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Mahler Measures as Linear Combinations
of L-values of Multiple Modular Forms

Detchat Samart

Abstract. We study the Mahler measures of certain families of Laurent polynomials in two and three
variables. Each of the known Mahler measure formulas for these families involves L-values of at most
one newform and/or at most one quadratic character. In this paper we show, either rigorously or nu-
merically, that the Mahler measures of some polynomials are related to L-values of multiple newforms
and quadratic characters simultaneously. The results suggest that the number of modular L-values
appearing in the formulas significantly depends on the shape of the algebraic value of the parameter
chosen for each polynomial. As a consequence, we also obtain new formulas relating special values of
hypergeometric series evaluated at algebraic numbers to special values of L-functions.

1 Introduction

For any Laurent polynomial P ∈ C[X±1
1 , . . . ,X±1

n ], the Mahler measure of P is de-
fined by

m(P) =

∫ 1

0
· · ·
∫ 1

0
log |P(e2πiθ1 , . . . , e2πiθn )| dθ1 · · · dθn.

(In some parts of the literature, m(P) is called the logarithmic Mahler measure of P,
but throughout this paper we shall omit the term logarithmic.) In the univariate case,
the Mahler measure can be calculated quite easily with the help of Jensen’s formula.
However, there does not seem to be a general formula for Mahler measures of ran-
domly chosen multivariate polynomials, and it is still unclear in what precise ways
Mahler measures are related to the polynomials. It was Deninger [7] who first used
the Bloch–Beilinson conjectures to predict that Mahler measures of certain polyno-
mials are related to special values of L-functions. In particular, he conjectured that
the following formula holds:

m(x + x−1 + y + y−1 + 1) =
15

4π2
L(E, 2) = L′(E, 0),

where E is the elliptic curve of conductor 15 defined by the projective closure of the
zero locus of x +x−1 + y + y−1 +1. This formula had been conjectural for years before
being proved by Rogers and Zudilin [24].

To consider more general situations, we let

Pk = x + x−1 + y + y−1 + k,
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where k ∈ C. It was verified numerically by Boyd [5] that, for many integral values of
k 6= 0,±4, if Ek is the elliptic curve over Q determined by the zero locus of Pk, then

(1.1) m(Pk)
?
= ckL′(Ek, 0),

where ck is a rational number of small height. (Here and throughout,
?
= means that

they are equal to at least 25 decimal places.) Note that by the modularity theorem,
relation (1.1) is equivalent to

m(Pk)
?
= ckL′(hk, 0),

where hk is the newform of weight 2 associated with Ek. (In most situations, we will be
dealing with L-values of newforms rather than those attached to algebraic varieties.)
Although Boyd’s results seem to be highly accurate, rigorous proofs of these formulas
are quite rare (see Table 1). Inspired by these results, Rodriguez Villegas [19] proved
that m(Pk) can be expressed in terms of Eisenstein–Kronecker series, and for certain
values of k they turn out to be related to special values of L-series of elliptic curves
with complex multiplication. For instance, he proved that

m(P4
√

2) = L′(E4
√

2, 0) = L′( f64, 0),(1.2)

m
(

P 4√
2

)
= L′

(
E 4√

2
, 0
)

= L′( f32, 0),(1.3)

where f64 and f32 are newforms of weight 2 and level 64 and 32, associated with the
elliptic curves E4

√
2 and E4/

√
2, respectively. He also observed from his numerical

data that the relation (1.1) seems to hold for every sufficiently large k such that k2 ∈
Z. One of the possible reasons why one needs k to be the square root of a rational
number or an integer is that Ek has a Weierstrass form

y2 = x3 +
k2

8

( k2

8
− 1
)

x2 +
k4

256
x,

which is defined over Q if k2 ∈ Q . For a complete list of conjectured formulas
obtained from Rodriguez Villegas’s computational experiments, see [19, Tab. 4].

k2 Reference(s)
8, 16, ∗ 18, 32 [19]

1 [24, 34]
4, 64 [12]
−4,−1, 2 [23, 34]

Table 1: Values of k for which formula (1.1) is known to be true.

