Proceedings of the Edinburgh Mathematical Society (1979), 22, 217-226 ©

A QUASI-EQUIVALENCE BETWEEN BOREL SUMMABILITY
AND CONVERGENCE FOR FOURIER-LAGUERRE SERIES AT
THE END-POINT

by LEE LORCH and JEAN TZIMBALARIO
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1. Background and objective

A suitable function f(x), 0<x <, can be expanded into a Fourier series of
Laguerre polynomials {L®(x)}, n=0,1,..., a > -1, whose interval of orthogonality
is 0 =<x <. The usual problems as to convergence and, lacking convergence, sum-
mability, and also the asymptotic behaviour of Lebesgue constants, arise for such
developments. A summary of work on these convergence and summability problems,
together with extensive references to the literature, can be found in the standard
treatise by G. Szego (5, especially Chapter 1X) to whom many of these results are due.

Here we shall consider the classical case, a =0, for which the corresponding n-th
polynomial is denoted simply by L,(x). The Laguerre series is defined by

f0)~ 3 anla(x), 0
where
a, = f e f(OL(dt, n=0,1,..., @)
0

for functions f(x) for which a, exists.

The theory (indeed for all o > — 1) divides into two cases:

(i) 0<x <o, the interior of the interval of orthogonality, where conclusive
results establish the equiconvergence of (1) with a trigonometric Fourier series (5,
Theorem 9.1.5, p. 246) as well as convergence theorems (cf., e.g. (3, p. 88)), and

(ii) x =0, the endpoint, where precise results are known for Cesaro summation
C,r).

Roughly speaking, in the case a =0, Szeg6é’s Theorem 9.1.7 (5, p. 247) establishes
that, for a function f(x) subject to mild integrability conditions over [0,®) and
continuous at x = 0, the series (1) is (C, r) summable to f(x) at x =0 for r >1 but not
necessarily for r =1.

In this note, we consider principally the application of Borel’s exponential means
(2, p. 79 and Chapters VIII and IX) to (1) at the endpoint x = 0. The class of functions
& to which we restrict ourselves consists of all locally Lebesgue integrable f(x) such
that

[f(x)] < Ku exp(x —Mx?), for all real M, 0<x <oo, A3)
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a condition satisfied, in particular, when
f(x)|< Kef*, B<1, 0<x<o, 3)

(The constant K may have different values at different occurrences.) Without (3) or
(3') the Laguerre series might not even exist; there is no such series for e*,

Our principal aim is to prove that whenever (1) is Borel summable at x =0 to A,
—o << A 0o, for f(x) EF, then the Laguerre series for f(3x) actually converges to A at
x=0.

(The italicised statement is all the more true for the Euler (E, r), r >0, transform
of (1), since the Borel method includes all the Euler methods (2, Theorem 128, p. 183).
The application of these methods is discussed in §8 below.)

This relation can be considered to exhibit a ‘“‘quasi-equivalence” between Borel
summability and convergence for the Laguerre series of functions in § at x =0. The
existence of some sort of ‘‘quasi-equivalence” was suggested by unpublished cal-
culations one of us made a number of years ago which indicated that the Lebesgue
constants for Borel summation are of the same order of magnitude as that determined
by G. Szegoé (6) for convergence of Laguerre series. This was rather unexpected, since
Borel summability is stronger than convergence, even when applied to the Laguerre
expansion of a function in §: e.g., the Laguerre series for e*? is 235 (—1)"L,(x),
divergent at x =0, since L,(0)=1,n=0,1,2,..., but Borel summable to 1 there. This
function can therefore serve as an illustration of the italicised assertion above, since
the series for e”% [3, (4.24.3), p. 90] clearly converges at x = 0 for a = —}, indeed for
all a>—4.

2. Results to be established
Stated more precisely, and also more completely, the results to be proved assert:
Theorem. Let f(x) ER. If s,(x) is the n-th partial sum for the Laguerre series
of f(x), and B{z, x} the z-th Borel exponential mean of the Laguerre series (1) of f(x),
then
lim [s,(0) — B{2(n + 1),0}| =0, “)
and, more generally,
lim [s,(0) — B{22,0}| = 0, where |z—n|=<]1. 4"

If, in addition, f € L"[0, »), then the z-th Lebesgue constant

B@)= sup_|BE OJifl- ©
=2 =32+ 0(1),

as z—>®,

Corollary 1. If, for f(x)E®, (1) is Borel summable to A, —~*<A< +x (in
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particular, if (1) converges to A), at x =0, then the Laguerre series for f(27'x)
converges to A forv=1,2,...,atx=0.

