result follows from
1.4 ¢ and 2.2. The formula for ¢ follows from simple computation.
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If 7 is singular, we obtain

LeEMMA 2.4. Let a,0, be an isometry such that {(a,b) M Qrad V = (r). Then
B(oaoy) = (r), and if b = aa + Br, then

B fxa)
O'ao'b(x) =x + o Q(a)
Proof. This is an immediate consequence of Lemmas 1.5 and 2.2. The last
part of the lemma follows from a simple computation.

We calculate easily that the following is true.

(2.5) If a, b are vectors such that f(a,b) = 0,ifr € Qrad V,ands = a + b
1s stngular,s ¢ Qrad V, then

Ta0atr050p17 (%) = x + fg( S))

We now introduce some projective notation. We say that four subspaces
(@), (b), {¢)and (d) contained in a 3-dimensional subspace form a quadrangle
if any three of the vectors «, b, ¢, d are independent. The 2-dimensional sub-
space L containing () = {(a,b) M {c,d), (w) = {(a,c)M (b,d)and (w) =
{a, d) M (b, ¢) shall be called the diagonal of the quadrangle. If L is singular,
we say that the quadrangle is an sd-quadrangle. In this case, the vectors u, v, w
are singular, and we can normalize to obtain u = a + b = ¢ + d, and v =
a+c=0b+d.

We now state

LEMMA 2.6. Suppose m = 0,000.04, and suppose that A = {a, b, ¢, d) 1s 3-
dimensional. Suppose (a), (b), {c), (d) form an sd-quadrangle in A whose
singular diagonal is L. Suppose further, as above, that we have normalized so that
a+b=c+d=u€ Landa + ¢ =0+ d = v € L. Then we have the
following:

(@) If A is isotropic, then Q(a) = Q(b) = Q(¢) = Q(d), and

m(x) = x4+ Q(a)™! (f(x, u)v + f(x,v)u) for all x € V.
(b) If A is not isotropic, and if rad A = (u ), then
m(x) = x + N (x, u)s + fx, s)u) forallx € V,

where N = Q(a)Q(c) and s = Q(c)a + Q(a)c. In this case s is singular and
B(w) s singular. If dim B(m) = 2, then B(w) #= L.

Proof. The formulas given for w(x) are easily verified. All that remains to be
proved is the last part of (b). But in this case, B(r) = (u, s), where s =
Q(c)a + Q(a)c. Since (u) = rad A and u € {a, b), we know thatat M 4 =
{(a, b), and hence f(a, ¢) % 0. Butv = a + ¢, and Q(v) = 0, and so Q(a¢) +
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Q(c) = f(a, c¢) # 0 implying Q(a) # Q(c). Now

fls,v) = f(Qa)e + Q(e)a, a + ¢) = Q(a)f(a, ¢) + Q(c)f(a, ¢)
= (Qa) + Q(©))f(a, ¢) = fla,¢)* # 0

and thus s ¢ L.

LeEMMA 2.7. Let 1 = 0,040, and let A = (a, b, ¢) be 3-dimensional with the
property that A N rad V = (d ) 1is non-singular. Suppose that {a ), {(b), {c¢), (d)
form an sd-quadrangle with diagonal L. Then we have:

(a) A is isotropic.

(b) B(r) = L.

(c) There exist oy, a,, ap with f, g, h € A so that 1 = c.0,0,05 and {a), {f),

(g), (h)isan sd-quadrangle with diagonal L.

Proof. Since d is non-singular, we know d ¢ L,andso 4 = (d) + L, imply-
ing (as d € rad 1) that 4 is isotropic. We can again normalize to obtain u =
a«~+b=c+d¢c L,sothata +b+ c+d =0,and b + ¢ € L. Then clearly
Q@) = Q) = Q(c) = Q@) : = X\ # 0. Then we have

m(x) = & + N1 (f(x, a)a + fx, 0)b + f(x, ¢)c),

and so

Sl(x),x) = N (f(x, a)? + f(x,0)* 4+ f(x,¢)?) = N(f(x,a + b + ¢))?
= \Y(x,d) =0

for all x € 1. But Q(r(x) — x) = f(z(x), x) = 0. Hence B(x) is singular,
and by Lemma 1.4 (b), dim B(x) = 2. Thus, by Lemma 1.5, we know that
B(r) = L. lf weletg = ac + dand h = ¢ + ad for some a # 0, 1, then by
Lemma 2.3 ¢,0, = 0., and so we have 7 = o,0,0,0. Also,

(a, by {g,h)y = {a,b) N\ {ac +d,c +ad) = {a,b) N {c,d)
= (u)C L and

@, gy bk = (ayac +d)YN {a + u,c + ad)
={(1l4+a)le+c)+u)C L.

The next lemma is a converse to 2.5.

LeMMa 2.8, Suppose w(x) = x + N (x, s)u, with u € Qrad V, and s ¢
rad V but Q(s) = 0. For every isometry o, we can then find oy, 0., 04 with b,c,d €
{a, s, u ), suchthat ¥ = o,040.04.

Proof. Choose any o, € S. Suppose first that f(a, s) # 0. We may assume
Q(a) ## 1, as otherwise we replace ¢ by aa for some a # 1. Let f(a, s) = p,
and define s’ = p~ls, and #’ = ph\~'u. Then of course, 7(x) = x + f(x, s")u’.
Now we put v = Q(a)~'s" + Q(e¢)%, and define ¢: = ¢ + v. An immediate
check shows that f(a,s’) = 1,Q(@) =0, () # (s )and s’ = Q(c)a + Q(a)c.
Also, f(a, v) = Q(a)™ = f(a, ¢), and Q(c) = Qa) + Q(a)~' # 0, since
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Q(a) # 1. Now we put b : =« + #' and d = ¢ + «’, and then by (2.5) we
see that o,0p0.04 = 7. If f(¢, s) = 0, then (¢, s, ) is isotropic. We now put
s =Q@\ s, b:=a+uc: =e+s and d = « + u + 5, and we again
obtain 7 = ¢,0,0.0,1f ¢, d both do not lie in rad 1". It could conceivably happen

that both ¢ and d lie in rad 17, so that o., ¢, do not exist. If both lie in rad T,
then

g0 (%) = x 4+ f(x, a)Q(a) la.

But since by assumption, ¢« + s € rad I/, this implies that f(x, a) = f(x, s),
so that

0,0,(x) = x + Q)" fx, s )u = x + N1 f(x, s)u = 7(x).

Thus we choose any o, with g € (¢, s, ), and see that ¢,040,0, = 7, as
claimed.

In 2.6, we saw that certain products of four simple isometries yield a singu-
lar isometry = with 2-dimensional path L for which L M rad 1" = 0. The next
lemma shows that we have considerable freedom in expressing such an isometry
as a product of simple isometries.

LEMMA 2.9. Let 7(x) = x + f(x, u)v + f(x, v)u, where {(u,v) = L 1s singular
and 2-dimensional, and L M rad V7 = 0. Then, for all ¢, € S, we can find o, o,
o0 € Swithb,c,d € L + {(a) suchthat 1 = 0,0,0.04.

Proof. Let 4 = {a) + L.

(i) Assume first that A is non-isotropic. Then 4 Mrad 1" = 0. We may
clearly assume that f(«, v) # 0, and indeed, f(¢, v) # 1. Let rad 4 = (u'),
then ' € L, and we can write #’ = u + v, so that

m(x) = x + f(x, u)v + f(x, v)u'.