In Section 2 we will deduce formulas for m(Pk) when k =
√

8± 6
√

2. Indeed, we
will prove that

(1.4) m
(

P√
8±6
√

2

)
=

1

2

(
L′( f64, 0)± L′( f32, 0)

)
.

∗When k = ±4, Ek is a curve of genus 0 and m(Pk) = 2L′(χ−4,−1), where χ−4(n) = (−4
n ).
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Using similar arguments one obtains conjectured formulas in terms of two different
L-values for m(Pk) when k =

√
8± 9

√
2. Observe that in these cases k2 /∈ Q, so

it is not surprising that our results are somewhat different from those of Rodriguez
Villegas. In addition, we consider the Hesse family

Qk = x3 + y3 + 1− kxy.

The corresponding elliptic curve defined by Qk has a Weierstrass model

y2 = x3 − 27k6x2 + 216k9(k3 − 27)x − 432k12(k3 − 27)2.

This family was also investigated in [19], and it was pointed out that the Mahler
measures of Qk appear to be of the form (1.1) when k is sufficienly large and k3 ∈ Z,
as hinted by the Weierstrass form given above. On the other hand, we will prove that

if k =
3
√

6− 6 3
√

2 + 18 3
√

4, then

m(Qk) =
1

2

(
L′( f108, 0) + L′( f36, 0)− 3L′( f27, 0)

)
,

where fN is a newform of weight 2 and level N. Note that, in this case, the elliptic
curve corresponding to Qk is defined over Q( 3

√
2) rather than Q .

In Section 3 we will establish some formulas concerning three-variable Mahler
measures. The author showed in [25] that for many values of k the Mahler measures
of the Laurent polynomials

(x + x−1)(y + y−1)(z + z−1) + k,

(x + x−1)2(y + y−1)2(1 + z)3z−2 − k,

x4 + y4 + z4 + 1 + kxyz

are of the form

(1.5) m(P) = c1L′(g, 0) + c2L′(χ,−1)

for some CM newform g of weight 3 with rational Fourier coefficients, an odd qua-
dratic character χ, and c1, c2 ∈ Q. To obtain the formulas of type (1.5), it seems
that the chosen value of k necessarily satisfies similar conditions as observed in the
two-variable case. For instance, for the last family, k must be sufficiently large and
k4 ∈ Z. By simple transformation, one sees that the K3 surfaces corresponding to
this family are birational to those defined by the zero loci of x4 + y4 + z4 + xyz + k−4.
When k4 ∈ Q , the K3 surfaces are then defined over Q . Moreover, in the case of
singular K3 surfaces they are known to be modular, in the sense that the L-series
attached to their transcendental lattices coincide with L-series of CM newforms of
weight 3, by a result of Livné [13]. A complete list of these newforms can be found
in [27, Tab. 1]. Therefore, in this particular case, one might expect the Mahler mea-
sures to be related to CM weight three cusp forms. On the other hand, we will first
give examples of Mahler measures of polynomials in this family when k4 are algebraic
integers but not rational integers which reveal similar phenomena as seen in the two-
variable case. For example, it will be proved that when k =

4
√

26856 + 15300
√

3 the
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following equality is true:

m(x4 + y4 + z4 + 1 + kxyz) =

5

48

(
20L′(g12, 0) + 4L′(g48, 0) + 11L′(χ−3,−1) + 8L′(χ−4,−1)

)
,

where gN is a newform of weight 3 and level N and χD(n) =
(

D
n

)
.