Corollary 2. The n-th Lebesgue constant
L,= sup [s,(O)/lIffl-=
JEL™[0,=)
= 25/41‘(%)77—3/2"1/4 + 0(1), (51)

as n—>wo,

3. A generating function

To construct a convenient representation (12) for the Borel mean there will be
needed the following generating function:

e "2:‘,0 L) i—‘: = (2t} 1(26329) + J212Y), (6)
both as written, and in the companion form

e ,?::0 L(-1) i—k, = Ity Q2e ) + I2e2). %)
Here, as usual, J, denotes the Bessel function of first kind and order », I, the
corresponding modified Bessel function.

Formulae (6) and (7) follow from the standard generating function (8, (5.1.16), p.
102)

0 k 1
2 Li(t) 7= e o2tz ®)

since

82 © Zk © Zk
5 {;:o L5} = S L

Now, applying this to (8),

82

proe {e T2z} = eTy 2tizd) + e*[(2/ 1) + Mez) VT y2ei2D).

Furthermore (5, p. 15),
T§(v) = = Ji(v), J§(v) =v~"Ji(v) — Jo(v),
and so (6) is proved, since — Li,(t) = L{(¢), and, with it, (7).

4. An expression for the Borel mean B{z, 0}

With (6) and (7) established, it is now possible to construct a convenient represen-
tation (12) for B{z, 0}. The customary representation , which will be needed in §5 also,
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for the n-th partial sum s,(x) of the Fourier-Laguerre series of the function f(3x)
(5 9.5.1), p. 266) is

0 = [ e fGOK k0 dt, ©)

0

where K,(x, t) is the kernel function defined in (5, (5.1.11), p. 101) for which

L) = Lyi(t) _

K0, = (n+ 1) =2

= Lon(t) = LY(). (10)

By definition, the z-th Borel exponential mean of the Laguerre series of f(x) at
x =0 is then

B{z,0}=¢* 5: i—:f: e 'f(LIP(t) dt. (11)

k=0

To use (6), we must invert the order of summation and integration in (11). This
interchange can be justified by the Lebesgue dominated convergence theorem (7, p.
187). To do so, we consider

n k
$a(0) = ef(De™ 3 LD 75 =0,
k=0 :
Clearly, from (7), since the coefficients of L{’(t) alternate in sign (3, (4.17.2), p. 77;
5, (5.16), p. 101),
n k
[6u(0)] < e7IfOle™ ZILLW 55
n k
<elfnle X LN
k=0 !
- z

<elfDle” X LIN-1)15

k=0
= e [fO2/t P 122D + [21izD], 1= 0.
Now (8, p. 203, (2)), as w—x,
L(w) = Qaw) "?[e” + O(1/w)].

= -

Hence,
[bn(1)] < e |F(O(@m) 2t~z 4 expeD (2t} + 1]+ O 27}

This is dominated by a function integrable over (0, ), since f(t) E &, for each
z>0.

Thus, the order of integration and summation can be interchanged in (11). In view
of (6), this gives the desired formula for the Borel mean

B{z,0} = fo e DY + T2} dr. (12)

5. Proof of (4)

With (12) established, we can proceed to the proof of (4). We write N = n+ 1 and,
recalling (9), we define
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A, = s5,(0)— B{2N, 0}
= ["esdnLoe de - [ e fer Ny m@N"
+ J 22N} dt.

Changing the variable in the first integral from ¢ to 2¢, this becomes
A, = f f(O2e *LPQ21) — e [J22NHP)2NIH)? + Jo(2(2N1)')]} dt. (13)
0
To express (13) in terms of Bessel functions, an asymptotic representation of
LP2t) is used (3, pp. 85-87; 5, p. 199, Theorem 8.22.4):
LP@2t) = e'{27"(NIt)'"21,(22Nt)')) + R,(21)}, (14)

where the remainder term R,(2t) will be specified later.
Thus, (13) becomes

A, = fwe"f(t).lo(ZN%t%) dt+2 [m e 'f(HR,(2¢) dt (15)
0 0

whence the Jy-term contributes only o(1) to'(12), z—> .
Now

f: e f()J(2NtY) dt = 0(1), n—>o, (16)

from the Lebesgue dominated convergence theorem, since Jy(yt)—>0 as y >, t#0.
To show that the other integral in (15) is also o(1), n—>=, it is helpful to
decompose that integral into two and use different forms of R,(t) in each.
Let w >0 be a constant, and write

fo " e f(OR.Q21) dt = fo ‘4 L " = I(n)+ In).