Now let ¢’ : = Q(a)~'a + ». Since f(a, v) ## 1 we see that Q(¢’) # 0. We now
define ¢ = Q(¢’)~'¢’, and see that Q(c) = Q(¢')~", and hence ¢ = Q(c) 'c.
Thus we may write v = Q(«)'« 4+ Q(c)~'c. We now let r = ¢ 4+ ¢, and see

that
Q(r) = Qu +¢) = Q) = 0.
We define b : = a + o', and d : = ¢ + ', and use Lemma 2.6 (b) to deduce
that TuOpTTqg = T.
(i1) If A4 is isotropic, then we define b: = a4+ u, c: =a¢+vand d: =

@ 4+ u 4+ v. If none of b, ¢, d lies in rad V/, then we calculate easily that o,040 .04
= 7. Also, at most one of b, ¢, d can lie in rad 17, as otherwise L M rad 17 # 0.
But if one of b, ¢, d lies in rad 17, it is an easy computation to show that the
product of ¢, with the remaining two simple isometries is equal to , and then
we may use Lemma 2.7 to express this product of 3 simple isometries as a
product ¢,0,0,0;.
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Lemmas 2.6, 2.8, and 2.9 can be combined to yield

Lemma 2.10. Let m = 0,040,004, and let A = (a, b, ¢, d ) be 3-dimensional. If
(@), (b), {c), {d) form an sd-quadrangle in A, then for any o, € S, we can
ﬁﬂd Oy, Ocry Oar € SsothatT = OOy 0Ty .

3. Relations between simple isometries. Our aim in this paper is to find a
presentation for the group O* generated by the set S. Forn = 1,2,..., welet
S* = {(o1, ..., 0,) |o; € S},and S° = {@}. An element (o1, ..., d,) € S"is
arelation of lengthnif oy . . . 0, = 1. If in addition, dim (B(a1) + ... + B(s,))
= k, then we talk of a k-dimensional relation of length n. The trivial relation ¢
is 0-dimensional and of length 0.

In this section, we discuss four types of fundamental relations. We shall use
these to define the equivalence relation ~ on the words of the free group
W = Unenu (g S” generated by S: two words (o4, . .., .,) and (ap,, . . .,
01,) are equivalent if one can be obtained from the other by successive inser-
tion or deletion of these fundamental relations.

We say that B(o1) + ... 4+ B(ox) is the subspace associated with the word
(o1, . .., or) € W. Given two equivalent words a« = (a4, ..., 04,) and b =
(o1y « -+, op,) with associated subspaces 4 and B respectively, we say that
b is elementary-equivalent to « and write « 2 0, if B is contained in A and if
further all the fundamental relations whose insertion or deletion yields b
from « also have associated subspaces which all lie in 4. The relation 2 is not
an equivalence relation; it is reflexive and transitive, but not symmetric. We
do not require this concept till later in this paper; however, as proof of equiva-
lence in most cases is also proof of elementary equivalence, we introduce the
concept at this point.

For the sake of brevity, we write o4, ... 04, ~ 04 ... o4, instead of the
formally correct (o4, ..., 0u,) ~ (o4, - .., 0p,), and we shall use the same
abbreviated notation with the symbol 2.

The following is a listing of the four types of fundamental relations:

(a) 1-dimensional relations of length 2. These are of the form (o, o) for
every o € .S.

(b) 2-dimensional relations of length 3. These are of the form (o,, 04, ),
where «, b, ¢ are dependent but pairwise independent, and («, b ) contains a
non-singular vector of rad V.

(c) 2-dimensional relations of length 4. These are of the form (o, oy, o, 04),
where «a, b, ¢ are linearly dependent, and d is the vector given in (*) of § 2.

(d) 3-dimensional relations of length 4. These are of the form (o, a», ¢, 04)
where dim {(a, b, ¢) = 3, and dim (¢, b,c) N\ Qrad IV = 2.

The relations (a) express the fact that the generators are involutions.
Lemma 2.3 characterizes the two types of 2-dimensional relations (b) and (c).
The relations of type (b) are unique to the characteristic 2 case, asrad I =
Qrad Vif char V7 # 2. Finally, in view of 1.4, we see that all relations of length
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4 are either consequences of types (a), (b) or (c), or are described by type (d).
Thus the list above describes all the relations of length at most 4.

4. Equivalence of n-tuples. In this section we prove a sequence of results
related to the concepts of equivalence and elementary-equivalence defined in
§ 3. The first of these arises immediately out of the considerations of § 3.

(4.1) If 0404000 = 1, then o,0,0.04 2 0.

~

Repeated application of formula (*) in § 2 gives

(4.2) Let m = 04y . .. 04, withdim (aq, ..., an) = 2. Then either
Tay « « « Oap Z g or Ty« » - Oam Z 0p OV Oqp-..0qp Z Op10bs-

In a similar vein, we prove
(4.3) Letm = 0,y .. .0, withdim {ay,...,as) = 3. Then

Oag v s Oas 2 0y .05, with 0=k < 3.

~

Proof. 1f either {ay, az, a3} or {ay, a5} are dependent sets, then (4.3) follows
at once from the considerations of § 3. If both {a), a2, a3} and {a4, as} are
independent, then {(a,, «;) intersects one of {a,, ay), (a1, az) or {as, az) in
some non-singular (r). If () = (ay, a2) M {as, as5), and r ¢ rad 1" then

0019090029 a40as z 0010020 1010430 v0 10405,

~

and (4.3) follows from § 3. 1f » ¢ rad V, then
T010a20a39a40as > 0p10p20p3

~

by § 3. A similar argument yields the result if » € {ay, az) or r € (aq, az).

It is clear that if we conjugate any ¢, by a oy, then o400, 2 o, Doing this
repeatedly gives rise to

(4.4) Let m = 04y - . . 0y, and suppose 1 < 4, = ... =4, < k. Then we can
finday ..., 00 and oo |, ..., 0o such that
Oag o o - Oap 2 Cuiy » o Tai O, « - O and
Ty oo v Oup 2 Oepy o - TcOai, + + - Oaiye

Next we show

(4.5) Suppose # = o,0,0. und dim {(a, b, ¢) = 3. Suppose that {a, b, ¢) M
rad V = (s) is non-singular, and that {a), (b)), {c), {(s) form a quadrangle
whose diagonal is not singular. Then there exist oy, o, 50 that c,000. 2 040,

~

Proof. By Lemma 1.5 (b) and 2.2, we know that dim B(x) = 2, and that
s ¢ B(w). Since the diagonal of (a), (), {(¢), {s) is not singular, we may
assume that (p) = {(a,b) M {¢, s) is not singular. Also (p) # (s) and
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rad VM {«, b, ¢) = (s ), and hence p ¢ rad 1". Thus o, exists, and so we have
Tq0p0 ¢ Z TqOpTp0p0c 2 Tu0 9y
by § 3.

(4.6) Suppose # = a,040., and dim (a, b, ¢) = 3. Suppose that {a, b, ¢) M
rad V contains a non-singular (d) for which {(a ), (b), {(c¢), (d) is an sd-quad-
rangle whose diagonal 1s L. Then we have:

(@) If dim (a, b, c) N rad V = 2, there exist o4, , such that o,040. 2 0,0,.

(b) If dim {(a, b, c) M rad V' = 1, then there exist oy, a,, ) Stich that ,040, 2

0,070,045 In this case, {a), {f), {(g), (h) is an sd-quadrangle with diagonal L,
and B(w) is singular, and n fact, B(w) = L.

Proof. (a) Let (¢, b, ¢) M rad IV = B. Since B contains the non-singular
vector d, we know that B is non-singular, and hence either {(a, b) M B or
(b, ¢ ) M Bisnon-singular. In either case, Lemma 2.3 yields the result.

(b) This is just a restatement of Lemma 2.7.

We now prove the important

LEMMA 4.7, If 6000000y 0, = 1,then o,000000p 0, 2 0.

~

Proof. 1f either of {«, b, ¢} or {d’, b, ¢’} is a dependent set, then the result
follows at once from § 3 and (4.1). We let

T = 040p0¢ = Tq’0p'0¢,

and we may assume that both the associated subspaces 4 = («,b,c¢)Yand A" =
(@', b, ¢"y are 3-dimensional. If 4 = A’, the lemma follows immediately from
(4.3) and (4.1). We may therefore assume that 4 # A4’. This of course im-
plies by Lemma 1.4 (b) that B(w) # 4 and hence that

dim (4 Nrad ") = dim (4’ N rad 17) # 0.
We consider separately four cases. In this case distinction, let
ANrad V=2 and A'Nrad I"= 27",

(a) Z is 2-dimensional and singular. Then by § 3, .00, 2 ., and hence
(4.1) yields the result.