In Section 4 we give lists of values of k corresponding to singular K3 surfaces in the
families given by the zero loci of (x+x−1)(y+y−1)(z+z−1)+k and x4+y4+z4+1+kxyz.
It turns out that the Mahler measures of the polynomials defining these singular K3
surfaces are all conjecturally equal to rational linear combinations of modular and
Dirichlet L-values. The (conjectural) Mahler measure formulas obtained from nu-
merical computations are illustrated in Tables 4–6 at the end of this paper.

In Section 5 we establish a functional equation of three-variable Mahler measures,
which gives us a five-term relation between the Mahler measures with algebraic ar-
guments. We also give an explicit example that is related to multiple special L-values.
Many parts of this problem are still wide open and can be taken further in several
directions.

One of the properties that all families mentioned above have in common is that
their Mahler measures can be written in terms of hypergeometric series. There-
fore, one can easily deduce some interesting hypergeometric evaluations from Mahler
measure formulas. For instance, equality (1.4) implies that

4F3

( 3
2 ,

3
2 , 1, 1

2, 2, 2
; −16+12

√
2

)
=

4 + 3
√

2

2

(
log(8+6

√
2)−(L′( f64, 0)+L′( f32, 0))

)
.

2 Two-variable Mahler Measures

As mentioned earlier, we will study Mahler measures of the two families with the
complex parameter t , namely

m2(t) := 2m(Pt1/2 ) = 2m(x + x−1 + y + y−1 + t1/2),

m3(t) := 3m(Qt1/3 ) = 3m(x3 + y3 + 1− t1/3xy).

It is known that for most values of t the Mahler measures m2(t) and m3(t) can be
expressed in terms of hypergeometric series. Indeed, we have the following result
(see, for instance, [20, Thm. 3.1]).

Proposition 2.1 Let m2(t) and m3(t) be as defined above.

(i) If t 6= 0, then

m2(t) = Re
(

log(t)− 4

t
4F3

( 3
2 ,

3
2 , 1, 1

2, 2, 2
;

16

t

))
.

(ii) If |t| ≥ 27, then

m3(t) = Re
(

log(t)− 6

t
4F3

( 4
3 ,

5
3 , 1, 1

2, 2, 2
;

27

t

))
.
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Furthermore, Kurokawa and Ochiai [11] and Lalı́n and Rogers [12] showed that
m2(t) satisfies some functional equations, which enable us to prove and to conjecture
new Mahler measure formulas for some t /∈ Z. Throughout this section, fN denotes
a normalized newform of weight 2 and level N with rational Fourier coefficients.

Theorem 2.2 The following identities are true:

m2(8 + 6
√

2) = L′( f64, 0) + L′( f32, 0),(2.3)

m2(8− 6
√

2) = L′( f64, 0)− L′( f32, 0),(2.4)

where

f64(τ ) =
η8(8τ )

η2(4τ )η2(16τ )
∈ S2(Γ0(64)) and f32(τ ) = η2(4τ )η2(8τ ) ∈ S2(Γ0(32)).

(As usual, η denotes the Dedekind eta function

η(τ ) = q
1

24

∞∏
n=1

(1− qn),

where q = e2πiτ , and let Sk(Γ0(N)) denote the space of cusp forms of weight k and level
N.)

Proof It was proved in [11, Thm. 7] that if k ∈ R\{0}, then

(2.5) 2m2

(
4
(

k +
1

k

) 2)
= m2(16k4) + m2

( 16

k4

)
.

Recall from (1.2) and (1.3) that m2(32) = 2L′( f64, 0) and m2(8) = 2L′( f32, 0), so we
can easily deduce (2.3) by substituting k = 21/4 in (2.5). On the other hand, one sees
from [12, Thm. 2.2] that the following functional equation holds for any k such that
0 < |k| < 1 :

(2.6) m2

(
4
(

k +
1

k

) 2)
+ m2

(
−4
(

k− 1

k

) 2)
= m2

( 16

k4

)
.

In particular, choosing k = 2−1/4, we obtain

m2(8 + 6
√

2) + m2(8− 6
√

2) = m2(32).