In I)(n), it is convenient to use the estimate of R,(2¢t) given by (5, p. 199, Theorem
8.22.4), namely,

R.(t)=1""0(n™"), (17)
n -, uniformly in 0 < ¢t < w. From this, it is immediate that
|[Li(n)] = O(n™"), n—>e. (18)

In I(n), we shall use the form of the remainder implied by (3, p. 87). There,
however, some correction is required, as the Referee kindly called to our attention.
Formulae (4.22.15) and (4.22.16), and the unnumbered formula preceding them, must
be amended so that the factor x***** is replaced in each by x**. These corrections
arise from the Referee’s observation that on p. 87, lines 8 and 9, where the
Buniakovski-Schwarz inequality is applied, the factor y* is improperly in the first
integral on the right; it belongs in the second integral.

When this adjustment is made, then the corrected estimate (3, p. 87, (4.22.16))
becomes, for a =1, and 0 < x <o,

|7 ()] < K(Nx) [N x4 + N-20(1)],
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which can be seen from the argument in (3, pp. 86-87) to be
[ra(x)] < KN-'x}, Nx>1.
It is clear from (3, p. 86, (4.22.6)) that R,(x) = Nr,(x) and so
[R.QDI<KE, t>w. (19)
Hence, .
|L(n)| < K f e"lf(t)tﬁ dt.
Thus, for any fixed w >0, ’
tim supli(n)+ L(wl <K [ eIflitat
where, as specified after (3'), K may have ditferewnt values at different occurrences.

Letting w — o completes the proof of (4).

Remark. In reading (3, pp. 86-87), it may be helpful to note in (4.22.13) that the
constant implied in the O-estimates can be given numerically, essentially as described
in connection with our formula (27) below.

6. Proof of (4')

In order to prove (4') we may assume without loss of generality that f(0)=0,
since only the differences between s,(0) and B{2z, 0} enter the discussion.
It suffices to prove that 8(z, z’)—0 as z >, uniformly in |z — z’} < 1, where

5(z, 2= [ e IO M2 el0 = T2z Ko dr. @0)
Now, with F(x) = x3J,(2xd),
22 - (D22
=(z-2)F'() (21)
= (z- 8¢ @ + 1)
for some { between {z and tz'. For small v,

Ji(v) = O(v), Ji(v)=0q), 22)
and for large v,
Ji(v) = O(w™, Ti(v) = O(v7), (23)

where, e.g., the estimates for J,(v) are given in (5, p. 16) and those for Ji(v) follow from
these and the recurrence formula (8, p. 17(20)) 2Ji(x) = Jo(x)— Jo(x). Hence the
expression (21) is

O(z-2z) O=<t=<1/2)50(z- z'It’%Z_g) (t>1/2).
Thus,

1/z ®
8(z,2)=Of|z - z’l[f0 If(8)| dt + z f”z If(t)le"t‘} drl},

whence 8(z, z') =0 as z -, uniformly in |z - z| < 1.
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7. Proof of (5) and (5")

In view of (4), it suffices to prove (5).
From (12) it is clear that the Lebesgue constant B(z) can be expressed as

B(z) = fo " e 200} + To[20e2)] dt. 4)
Reasoning as in (16) we get the simpler form
B = [ e 2 dt + o), 2>, 5)
and note that
L " e et dt < [ " et dt = 0(e) = o(1)

as z > o,
On the other hand, it is easy to estimate the part of the integral in (25) close to
zero, bearing in mind that |J\(u)| = O(u), u < 1. Thus,
1/(42) 1 1/(42) 1 1
f e"|J,[2(tz)5]I(z/t)2 dt = O(l)f e~ (t2)X(zlt): dt
1] 0
1/42)

= O(z)f e'dt=0(1), as zox,
0

Hence,
B(z2) = f. j(m e~ [N2t2)N|(2lt): dt + 0Q1). (26)

In (26), it is helpful to use the following expression for the Bessel function:
Ji(x) = 2l m)x~t cos(x — 3m/4) + Ri(x)x 2 + Ry(x)x ™2, x>0, @7

where |Ry(x)| < C, |Ry(x)| < C and C is a constant.