(b) Z is 2-dimensional and non-singular. Now dim B (w) = 1, implying that
dim Z’ = 2. By (a), we may assume that Z’ is also non-singular. Then the
methods used in (4.6), (a) show that o,0,0. 2 0.0, and that o0y, 2 goa,.
Now (4.1) yields the result.

(c) Z is 1-dimensional and singular. Let Z = (z). By Lemma 1.5, we know
that dim B(w) = 2, and hence we can deduce that Z’ is 1-dimensional. Also,
B(r) € 4 M A’,and hence dim (4 + A’) = 4and B(r) = A M A’. Now let
(@, byM {e,z) = (). If {t) # (z), we can write

Ca0bTc 2 004000 2 oao,0, with 2 € (i, ¢).

~
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Thus we may assume that either s € (e, b) or z € (b, ¢). Either situation
implies that z € B(w), as an easy computation will show, and therefore z € 4’,
implying that Z = Z’. Indeed, we may clearly assume that (z) = (b, ¢) N
', "), and so B(x) = (u, z) = {(d, z), and hence «, ¢/, z are linearly de-
pendent.

If () = (), then

TqOpT 0’0’0y’ Z TR0 0 0F

for suitable b, ¢, &, b’ and the result follows from (4.1). Thus we may assume
that «, ¢’ are independent, and hence we can normalize them to obtain «’ =
a + z. Similarly we can write ¢ = b + zand ¢ = b0 + 2.

Now «a, ¢/, b, ¢ € A. If the quadrangle {(a), (¢’ ), (0), (c¢) is not an sd:
quadrangle, then we know that one of {(«, b) M (', ¢) = (p)or (¢, ¢) M
(@', b) = {g) is non-singular, and in either case, o, 0,0,0, 2 0,0, for suitable
f, g, and we are done. Thus we may assume that {(«), (¢'), (b), {c¢) is an
sd-quadrangle. The same argument permits us to restrict ourselves to the case
that both ('), ('), ('), {«)and (), {(c), ('), (') are sd-quadrangles. In
this case, both (¢, ¢') M (', ") and (', ¢) M (b, ¢') are singular. But this
implies that the 2-dimensional subspace

G: = {a,b,0"YyM {,¢,¢")
is singular as it contains the distinct 1-dimensional subpaces
(a,b)yM {d',c), {a, 0" yM {a', ") and (D, 0" )M (¢, ),

which are all singular. As z does not lie in {«, b, b’) (as otherwise 0’ € A4,
implying 4 = A’), we know thatsz ¢ G,and hence H : = (z) + G isasingular,
3-dimensional subspace of 4 4+ A’. Now from our normalization, we know that
a«a+a =b+c=0 4 = z;alsod + bissingular, since (¢’ 4 b) is con-
tained in the diagonal of the sd-quadrangle («), {(¢"), (b), {¢). Now we have

T’ TqOpTc = Op' T

Repeated application of Lemma 2.4 yields:

00 0,0y0:(x) = & + f(x, Q(«w)'a + Q(b)7'0)z and
ooy (x) = x + flx, Q0)7'0)z.

Hence we see that
Q@) la + Q)" + Q)™ =5
lies in rad V. Since «, 0, b’ are independent, we know s # 0;since z ¢ (a, b, "),

we know (s) # ().
We now make two case-distinctions:
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(i) Q(s) = 0.Since (s) # (2), we know that
A4+4)YNradV = (s,2)=1L

is singular. Now F: = (V’, ¢, 2, s) is 3-dimensional and isotropic and hence,
by Lemma 1.5, all singular vectors of F belong to L. Now F /M A contains z,
but since 4 Mrad V = (z), we know that F/\ A4 is non-singular, and
2-dimensional. Thus we can find 0", ¢’ € FM A4 so that oyop0e0y = 1.
But then

TaObT O Oy O 2 TaOy0 T Ty Tty

where a, b, ¢, a’, b, ¢’ € A. Now the result follows from (4.3) and (4.1).

We are left with

(i1) Q(s) # 0. But then s ¢ H, and so we see that 4 + 4’ = HO® (s),
where H is singular. Hence in this case, 4 + A’ is isotropic. Now since |K| = 4,
we know that every 2-dimensional subspace M contains at least five 1-dimen-
sional subspaces, at most one of which is singular if M is non-singular. In
particular, (¢/, b’ ) contains at least two other non-singular (p;), (p») (beside
@y, 0')). Let {gi) = (pu " )N\ {a,a" ). Both (g, )and {g» ) are non-singular.
Let (r;) = (g4, ¢) M {a, b). At least one of the (r,) is non-singular. Hence we
canfind p € (a’,0")so that (p), (¢g) = (p,c’ )N\ {a,a’yand (r) = {(g,c) N
(@, b ) are all non-singular. But then

TqOpT 0’0y T’ 2 TqO0p0 0700400’ OpTp0y’ Ty’ Z T Ty T’ Tq’

by repeated application of the 3-reflection theorem. Now (4.1) yields the result.
We are left only with
(d) Z is 1-dimensional and non-singular. Let Z = (z). If

z€ {a,b)\J (b,c)\J (a,c),
then by §3, o.000, 2 040, Also, dim B(x) = 2, and so B(w) = (u,v) C A’.

Thus (4.3) and (4.1) yield the result. The same reasoning holds if {(«), (),
{c¢), {(z)is not an sd-quadrangle. Thus we may assume that {a ), (b), {(c¢), (z)
is an sd-quadrangle with diagonal L. By (4.6) (b), B(x) = L, and o040, 2
040 0,0, for suitable f, g, h € A. Hence we see that L = B(r) = A M A4’, and
LNrad V= 0.Butthen A’ Nrad V = Z' = (2’) is non-singular, and hence

A+ A4 =LO ) &),
implying that 4 + A4’ is isotropic. Also,
A4+ 4)YNrad V = (z,2).

The singular vectors of 4, respectively 4’, all lieon L. Let {(¢,2) N L = (u).
If u € (¢, 7 ), we interchange the roles of ¢’ and ¢’. (We can do this without
fear, as A is isotropic, and so opoyoy 2 gpoya,). I u & (, 2"), then u ¢
{a’, 0" ), and so (u, 3 ) M {(a’, ") = {(a’") is non-singular, and we can replace
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ooy by auopia.0y. Thus we see that we may assume that
(a,2)NL={ZZ)YNL={,c)N\NL= O, )NL= {u)

Now, C = (a,d,2,7 Yand " = (b, ¢, V', ¢’ ) are two 3-dimensional subspaces
of A + A4’ where C M\ €' = M and M is 2-dimensional, with # € M. Now let
(ry= {a,a’" YN (g 7). lf ris non-singular, then

00y 2 o and g, = opooyay,

implying that ¢’ € (', and then (4.3) and (4.1) yield the result. If 7 is singu-
lar, then B(o,0.) = () C C’. But now from

TaOp0 0 0yoy = 1,
we obtain (since 4 is isotropic) that
TpO Oy = 0,00,
where
bye,byNrad V=CMNrad 1= (r)
which is singular. This puts us back into case (c), and thus the lemma is proved.
Now we require a technical

LEMMA 4.8. Suppose # = 0,040.04, and © # 1. Suppose that A = {(a, b, c,d)
is 3-dimensional, and that {a ), {b), {c), {d) is an sd-quadrangle in A with
diagonal L. Then

(a) Foranyu € rad 4, u # 0, we can find a’, V', ¢’,d" € A such that

Cu0p0.0q 2 OCpOyaeae, and (u) = {(a’, 0" )M {,d").