Now (2.4) follows immediately from the known information above.

Rodriguez Villegas [19, Tab. 4] verified numerically that

m2(128)
?
=

1

2
L′( f448, 0) and m2(2) =

1

2
L′( f56, 0),

where f448(τ ) = q − 2q5 − q7 − 3q9 + 4q11 − 2q13 − 6q17 − · · · and f56(τ ) =
q + 2q5− q7− 3q9− 4q11 + 2q13− 6q17 + · · · . (In fact, the latter identity was recently
proved by Zudilin [34].) Therefore, letting k = 23/4 in (2.5) and k = 2−3/4 in (2.6)
results in a couple of conjectured formulas similar to (2.3) and (2.4).
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Conjecture 2.7 The following identities are true:

m2

(
8 + 9

√
2
) ?

=
1

4

(
L′( f448, 0) + L′( f56, 0)

)
,

m2

(
8− 9

√
2
) ?

=
1

4

(
L′( f448, 0)− L′( f56, 0)

)
.

We also found the following conjectured formulas via numerical computations:

m2

( 49 + 9
√

17

2

)
?
=

1

2

(
L′( f289, 0) + 8L′( f17, 0)

)
,

m2

( 49− 9
√

17

2

)
?
=

1

2

(
L′( f289, 0)− 8L′( f17, 0)

)
,

where f289(τ ) = q − q2 − q4 + 2q5 − 4q7 + 3q8 − 3q9 − · · · and f17(τ ) = q − q2 −
q4− 2q5 + 4q7 + 3q8− 3q9 + · · · . Observe that we can again employ the identity (2.5)
for k = (1 +

√
17)/4 to deduce

2m2(17) = m2

( 49 + 9
√

17

2

)
+ m2

( 49− 9
√

17

2

)
?
= L′( f289, 0),

which is equivalent to a conjectured formula in [19, Tab. 4]. A weaker form of these
formulas, namely

m2

( 49 + 9
√

17

2

)
−m2(17)

?
= 4L′( f17, 0),

was also briefly discussed in [22, §4].
To study the Mahler measure m3(t), we use the following crucial result, which ba-

sically states that m3(t) can be written in terms of Eisenstein–Kronecker series when
t is parameterized properly.

Proposition 2.8 (Rodriguez Villegas [19, §IV]) Let t3(τ ) = 27 +
(
η(τ )/η(3τ )

) 12
,

and let F be the fundamental domain for Γ0(3) with vertices i∞, 0, (1 + i/
√

3)/2, and
(−1 + i/

√
3)/2. If τ ∈ F, then

m3(t3(τ )) =
81
√

3 Im(τ )

4π2

∑′

m,n∈Z

χ−3(m)(m + 3n Re(τ ))

[(m + 3nτ )(m + 3nτ̄ )]2
,

where
∑′

m,n means that (m, n) = (0, 0) is excluded from the summation.

The remaining part of this section will be devoted to proving the following result.

Theorem 2.9 If t = 6− 6 3
√

2 + 18 3
√

4, then

m3(t) =
3

2

(
L′( f108, 0) + L′( f36, 0)− 3L′( f27, 0)

)
,

where f36(τ ) = η4(6τ ) ∈ S2(Γ0(36)), f27(τ ) = η2(3τ )η2(9τ ) ∈ S2(Γ0(27)), and
f108(τ ) = q + 5q7 − 7q13 − q19 − 5q25 − 4q31 − q37 + · · · , the unique normalized
newform in S2(Γ0(108)).
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Applying Theorem 2.1, Proposition 2.2, and Theorem 2.9, one immediately ob-
tains the following hypergeometric evaluation formulas.