This is established by using the exact representation for Ji(x), valid for all positive
real values of the argument, given in (8, p. 206 (1)), taking p to be 1 in the formula for
P(x,1) and 0 in the formula for Q(x, 1), in the notation employed there. This gives
(27) with C = 1. (A still smaller value for C can be found (1).) Thus,

3n

]
— z -t i —_——
%(z)—fm I(z/t)2| |[7r(tz)' ] cos(2(tz)2 ) )
+ o«:z)%)-”2 + 0tz dt + O(1).
The two remainder terms are treated easily:
f " ety M de = 2 f CeitMdr = 0Q1),
142) 142)
and

f " et (dthez) M dt = 2 f C et dr = 0Q1).
1

H(4z2) 1/@z)
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Hence

%(z)—f . e'(2ft )[ (2" ] cos<2(tz)2——)| dt + O(1)

a4 f? _
=1 Zz‘f ~tp 34
ll(4z)

A simple application of the results in (4) gives

cosZt22—3— dt + 0Q1).
(200 -35)]

B(z) = 27774 f et dt + O(1),
1/(4z)

from which (5) follows readily. Clearly, this gives (5') as well.

8. Euler summation and some consequences

Corollary 1 (§1) states that the Borel summability of Laguerre series of f(¢) at ¢t =0
implies the convergence of the corresponding series for f(2*t) at t=0, v=1,2,...,
for f(t) € §. The Theorem implies a converse as well, in the sense that convergence
of the Laguerre series of f(3t) for f(t) € at t =0 implies Borel summability of the
Laguerre series of fQ*t) att=0,v=0,1,....

This aspect of the Theorem can be strengthened if Borel summability is replaced
by the (weaker) Euler method (E, r), r =0, (E, 0) being convergence. To do so, using
calculations similar to the ones in the previous sections, we use the generating
function (5, p. 387, problem 67)

5,() ooy -+ ri(F)
instead of (8).

>r +11 ) converges
to A at x =0 if and only if the series for f(x) is summable (E,r)to A at x =0, r=0,
for

The corresponding result states that the Laguerre series for f (

fe, ={f eFlfeol <K exo| 8 2]

1 ] g <1, 0<x<00}.

More precisely, let {t,}7 denote the (E, r) transforms of the Laguerre series for

f(x) and {o,}7 the sequence of partial sums of the Laguerre series for f(z 4_;_11 )

Then, for f(x) €&, we have oy —t,—0, where N, n tend to © in such a way that
N =n/Qr+ 1)+ 0Q).
Furthermore, the asymptotic behaviour of the Lebesgue constants L,(r) for (E, r)
summation can be ascertained much as in (5), with
25/4 1/4 1 "
L.(r)= Py rdn"+o), r>o0.

Inasmuch as the methods (E, r) increase in strength as r increases (and are
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consistent with one another) and are all included in Borel’'s method, Corollary 1 can
be strengthened.

Thus,

(i) For f(x)€ &, r=0, if the Laguerre series for f(x) is (E, r) summable to A at
x =0, then the corresponding series for f(s;s;... s,x) converges to A at x =0 for
1< Si < 2rr++11’

For the Laguerre series of e this implies more than was inferred at the end of §1.
That series is (E, r) summable at x =0 to 1 for every r >0 (but not for r = 0). Hence,
(i) implies that the corresponding series for e®* converges to 1for 0 < b <3, aresult which
can be confirmed readily (even for all b <3) from the explicit expansion for e~* (3, p. 90,
(4.24.3)).

Next, convergence of the series for f(sox) at x =0, so=

I1<j=<gq,15q.

%, implies (E, r)
summability of the series for f(x) at x =0, r=0. Hence,

(i) For f(x) € &, 0=<r<1V2, the convergence of the Laguerre series of f(x) to A
at x =0 implies the convergence of the corresponding series for f(ax) to A at x =0,
r+1
2r+1°

In particular, if f(x) €&y, then f(ax) will converge to A for 0<a <1. Again
f(x) = e is illustrative, here with b <1.

for0<as=
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