~

b) If {a, by M {c,d) = (u) and A 1s isotropic, then for all non-singular
"€ {a, by withd ¢ rad V, and (') = {a), we can find ¢’, d’ € A such that

TuOb0Tq 2 Talp 0Ty

~

Proof. (a) Since # C rad A, we know u € L. If (u) = {a,b) M {c,d), we
are done. So suppose b, ¢, d ¢ (u, a ). Observe thatif (x) # (u), x # 0 and
x € {u, a), then x is non-singular, as (u, a ) is istropic. Now at least one of
byeYy M {u,a), byd) N {u,a)or {c,d) M {(u,a)is non-singular, and not
in rad V. By (4.4), we can assume that (') = (b, ¢) M (u, a) is this non-
singular subspace. But then

0400 0q 2 Tq0p'0p'0p0c0q Z [

~ ~

(b) Now suppose {a,b) M {¢,d) = {(u)and A isotropic, implying that both
{a, b) and {c, d) are isotropic. Choosc any non-singular ' ¢ {(a, b) with
') # (¢)y and ' ¢ rad V. Now (b, ¢c) M {(a,d) = (v) is singular.
Since (b’ ) £ {(a), we know that (b, c) M (', d) # {(v), and hence (b, c) N

https://doi.org/10.4153/CJM-1979-103-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1979-103-x

1230 GEORG GUNTHER AND WOLFGANG NOLTE

(', d) = (p)isnon-singular. If p ¢ rad V", then

Ta0p0 0 > T,0p0 Tp0pTa0y Ty’ 2 a0 0q 'Oy 2 Ta0p' 0 Tgr

for suitable ¢/, d"’, ¢/, d’. If p € rad V, then

TaTy0TTa 2 TaTy0cTaTy Ty 2 G0 (T yTy 2 TaTy 0o T

~/ ~/
for suitable ¢, f, ¢/, d'.
This lemma is useful in the following important

LEMMA 4.9. Let 7 = o,0,0.04 # 1, and suppose A = {a, b, ¢, d) 1s 3-dimen-
stonal, such that (@), (b), {(c¢), (d) is an sd-quadrangle in A. Then for any
oo € S, we can find oy, oo, oo such that

0a0p0c0q ™ 00y’ T 0ar.
Proof. We first prove

(*) Let D be 3-dimensional, and M, N be two 2-dimensional subspaces of D
such that M is isotropic, N is not isotropic, and M M N is singular. Then

Om'Tm0Oy Oy > 0,0y

~

forallm’,m € Mandalln',n ¢ N.

To prove (x), it is sufficient to observe that rad D is non-singular, asrad D C
M, but rad D # M M N. Hence D contains no singular 2-dimensional sub-
spaces, implying that (m'), (m), (n’), {(n) is not an sd-quadrangle, and so
Im,n’ Yy (m’, n) may be assumed non-singular. This immediately yields (x).

Now for the proof of Lemma 4.9: Let L be the diagonal of {(a), (b), {(¢),
(d). If A isisotropic, let Z = L. If 4 is not isotropic, we know by (2.1) (b)
that 4 contains a second singular 2-dimensional subspace Z # L. A combina-
tion of (2.6), (2.8), (2.9) tells us that for a given ¢, € S, there exist oy, 04, g4
with ¥, ¢/, d' € (¢’ ) + Z for which

0q0p0c¢0aq = T0p 0 0g .

We must prove the equivalence of these two expressions for .

If @’ € A, the result follows from (4.3) and Lemma 4.7. Hence we are left
with the case that «' 7 4. We let C: = {(@')+ A, and 4" : = (') + Z.
We now distinguish three cases.

(a) A4 is isotropic. If @/ ¢ Z+L, then there exists u € Z with f(«/, u) = 0.
By Lemma 4.8, there exist b*, ¢*, d* € A such that

Cu0b0 0 2 Taoparagr With (1) = {a, 0* ) M {(c*, d*).

~

Also, the same argument as was used in the proof of Lemma 4.8 (a) shows that
there exists " € (a’, u ) such that

T’y 0o T > Ty Oy 1T Tqre

~
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for suitable ¢’’, d"”. Now let D = {(«, b*, a’, 0" ), let M = (¢, 0*), N = {(d’,0"").
Then apply (x) to conclude that

Tpr1 T GO px ™~ T 0.
But

T/’ 0 ¢ Tp' ' Tq"0 0 px0 *x0 % 2 0’0’ 0g0y0¢ 0"

~

and so now the result follows from Lemma 4.7.
If @' € Z1, then of course, Z C rad C, and so in particular, 4" is isotropic
also. As above, we write

T Ty 0 Oqr > Ty Ty T Tgrr

where (u) = (¢, b) N {c, d) = (', 0" )M (', d"). Clearly

dim {a, b,d’, 0" ) = dim (a, b, ", d") = 3.
If w ¢ rad V, but if

@,b"yNrad V= (s)#(0) and (',d”")Nrad V"= {t)# (0),
then both s, { are non-singular, implying that

T Ty 1T Ggre > 0Oy,

~

and then Lemma 4.7 yields the result.

So we now assume that {«’, b’ ) M rad 1V C (u). But then it is clear that
(a’, b'") contains at least one non-singular vector b for which (p) = (a,5) N
{(a’, b)is non-singular with (b ) % (a’). Butby Lemma 4.8 (b), we know that

OOy T Turr 2 Oy Or050q

~

for suitable ¢, d € A'. Also

Tp0q’ 0T p > 0,0y

~

for suitable ¢, ¢, by using the non-singular {p ), and so Lemma 4.7 again yields
the result.

Similarly, we obtain the result in the case
(b) A’ is isotropic.
We thus are left to consider

(c) Both 4, A’ are not isotropic. Now let (1) = rad 4. By Lemma 4.8, we
know that

Tq0p0c0a Z 00 p*T %0 %,
with (u) = {a,b*) M (c*,d*), and as in case (a), we know that
Oq' Ty T o0 > T Oy 1T er1Tqrr

~

with u € {(a’, 0" ). If ¢’ ¢ ut, we argue as in (a), again using () to obtain the
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desired result. If o’ € ut, but « ¢ rad 77, we know that there exists ¢, € S
with f(w, #) # 0; by Corollary 4.10,

TqO0p0c0q = 0030402
for suitable x, v, 2. Now w ¢ u* implies that the methods above yield
0q0p00q ™ 00,040, ™ g0y 00y,

and we are done.

We are left with the case that # € rad 1”. In this case, C = 4 + A’ has a
non-trivial radical. Also, since 4 is not isotropic, we know that C is not iso-
tropic, and hence rad C = W is 2-dimensional, and « ¢ W. Observe that
ANW = (u)=A"MN W. Now let

Hy:= (@, b)Y+ W and Hy: = (', d")+ W.

We know dim H; = dim H., = 3, and H,, H, are both isotropic. Let
Fi:=Hi M A4and Fy: = Hy M A. Now it is easy to see that Fy, Iy, Z are
three mutually distinct 2-dimensional isotropic subspaces of 4 containing
(u). By (2.1), at most two of these are singular. Since Z is singular, we may
therefore conclude that /; is non-singular. But then there exists a7 with
a € Fi, such that

0a0p0c0a ™ 0a0p0¢00

for suitable 3, ¢, d, and by Lemma 4.8, we can choose & in such a way that
u € {a, b). But now we have

0a0p0c0q ™ 0z0p007, 0050607 = Oq'Tp''0c'0urry Og' 0101 0q " ™~ 0g’0p'0¢'Oq’
Hence
0y'"0q' 00y = 0¢''0q"0q0%-

Nowlet B = (b",a’,a,b)and B’ = (¢’,d",d,¢). Since W C B, we know that
B is isotropic. Thus we have reduced this case to case (a). This completes the
proof of the lemma.