Corollary 2.10 The following identities hold:

4F3

( 3
2 ,

3
2 , 1, 1

2, 2, 2
; −16 + 12

√
2

)
=

4 + 3
√

2

2

(
log(8 + 6

√
2)− (L′( f64, 0) + L′( f32, 0))

)
,

4F3

( 4
3 ,

5
3 , 1, 1

2, 2, 2
;

63 + 171 3
√

2− 18 3
√

4

250

)
=
(

1− 3
√

2 + 3 3
√

4
)(

log
(

6− 6 3
√

2 + 18 3
√

4
)

− 3

2

(
L′( f108, 0) + L′( f36, 0)− 3L′( f27, 0)

))
.

To establish Theorem 2.9, we require some identities for L-values of the involved
cusp forms, which will be established in the following lemmas.

Lemma 2.11 Let f36(τ ) be as defined in Theorem 2.9. Then the following equality
holds:

L( f36, 2) =
1

2

∑′

m,n∈Z

mχ−3(m)

(m2 + 3n2)2
.

Proof First, note that for any τ in the upper half plane η(τ ) satisfies the functional
equation

η
(
− 1

τ

)
=
√
−iτη(τ ).

Hence it is easily seen that

η
( √−3

3

)
η(
√
−3)

= 3
1
4 ,

which implies that t3

( √−3
3

)
= 54. Thus we have from Theorem 2.8 that

m3(54) =
81

4π2

∑′

m,n∈Z

mχ−3(m)

(m2 + 3n2)2
.

On the other hand, Rogers [20, Thm. 2.1, Thm. 5.2] proved that

m3(54) =
81

2π2
L( f36, 2),

whence the lemma follows.

Lemma 2.12 Let f108(τ ) be the unique normalized newform with rational coefficients
in S2(Γ0(108)), and let

A = {(m, n) ∈ Z2 | (m, n) ≡ (−1,−2), (2, 1), (1, 0), (−2, 3) mod 6}.
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Then

L( f108, 2) =
∑

(m,n)∈A

m + 3n

(m2 + 3n2)2
.

Proof By taking the Mellin transform of the newform, it suffices to prove that

(2.13) f108(τ ) =
∑

(m,n)∈A

(m + 3n)qm2+3n2

.

Let K = Q(
√
−3),OK = Z

[ 1+
√
−3

2

]
,Λ = (3 + 3

√
−3) ⊂ OK , and let I(Λ) be the

group of fractional ideals of OK coprime to Λ. Since Λ can be factorized as

Λ =
( 1 +

√
−3

2

)
(
√
−3)2(2),

any integral ideal a is coprime to Λ if and only if (
√
−3) - a and (2) - a. As a con-

sequence, every integral ideal coprime to Λ is uniquely represented by (m + n
√
−3),

where m, n ∈ Z,m > 0, 3 - m, and m 6≡ n (mod 2). Let P(Λ) denote the monoid of
integral ideals coprime to Λ.

Define ϕ : P(Λ)→ C× by

ϕ((m + n
√
−3)) =

{
−χ−3(m)m+χ−3(n)(3n)−(χ−3(n)m+χ−3(m)n)

√
−3

2 if 3 - n,

χ−3(m)(m + n
√
−3) if 3|n.

Then it is not difficult to check that ϕ is multiplicative and for each (m + n
√
−3) ∈

P(Λ) with m + n
√
−3 ≡ 1 (mod Λ),

ϕ
(

(m + n
√
−3)

)
= m + n

√
−3.

Hence we can extend ϕmultiplicatively to define a Hecke Grössencharacter of weight
2 and conductor Λ on I(Λ). Now if we let

Ψ(τ ) :=
∑

a∈P(Λ)

ϕ(a)qN(a),

then one sees from [18, Thm. 1.31] that Ψ(τ ) is a newform in S2(Γ0(108)). Observe
that

ϕ((m + n
√
−3)) + ϕ((m− n

√
−3)) =

{
−χ−3(m)m + χ−3(n)(3n) if 3 - n,

2χ−3(m)m if 3|n,

so we have

Ψ(τ ) =
∑

m,n∈N
3-m,3-n

m 6≡n (mod 2)

(−χ−3(m)m+χ−3(n)(3n))qm2+3n2

+
∑

m∈N,n∈Z
3-m,3|n

m6≡n (mod 2)

χ−3(m)mqm2+3n2

.