Out of the proof of (a) in Lemma 4.9, we pull the following

COROLLARY 4.10. Under the assumptions of Lemma 4.9, we have: If A 1s
isotropic, then 6, 0,000.0; 2 Ty ooy,

We complete this section with

LEmMmA 4.11. Suppose 7 = o4, ... o4 and suppose dim (ay, ..., ¢5) = 4.
Then

Ogqy « « + Ogqg ™~ Opy + - « Opy

with kB < 5.
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Proof. In view of (4.4), we may assume that @, ..., ¢4 are linearly inde-
pendent. If {a;) = {as), we are done at once. So we may now assume also that
as, ag are independent, and of course, (a5, as) N rad VC Qrad V. Let 4,: =
(as, as, ay), A2 : = {a1, as, ay), A3: = (a1, ay, ay), As: = (a1, @, az). If
{as, ag) lies in one of 4, As, As, A, then (4.4) and (4.3) yield the result. If
{(as, ag ) is not contained in any of the 4, then let (p;) = A, M (a3, as) for
1 =1, 2, 3, 4. At least one of the (p;) is non-singular. Then p; ¢ rad 1", and
in view of (4.4), we may assume that (as, a3, @as) M (a5, as) = (p;) is non-
singular, and so

T020030040a50a5 ™ 0420030040p;0¢ where Oy = 0p;0q;0a5-
Either
0a20a30as0p; ™ 020y,

or {(az), {a3), {as), {p;) is an sd-quadrangle. But by Lemma 4.9, we know
there exist oy, 0., 0, such that

Oq90q30q40p; ™ Tq1040 0, and SO

0010020030030 a30a; ™ 0u10a1040 90w,

which proves the lemma.

5. The main lemma. We start this section with the following

Definition. Let H be a subspace, and let a,, . . . g, be some word in W. We
say that a,, ... 04, is H-equivalent if there exist by, ..., b, € H\J H* such
that o4, . .. 04 ~ 04, . . . 0p,,. We say that o, . .. o4, is H-sufficient if a,, . . .,
ar € H\U H-.

Thus a4, ... o, is H-equivalent if it is equivalent to some H-sufficient
word a,, . . . gy,

In the following, H shall be some fixed, regular, 2-dimensional subspace.

LEMMA 5.1. Let H' be isometric to H such that H' & HL. Then there exists
o1, o2 € S such that c10:(H) = H' or 01(H) = H'.

Proof. Suppose first that H M H' = (@), where Q(¢) # 0. Then there exist
b€ H,c € H such that H = {(a,b), H = {(a,c)and Q) = Q(c), f(a, b) =
f(a, ¢). Further f(b, ¢) # 0, as otherwise replace b by 0’ = ¢,(b). This choice
of b and ¢ means that oy .(¢) = ¢ and o,4.(0) = ¢ so that oy (H) = H'.

Now, suppose H (M H' is singular. Let ¢ € H be non-singular, such that
q¢ H+ andlet U = {y € H | Q(y) = Q(q)}. Since H" and H are isometric,
we know that U contains at least two elements. Now, for y € U, we know that
Qv + ¢) = f(9, q). Our choice of ¢ ¢ H'L guarantees the existence of at least
one p € Usothat Q(p + ¢) = f(p, q) # 0. Hence o, , exists, and o,4,(q) = p
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with Q(p) # 0. Thus o, ,(H) = H", with HN H" = (p) where Q(p) # 0.
As we saw above, we can now map H” to H' by some ¢ € S.

LEMMA 5.2. Let w € 0* such that w(H) = H, but H & F(w). Then H M B(w)
is non-singular. If H M B(r) = (h), then w|lg = olu, or equivalently, H C
F(oum).

Proof. Since H & F(x), there exists a non-singular &’ ¢ H with «(h') #= I’
Hence f(x(h'), ') # 0 (as H is regular) and so Q(x (k') + /') ¥ 0. Thus
h:=h+xl) e HN B(r)
and / is non-singular. Observe that
an(W) =W +fWR)QMR) " Yh =" + h =),
and hence a7 (h') ="1'. If HMN B(x) = (h), then w(h) = k and so in this
case, H C F(om).
We next prove a converse to Lemma 5.1.
LEMMA 5.3, Let 7 = 0,0, and suppose H' = w(H). Then H' & H*L.

Proof. If H' = H, there is nothing to prove. So suppose H' # H. Let H” =
a,(H), so that H = ¢,(H""). Now H"" C (H, q)and H C (H", p), and so
H'"MNHD {tyand H M H"” 2 (s), wheres, t % 0. If (s) = (¢), then H' M
H= (), and t ¢ H-, so H' & HL- If (s) # (t), then H” = (s, t). But
H'" is regular, implying f(s, t) # 0. Since s ¢ H' and { € H, we again conclude
H & H-

LemMA 5.4, Suppose o, . .. 0., (FH) = H, for k = 3. Then there exists 1, with
1 =12k —2s0that
Tui0ar—10a(H) & HE,  and
Tay v+« Oap ™ Opy « v« Opp 3000 -1 Tage

Proof. Let 7 = ¢,,_,04,, and let H' = 7(H). By Lemma 5.3, H" & H*.
If «; € H* for some 1, then o, (HL) = H+, and hence o, (H") & H+. So we
must see what happens if none of the ¢;for 1 <7 < k& — 2 lie in H+. Suppose
that o,,7(H) € HL for all £ k& — 2. This means that

floar(h), ) =0 forallh, i ¢ H,
or equivalently,
flr(h), 1) + Qad) 7 f(r(h), a)f(W, a;) =0

forall i, ' € Handallz £ k& — 2. Since we now assume «; ¢ H, we know that
for each 1, there exists a unique (k(¢) ) C H, h(¢) ## 0, so that f(ay, £(z)) = 0.
Hence, for each 1, there exists k(i) € H\{0} such that f(z(k), h(z)) = O for all
h € H,and so7(k) ¢ h(?)Lforall i ¢ H. Since r(H) & H*, we conclude that
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h(2), h(j) are dependent for all 7, j < & — 2. So we see that ¢,;7(H) is orthog-
onal to H for all 2 £ & — 2 if and only if there exists some & € H\{0} with
r(H) C ht, and «; € ht for all 7 £ k — 2. This implies that o, (k1+) = ki,
and hence o,; (r(H)) C ht for all 7. But then

Gy oo - Oap_(T(H)) = HC htfor h € H,

implying that H is not regular, a contradiction.
The last part of the lemma follows at once from (4.4).

LEMMA 5.5. Let 1 = o4, . .. 04y, and suppose the associated subspace A =
{ay, ..., ap) is k-dimensional. Suppose further that 7(H) = H. Let Z = 4 M
H+ Ifdim B(m) YH £ 1, thendim Z =2 k — 1. If H C B(w), thendim Z =
k—2IfdimZ =k — 1, and Z is singular, then 4 1is isotropic.

Proof. If H & F(x), then by Lemma 5.2, H M B(x) is non-singular. Thus,
if H G B(w), either H N B(x) = (h) # (0),or HC F(r). But H C F(x)
implies by Lemma 1.5 that H C F(x) € A+, and hence 4 C 4++ C H4, so
that Z = A. lf HN B(x) = {(h), then also by Lemma 5.2, we see that = (k) =
hysoh € F(r) = AL+ Butthen 4 € ht,and A N H+ = A N (N k) for
some h; € HL, implying that

dimAdNH =dimdN\ht=%kF—1.

Certainly, since dim H+ = n — 2, and dim 4 = k, we know that dim Z =
k—2. 1If HC B(x), then H C 4. Also, dim Z =2 k — 2, and so in fact,
4 = HOZ. Finally, if dim Z = k — 1 and Z is singular, then 4 = Z® (k)
is clearly isotropic.

In a similar spirit, we prove

LEMMA 5.6. Suppose m = a4y . . .o, and A = {aq, ..., u;). Ifdim A = k —
L, andif H C F(x), then dim Z =2 dim A — 1 and B(zw) C Z, where Z = A M
H+.

Proof. We can assume that «., ..., «; are linearly independent. Since
H C F(x), we know that
Gay + - - Oup () = o, (h)

forall 2 € H. Butdim ¢,* M H = 1, and so there exists k, ¢ H\{0} such that
o, (ho) = ho, implying ko € F(ow, ..., 04), and hence hy € A+, or A C hotl.
Thus again

dim (A N HY) =2 dim 4 — 1.

From Lemma 1.2 (e), we know that F(r) C B(w)~!, and hence B(w) C
B(w)++ C F(w)L. Also, H C F(x) implies F(w)L C HL. Hence B(r) C HZ,
and trivially, B(r) € A4 implies B(r) C Z.

Now we prove
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LEMMA 5.7. Let m = a4y . . . 04, with k £ 3, and suppose w(H) = H. Then
Oay -+ - Tap 15 H-equivalent.

Proof. (a) If k = 1, then 7 = ¢, and o, (H) = H if and only if a; € H\J
HL,

(b) If = 2, then 7 = 04,04, If {¢1) = {as), then 7 = 1, hence 7 ~ o0,
for h € H. If {a1) # {a:), then either H C F(r), and so H C {ay, ay)*, im-
plying {a;, az) C H?', in which case the lemma holds, or there exists non-
singular # € HN B(x) © H M (a1, as), b # 0. But then

0a10ay ™ OnOn0a10as,

where 6,004, ~ 0, OF 0,404,064, ~ 4. Then (a) yields the result.
(c) If B =3, then m = 04,04,045. If a1, as, a3 are dependent, then either

Ca10a30a3 ~ 0 OF  04,04,045 ~ 04,

and (a) yields the result.

So assume i, a3, ay are independent. Let 4 = (i, aq, az). If H C F(x),
then H C AL and hence A C H- If{ H & F(r),letZ: = ANHLNIfHC
B(r), then H C A4, and so one of {ay, az), (a1, az) or {as, a3 ) intersects H in
a non-singular 1-dimensional subspace (k). But then

Ta10asTa3Tp ™ 00y
and so
0a10as0a3 ™ 0q10qa0u30p0p ™ 020y0p,

and we use (b) to conclude the result.

If H S B(x), then by Lemma 5.2, HMN B(x) = (h), where (h) is non-
singular, and dim Z = 2. If Z is non-singular, we repeat the argument im-
mediately above with Z instead of H to deduce the result. If Z is singular, then
by Lemma 5.5, A4 is isotropic.

Consider the 1-dimensional subspaces {(a:), {(as2), (as), (k). If this is not
an sd-quadrangle, then

0010090430 ™~ 00y

and we conclude as above. If it is an sd-quadrangle, and if Z € Q rad 1/, then
Tq10q30q3 ™ Oy

and we are done by (a). If Z & Q rad V, then there exists o, with b; ¢ H+.

By Lemma 4.9, there exists a,,, 043, 05, With be, b3, by € (b ) + Z C H* such
that

Ta10a20a30h ™ Tp10p20030 by,
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and hence we deduce
0a10a20a3 ™ Ta10a20a30n0h ™ 001002003040,y
with b, € H-forz = 1,2, 3, 4.

In a similar vein, we prove

LEMMA 5.8. Let m = 04, ... 0y, With 3 < k < 6 such that H C F(w). Then
Gay -+ + Oap 15 H-equivalent.

Proof. If & = 3, the lemma holds by Lemma 5.7. So suppose 4 < & < 6, and
suppose the lemma is true for £ — 1. We let 4 = (a4, ..., a; ), and consider

the following cases:

(a) dim A = k. But then 4 € HZ, and so the claim is true.

(b) dim 4 = k — 1. By Lemma 5.6, if Z: = 4 M H*, we know that dim
Z=z2k—2IfdmZ=%k—1,then Z=A4,and so 4 € H+, and we are done.
So now suppose dim Z = k — 2. Since k = 4, we know that dim 4 = 3, and
we may assume that «;, as, ¢ are linearly independent. Let

L: = (a1, as a3y HL = (a1, as, a3) M Z.

Then dim L = 2. If dim L = 3, we are done at once, as then ay, as, as € HL.
Now suppose dim L. = 2. If L is non-singular, then either

Tq10a90q3 ™~ O¢10¢yy O 0010020435 ™ 04,104,043

with d; € L € H+, and in both cases the lemma follows by the induction
hypothesis. Now suppose L is singular. If L € Qrad V, then

Ta10ay0as ™~ O,

and we are again finished. So assume L. & Q rad V. Let
u € Qrad (a1, as, az), u # 0.

Then # € L, and as in the proof of Lemma 4.8, there exist a,’, a3’ such that
0ay0ag0az ™~ Ga10uy'Tay, and u € {ay, ad' ).

Now choose ¢ € (a1, as, ayz) such that {(a1), (a2’ ), (¢’ ), {¢) is an sd-quad-
rangle, with diagonal D. Here D = L if (a1, a2, a3) is isotropic, and D is the
second singular 2-dimensional subspace of (a1, @, az) if (a1, as, a3) is not
isotropic. Then c¢ is clearly non-singular. If ¢ € rad I/, then B(0,,04,04) = L;
if c ¢ rad V, then B(o4,04,040:) & L. Since L & Qrad V, we know that HL is
not isotropic, and hence there exists o, € S with d € H*. But now, by Lemma
4.9, either 6,,04,0,; OF 0,,0,,04,0. 1S equivalent to ¢,0,0,0,, witho, w,x € (d) +
L C H'. Hence either ¢,,04,04, is H-equivalent, or ¢,,0,,04,0. is H-equivalent,
and so the induction hypothesis yields the result.

(c) Suppose dim 4 = k — 2. Since # =< 6, this implies that dim 4 =< 4.
But then we come back to the induction hypothesis by using (4.3) or Lemma
4.11.
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We are now ready to prove the main Lemma.
LEMMA B.9. Letm = o4, .. . au. If 7(H) = H, then a,, . . . 04, 15 H-equivalent.

Proof. We prove this lemma by induction on k. Lemma 5.7 provides the proof
for & = 3. So suppose now that £ = 4, and that the lemma holds for £ — 1.
By Lemma 5.4, we can assume that

Cap—20ar10ar(H) = H & HL,
Then either H' = H, implying that
Ouy o Oap_s(H) = H,

and so our induction hypothesis yields the result, or H' # H, in which case by
Lemma 5.1, there exist oy, o, so that e,0,(H’) = H. But then

Oay « + « Oap ™ Oqy « « v Oap —309040u090ay —90ar —10aky
where
Oay « + + 0'”/\-_,30'1,»0'14(}]) = o'ua'z‘o'uk—‘zo'ﬂk-xatlk(H) = H.

By induction hypothesis, ¢, . . . 0., _,0.0, is H-equivalent. Hence we need only
show that

Ou0 90k —20ak 10

is H-equivalent.
Let

P = O0u0oO0qp—90aj 10y

If H C F(p), then Lemma 5.8 yields the result. If H & F(p), we know that
H M B(p) is non-singular. If dim H M B(p) = 1,say H M B(p) = {(h), then
by Lemma 5.2, H C F(aup), and so, by Lemma 5.8,

On0u0v0ak —20ak —10ak
is H-equivalent, implying that
Tu0 0 —0Tap -10ay

is H-equivalent.
We are therefore left with the case that

H C B(p) © (U, v, ag_s, ay_1, ay ).

Let A = (u, v, ay_», ar_1, ay). Since H C B(p), we know that there exist
hi, he € H such that p(h) = op,0n, (k) forall i € H, and hence H © F(a,,0n,p)-
If dim A4 = 4, then we can use (4.3), and lemma 4.11 to deduce that

Or1Ony0u0v0ak —20ar—10ax ™ Tby - - - Op, with e £ 5,

and then the lemma follows from Lemma 5.8.
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This leaves the case that dim 4 = 5. By Lemma 5.5, we know that 4 =
H®Z, where Z = A N HY, and dim Z = 3. Now consider L: = Z N
(@, ar—1, ag ). I L = {ay_s, ay_1, az), then ay_s, a;,_;, a, € HL, and we are
done. Hence we may assume that dim L = 2. If L is non-singular, then either

LCrad V, and o, _ .04 104, ~ 004,
and we are done, or
Gup—9Gar_10ar ~ 0,00, withz € Z C H,

and we are done.