Working modulo 6, one can show that∑
m,n∈N
3-m,3-n

m 6≡n (mod 2)

(−χ−3(m)m + χ−3(n)(3n))qm2+3n2

=
∑

m,n∈Z
(m,n)≡(−1,2),(2,1)

(mod 6)

(m + 3n)qm2+3n2

,
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and ∑
m∈N,n∈Z

3-m,3|n
m 6≡n (mod 2)

χ−3(m)mqm2+3n2

=
∑

m,n∈Z
(m,n)≡(1,0),(−2,3)

(mod 6)

mqm2+3n2

=
∑

m,n∈Z
(m,n)≡(1,0),(−2,3)

(mod 6)

(m + 3n)qm2+3n2

.

Consequently, the coefficients of Ψ(τ ) are rational, which implies that Ψ(τ ) =
f108(τ ), and (2.13) holds. (One can check using, for example, Sage or Magma that
there is only one normalized newform in S2(Γ0(108)).)

Lemma 2.14 Let f27(τ ) be as defined in Theorem 2.9, and let

B = {(m, n) ∈ Z2 | (m, n) ≡
(1, 0), (−2, 3), (1,−1), (−2, 2), (2,−1), (−1, 2) mod 6}.

Then

L( f27, 2) =
∑′

(m,n)∈B

m + 3n

(m2 + 3n2)2
.

Proof As before, we will establish a q-expansion for f27(τ ) first; i.e., we aim at prov-
ing that

f27(τ ) =
∑

(m,n)∈B

(m + 3n)qm2+3n2

.

Recall from [20, §6] that the following identity is true:

(2.15) f27(τ ) =
∑

m,n∈Z
(m,n)≡(1,1),(−2,−2)

(mod 6)

( m + 3n

4

)
q

m2+3n2

4 .

Therefore, it is sufficient to prove the following claims, each of which involves only
simple manipulation. (Unless otherwise stated, each ordered pair (a, b) listed be-
neath the sigma sign indicates all (m, n) ∈ Z2 such that m ≡ a and n ≡ b (mod 6).)

Claim 1∑
(1,1)

( m + 3n

4

)
q

m2+3n2

4 =
∑

(1,0),(−2,3)

(m + 3n)qm2+3n2

+
∑

(2,−1),(−1,2)

( m + 3n

2

)
qm2+3n2

.

Claim 2∑
(−2,−2)

( m + 3n

4

)
q

m2+3n2

4 =
∑

(1,−1),(−2,2)

(m+3n)qm2+3n2

+
∑

(2,−1),(−1,2)

( m + 3n

2

)
qm2+3n2

.
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Proof of Claim 1 It is clear that∑
(1,0),(−2,3)

(m + 3n)qm2+3n2

=
∑

(1,0),(−2,3)

mqm2+3n2

=
∑

(1,0),(−2,3)

( (m + 3n) + 3(m− n)

4

)
q

(m+3n)2+3(m−n)2

4 , and

∑
(2,−1),(−1,2)

( m + 3n

2

)
qm2+3n2

=
∑

(2,−1),(−1,2)

( (3n−m) + 3(m + n)

4

)
q

(3n−m)2+3(m+n)2

4 .

Also, it can be verified in a straightforward manner that

{(m, n) | m ≡ n ≡ 1 (mod 6)} =

{(k + 3l, k− l) | (k, l) ≡ (1, 0), (−2, 3) (mod 6)}
t {(3l− k, k + l) | (k, l) ≡ (2,−1), (−1, 2) (mod 6)},

where t denotes disjoint union, so we obtain Claim 1.