If L is singular, and . € Qrad 1, then ¢,,_,04, _,0., ~ 7y, and we are done.
So we must only worry about the case that L is singular, but L & Q rad 1.
But now we proceed precisely as in part (b) of the proof of Lemma 5.8, to
conclude that either

Oar—20ak-10ar ™ T50 0,0y, with s, £, x,y € HY, or
Cap—a0apr 1 Tar ~ 0,0,0.0,0, withs, t,x,y € HL
In either case, we are done.

We conclude this section with

LEmMA 5.10. Let 7 = 04y . .. 0y, and suppose H C F(w) for some regular

2-dimensional subspace H. Then there exist oy, . . ., 64, With by, ..., b, € HL,
and
Oap v v v Ogp ™~ Ty v v v Thpye
Proof. By Lemma 5.9, o,, . .. 0., is H-equivalent, and so there exists some
H-sufficient word oo, . . . 0., such that
Tay oo Oq ™~ Ty v v Ogpe

Now the ¢; all liein H\J H+. By Lemma 1.2 (b), we can assume that
€1,...,6, € H, and copyy...,c, € HE

We have H C F(oe, . ..0.,),and so, by (4.2),0. ...0, ~ @, and we are done.

6. The main theorem. We now state the main theorem of this paper.
Observe that in this theorem we make no assumptions about dim V. In fact,
we admit the possibility that 17 is infinite-dimensional.

TuaEOREM 6.1. Let (V, Q) be « metric vector space over a field K of characteristic
2, with K # GF(2). Let S be the set of simple isometries with non-singular path,
and let O be the group of isometries generated by S. Then every relation in O* be-
tween elements of S is a consequence of the fundamental relations (a), (b), (¢), (d)
of length 2, 3, or 4, discussed in § 3.
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Proof. Assume first that dim IV < 0. Then V = HH{QH.,©.. OH,OR
where R = rad V,and Hy, . .., H, are regular, 2-dimensional subspaces. Now
suppose ¢, . . . 04, = 1. By Lemma 5.10, 6, . . . 04, ~ 04, . . . 04, With 0y, . . .,
b, € Hi+t = H,©.. OQH,OR. Now we apply Lemma 5.10 again to the
relation oy, ... o, in the subspace H.®... O H,®OR, and obtain that

Ohy oo e Op, ™~ Tep v o v ey
with

Cly ooy lm € Hi1 N Hyt = H,QO. . OH,OR.
After n steps, we have obtained

Ogyp oo« Ogg ™ Oy » + « Odpy
where

di,...,d, € HitN ...\ H* =R,

and hence o, . .. 0, ~ 0.

Now suppose dim 17 = o0, and suppose a4, . .. 0, = L. Let U = (uy, .. .,
ay). By Lemma 1.1, there exists a finite-dimensional subspace 7" with U C T,
and VV = 7" + 7t Now the theorem is valid in 7', and by Lemma 1.2, it is
therefore valid in V.

In special cases, we can sharpen the results of Theorem 6.1 to obtain

CoRrOLLARY 6.2. (1) Ifrad 1V = 0, then every relation in O* is a consequence of
fundamental relations of types (a) and (c).

(2) If Qrad V = 0, then every relation is a consequence of fundamental relu-
tions of types (a), (b) and (c).

3) Ifrad V = Q rad V, then every relation is a consequence of fundamental
relations of types (a), (c) and (d). If in addition, dim Q rad 17 = 1, then we only
require types (a) and (c).

7. A class of subgroups of 0*(V, Q). In the following, let VV be a fixed

subspace of V. Define
T:=\{o,€S|x€ V.

Let G be the orthogonal group generated by 7" and call (G, 7°) the group
associated with the pair 1, V. We show that a theorem similar to 6.1 holds for
the group (G, 7).

Again, we first consider the case that dim 7 < . For any a € G, we let
a be the restriction of @ to V, and let G: = {a |« € G}. With this notation,
we have

LemMMA 7.1. The mapping
{G -G

a— o

T
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1s « surjective homomorphism. If a € ker 7, then B(a) C rad V. If (V, Q) is
regular, thenker r = {a € G| B(a) Crad V}.

The proof of this given in [19] holds in the case of general characteristic.
Indeed, the last part of the lemma can easily be shown to be true under the
weaker condition that rad VN ¥V = {0}.

We next state
(7.2) Leto, € T. Then g, = 1ifand onlyifx € rad V.
The proof of this is left to the reader.

From 7.2, we see that theset 7* : = {§,| ¢, € Tand x ¢ rad V} is a system
of generators for the group G. We remark that G is the group 0*(V, Q), where
Q : = Q. For the pair (G, T*), we can invoke Theorem 6.1 to state

(7.3) The relations between elements of 1* of types (a), (b), (c) and (d) (as
described in § 2) form a system of defining relations for the group G.

8. The relation theorem for (G, 7). We first sharpen the concept of
equivalence discussed in § 3. If

Gap e v s Oamy Oy« + o0y, € T,
we write
Ogi v+« O O Opy + « « Opy

if the two words are equivalent, and if the fundamental relations whose inser-
tion or deletion transforms the first into the second all have associated sub-
spaces that lie in V. Clearly

Ogy -+« Oam 2601"'001:
implies
Oap v+ o Oqm 2 Opy + « « Oppe

(8.1) Let V be an isotropic subspace of V, and let (G, 1') be the group associated
with V, V (as described in § 7). Then the fundamental relations of length 2, 3 and
4 between elements of 1" form a defining system of relations for G.

Proof. Since V is isotropic, we have ¢,0, & 0,0, for all x,y € 7. We first
show that 8.1 is valid in case Q rad V = 0.

(a) Suppose Q rad V = 0. Then V contains no non-trivial singular vectors.
We now proceed by induction on dim V. If dim ¥V £ 2, then the result is an
immediate consequence of 4.2. We now assume that dim V = 3.

Now let a4, . . . 0., = 1 be some given relation, and let H be some hyperplane
of V. Since any o,,, 0,; commute, we may assume that ay, ..., a; € H, and
that @41, ..., ax ¢ H for some suitable / with 0 =</ < k. If ] = k&, our claim
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follows by the induction hypothesis. Clearly, # — ! = 1 cannot happen as
otherwise B(c,, . . . 04;) # 0. Hence we must have # — [ = 2. We may assume
Oa, # 0q, .- But then

dim ({a11, @) H) =1, say
(@1, @pe) NV H = (a1 ).

If aipi” € rad V, then oy, , 04, ,, R 04, ,,; if @i’ ¢ rad 1, then
Tay 1%a; 49 ~ Ta; o' 0ay 4o

We can repeat this procedure to obtain oy, . . . 045 X 04, - . . Op,,, Where by, . . .,
bm—1 € H. But as noted above, this implies b,, € H, and hence the result
follows from the induction hypothesis.

(b) Now suppose dim Q rad ¥V = n. Suppose that the result 8.1 has been
proved if dim Q rad V = n — 1. Clearly, » < dim V as otherwise there is
nothing to prove, and hence there exists a hyperplane  of 7 such that

dim (HNQrad V) = n — 1.
If in addition Q rad ¥V M rad " # 0, we may choose this hyperplane H such

that there exists a vector r € (Q rad V M rad V)\H (This can be done as we
may exclude any given vector » from H, by just taking a complement of

in V).
Now, suppose o4, ... g, = 1. Asin (a), we may assume that the ¢, s have
been ordered so that «y, ..., a, ¢ H,and a4y, ..., ay ¢ H, for some [, 0 =

1 < k. We proceed by induction onv = k£ — 1. Forv = 0(k = 1), the result
holds. If v ¢ 0, then again » = 2. If @1, @42 are linearly dependent, then
0a,,, = 0a,,,, and the result holds by the induction hypothesis on v. If @1,
@42 are linearly independent, we let

(@r' ) = HO (@, @)

If @41 is non-singular, we proceed as in (a) to deduce the result. Thus we may
assume that « 41" is singular, and that {¢;1, ¢4y ) is singular for all j. Thus,
we may assume that the subspace H M L is singular, where L = (a4, . .
ax ). Now a4, ... 04, = 1,and so

L)

Gay o+« Oap = Oay -+« Oap = Q

where B(e) € H M L is singular. We may assume that a # 1, as otherwise
we are done by induction.

We now consider two cases.

Case 1. B(e) & Q rad V. In this case, there exists s € B(a) such that
s ¢ rad V (by Lemma 2.2). Choose @ € V such that a(a) = a + 5. If B(a)
were contained in a1, we would have f(a(x) 4+ x,¢) = Oforallx € 1, implying

fla(x), a) = f(x,a) = fla(x), a(a)) = fla(x), a + )
= f(a(x), a) + fla(x),s) forallx € V,
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and hence f(a(x), s) = 0 for all x € V. But this would imply that s € rad 1,
contrary to the choice of s. Hence B(a) & at, and so there exists ¢t € B(a)
with f(e, t) = 1. From Q(a(a)) = Q(a), we see that f(a, s) = 0. Hence
(s, t)yNrad V =10. Now let 7(x) = x + f(x, s)t + f(x, t)s, and consider
a* = ar. Since F(r) = {(s,1)+, and since (s, 1) C B(a) implies F(a) C B(a)t
C (s, t)t = F(r), we see that F(a) C F(ar). Also ar(a) = ala + 5) =
a+ s+ s = a. Hence F(ar) # F(a). Now, using 2.9 and 4.10 we see that for
any oy, with & € (a1, ..., @), and ¢, with by € L, we can find oy, 0,
(1=2,3,4),h; € {ar,...,a;) C H,b; € L such that

T = OnO0na0h30ny = Tps06300200; and Oh1ThaOh3TngT by /: Op4Tb30 by
Thus

Gay v v« Oap RO Tay « « -« Oq,0n OnsOn3Ons0ps00300500,0a 11 « -+ Tags
where

a* = 04 ... 0qOnOonon, and  Fla*) D F(a), Fl*) # F(a).

If B(e*) & rad 1, we may continue this process of increasing F(o*) until we
either reach the case that a*|y = 1 and we have reduced the case to the induc-
tion hypothesis, or the case given by

Case 2. B(a) € rad V. In this case, let B(a) = (s1,...,s,), so that
alx) = x4+ flx,ci)s1 4+ ... + f(x, ¢)sp,
where ¢y, ..., ¢, € L\rad V. We treat two cases.

(@) ¢1 is non-singular. Let A = Q(c;). Let o* = ao 00425, Then
Uc10'01+)\31(x) =x + f(x, 51)511
and so
Qo0 (X) = x + f(x, c2)s0 + ... 4 f(x, ¢p)Sp.

Here again F(a*) 2 F(a), F(e*) # F(a). Now, by our choice of H, we know
there exists7 € Qrad VN V, withr & H. Now, {(¢c1,7) N\ H = (b*), and so
b* = gy + ¢r. By a suitable norming, we can replace b* by b = r + ¢1, b € H,
0(b) = Q(c1). We let &' = b 4 \s;. Then Q') = Q(b). Now opopa = o*,
and hence we have

Ogy v« O N Ogy v« - G4,0¢c10c14As10000' Tay |+ + + Tag
where again we have increased the dimension of the fix, i.e.
F(a*) D Fla), Fl@*) # F(a).
(8) ¢ is singular. We choose o, ¢’ € L. By 2.8, there exist ¢'/, d’, d" €

(', ¢1, s1) C L such that oyoprop00(x) = x + f(x, ¢1)s;. But then let

Ot* = QO T Oy T,
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Now, let {¢;, 7) M H = {e1) so that e, = ¢; + r (after norming). Since
f(x, c1) = f(x, e1), we see thata(x) = x + f(x,e1)s1 + ... + f(x, )5y

We now repeat the procedure outlined above, only we work in A to obtain
o = gpopiapoma, withe', e’ f', f' € H. By using 4.10 and 4.8, we get

OO 0T/ T e’ TprTprr Z ﬂ,

and hence

~

Tar o+ Oag 2 Oay+ o - OO0 Cq0qr « CoGerGpGpiGay v v Tag

where the fix has been increased, i.e. F(a*) D F(a), F(a*) # F(a).
Thus we see that by repeating this process, we finally obtain

Oay -« Oap 2 Oyy v+ 0yy0z - . .0, Wherey, € H, 2, € L, and

~

*% = -
=g, .. 0y =0,...0, =1

Now, by induction hypothesis, we have
Oy oo Oy W, 0, .. 0,y D,
and hence g, . .. 0, & 0, as claimed. This completes the proof of 8.1.
We now let V be any subspace of V. Wedefine G, Tand T* asin§ 7, and state

(8.2) Let G4, Gy, G¢y Ga € T*. Then we have
(i) 6465 = 1 implies oo0p = 1.
(i) If a, b, c, d are linearly dependent, then G,5,5.6, = 1 implies o,040,04 = 1.
(iii) 4606, = 1 implies that either g,000. = 1 or, that c.op0, = o, with x €
rad V\Q rad V.
(iv) If a, b, ¢ are linearly independent, and if {(a, b, ¢) M rad V is singular,
then ¢,6,6.,64 = 1 1mplies that

dim B(o.0p0.04) < 2, and B(o,0p0.04) S Qrad V.
The proof is an easy consequence of the results in § 2 and § 7.

Now suppose a,, . .. 0., = 1 is some given relation between elements of 7.
If for ¢, € T we have x € rad V, then we have ¢,0, & 0,0, for all ¢, € T.
Hence we can assume that in the relation given above, we have ordered the
os so that a1,...,a, ¢ Rad V, and a,y,...,a; € rad V for some suitable
Iwith0 =17 < k. Then of course G,, . . . 4, = 1. By (7.3), this relation between
elements of 7* is a consequence of the basic relations of length 2, 3 or 4 between
elements of 7*. Thus, we may now use 8.2 to write

Ogp oo~ Oap V1o oV yOyy o o v Oy,

where each y; € rad V, and where each 7, is a relation between elements of T*
of length 2, 3 or 4.
Now choose some fixed o,, € 1. If ¥, = 0,0, for some o, € T, then r; =
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0500z, With 70,0, = 0. If ry = 0,040, then by 4.7, 0,0,0, & 0,0,0, With
040400005, 0.

Finally, if r; = 0,0,0.04, then by 4.3, ¢,,7; X 0,0, 0,. By 8.2, all the &', 9/,
w' € (x9) + Qrad V. Thus we see that g, . .. 04y = 04, - .. 0p,,, Where b; €
(xo) + rad V, where of course, {x,) + rad V is an isotropic subspace of V.
Now we invoke 8.1 to conclude that oy, . . . 0., & 0. Thus we have proved the
following theorem in the case dim I/ < 0.

THEOREM 8.3. Let V be any subspace of a metric vector space (V, Q), V being
a vector space over a field K of characteristic 2, with K # GF(2). Let T be the set
of simple isometries o, € S for which x € V, and let G be the group generated by T.
Then every relation in G between elements of T 1s « consequence of fundamental
relations of length 2, 3 or 4 between elements of 1.

To prove that 8.3 also holds when dim 17 = o follows along the same lines
as the proof of 6.1.

Let g4 ... 04, be a relation between elements of 7. Let U = {ay, ..., ax).
By 1.1, there exists some finite-dimensional subspace 4 of 1V with U C
and 4 + A+ = V. Now Theorem 8.3 holds for 4 and U instead of 7" and
and then Lemma 1.1 (b) gives the desired result.

As in Corollary 6.2, we can now sharpen the Theorem in special cases. How-
ever, we omit the detailed discussion of these cases.

A
7

’
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