Proof of Claim 2 Let us observe first that, by symmetry,∑
(1,−1),(−2,2)

(3m + 3n)qm2+3n2

= 0,

so we have that ∑
(1,−1),(−2,2)

(−2m)qm2+3n2

=
∑

(1,−1),(−2,2)

(m + 3n)qm2+3n2

.

It follows that
(2.16)∑
(−1,−1),(2,2)

(m + 3n)qm2+3n2

=
∑

(1,−1),(−2,2)

(−m + 3n)qm2+3n2

=
∑

(1,−1),(−2,2)

(m + 3n)qm2+3n2

+
∑

(1,−1),(−2,2)

(−2m)qm2+3n2

= 2
∑

(1,−1),(−2,2)

(m + 3n)qm2+3n2

.

Therefore, ∑
(−2,−2)

( m + 3n

4

)
q

m2+3n2

4 =
∑

(−1,−1) (mod 3)

( m + 3n

2

)
qm2+3n2

=
∑

(−1,−1),(2,2)
(2,−1),(−1,2)

( m + 3n

2

)
qm2+3n2

=
∑

(1,−1),(−2,2)

(m + 3n)qm2+3n2

+
∑

(2,−1),(−1,2)

( m + 3n

2

)
qm2+3n2

,

where the last equality comes from (2.16).
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Lemma 2.17 The following equality is true:

L( f108, 2)− 3

4
L( f27, 2) =

3

2

∑
m,n∈Z

3-n

mχ−3(m)

(3m2 + n2)2
.

Proof Taking the Mellin transform of f27(τ ) in (2.15) yields

(2.18) L( f27, 2) = 4
∑

(1,1),(−2,−2)

m + 3n

(3m2 + n2)2
.

Since χ−3(n) = j if and only if n ≡ j (mod 3), where j ∈ {−1, 0, 1}, we have that∑
m,n∈Z

3-n

mχ−3(m)

(3m2 + n2)2
=
∑

m,n∈Z
3-m

nχ−3(n)

(m2 + 3n2)2

=
∑

n≡−1 (mod 3)
3-m

−2n

(m2 + 3n2)2
.

Also, it is obvious that the symmetry of the summation yields∑
n≡−1 (mod 3)

3-m

m

(m2 + 3n2)2
= 0.

Hence, using Lemma 2.12, one sees that

L( f108, 2)− 3

2

∑
m,n∈Z

3-n

mχ−3(m)

(3m2 + n2)2

=
∑

(−1,−2),(2,1)
(1,0),(−2,3)

m + 3n

(m2 + 3n2)2
+

∑
n≡−1 (mod 3)

3-m

3n

(m2 + 3n2)2

=
∑

(−1,−2),(2,1)
(1,0),(−2,3)

m + 3n

(m2 + 3n2)2
+

∑
n≡−1 (mod 3)

3-m

m + 3n

(m2 + 3n2)2

=
∑

(−1,−2),(2,1)
(1,0),(−2,3)

m + 3n

(m2 + 3n2)2
+

∑
(−2,2),(−2,−1)
(−1,2),(−1,−1)

(1,2),(1,−1)
(2,2),(2,−1)

m + 3n

(m2 + 3n2)2

=
∑

(1,0),(−2,3)
(1,−1),(−2,2)
(2,−1),(−1,2)

m + 3n

(m2 + 3n2)2
−

∑
(1,1),(−2,−2)

m + 3n

(m2 + 3n2)2

= L( f27, 2)− 1

4
L( f27, 2),

where we have applied Lemma 2.14 and (2.18) in the last equality.
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Putting the previous lemmas together, we are now ready to complete a proof of
Theorem 2.9.

Proof of Theorem 2.9 Let τ0 =
√
−3/9. Then t3(τ0) = 6 − 6 3

√
2 + 18 3

√
4. This

can be verified by considering a numerical approximation of t3(τ0) and using the
following identities:

j(τ ) = j(−1/τ ), f3(
√
−27) = 2(1 + 3

√
2 + 3
√

4),

j(τ ) =
(f24(τ )− 16)3

f24(τ )
=

t3(τ )(t3(τ ) + 216)3

(t3(τ )− 27)3
,

where j(τ ) is the j-invariant, and f(τ ) is a Weber modular function defined by

f(τ ) = e−
πi
24
η
(
τ+1

2

)
η(τ )

.

(For references to these identities, see [6, §1], [31, Tab. VI], and [33, §1].) Then we
see from Proposition 2.8 that

m3(t3(τ0)) =
27

4π2

∑′

m,n∈Z

mχ−3(m)

(m2 + n2

3 )2

=
3

2

( 81

2π2

∑′

m,n∈Z

mχ−3(m)

(3m2 + n2)2

)
=

3

2

(
81

2π2

∑′

m,n∈Z
3|n

mχ−3(m)

(3m2 + n2)2
+

81

2π2

∑
m,n∈Z

3-n

mχ−3(m)

(3m2 + n2)2

)

=
3

2

(
9

2π2

∑′

m,n∈Z

mχ−3(m)

(m2 + 3n2)2
+

81

2π2

∑
m,n∈Z

3-n

mχ−3(m)

(3m2 + n2)2

)
.

Now we can deduce using Lemmas 2.11 and 2.17 that

(2.19) m3(t3(τ0)) =
3

2

( 27

π2
L( f108, 2) +

9

π2
L( f36, 2)− 81

4π2
L( f27, 2)

)
.

Finally, the formula stated in the theorem is merely a simple consequence of (2.19)
and the functional equation

(√N

2π

) s
Γ(s)L( f , s) = ε

(√N

2π

) 2−s
Γ(2− s)L( f , 2− s),

where f is any newform of weight 2 and level N with real Fourier coefficients, and
ε ∈ {−1, 1}, depending on f . (If f ∈ { f27, f36, f108}, then ε = 1.)
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In addition to the formula stated in Theorem 2.9, we discovered some other con-
jectured formulas of similar type using numerical values of the hypergeometric rep-
resentation of m3(t) given in Proposition 2.1:

m3

(
17766 + 14094 3

√
2 + 11178 3

√
4
) ?

=
3

2
(L′( f108, 0) + 3L′( f36, 0) + 3L′( f27, 0)),

m3(α± βi)
?
=

3

2
(L′( f108, 0) + 3L′( f36, 0)− 6L′( f27, 0)),

m3

( (7 +
√

5)3

4

)
?
=

1

8

(
9L′( f100, 0) + 38L′( f20, 0)

)
,

m3

( (7−
√

5)3

4

)
?
=

1

4

(
9L′( f100, 0)− 38L′( f20, 0)

)
,

where α = 17766 − 7047 3
√

2 − 5589 3
√

4, β = 27
√

3(261 3
√

2 − 207 3
√

4), f100(τ ) =
q + 2q3 − 2q7 + q9 − 2q13 + 6q17 − 4q19 − · · · , and f20(τ ) = η2(2τ )η2(10τ ).

It is worth mentioning that the last two Mahler measures above also appear in
[9, Thm. 6] and [23, §4]. More precisely, it was shown that

19m3(32) = 16m3

( (7 +
√

5)3

4

)
− 8m3

( (7−
√

5)3

4

)
,(2.20)

m3(32) = 8L′( f20, 0).

Many of the identities like (2.20) can be proved using the elliptic dilogarithm eval-
uated at some torsion points on the corresponding elliptic curve. However, to our
knowledge, no rigorous proof of the conjectured formulas for the individual terms
on the right seems to appear in the literature.

3 Three-variable Mahler Measures

From here on, we denote

As := (x + x−1)(y + y−1)(z + z−1) + s1/2, n2(s) := 2m(As),

Bs := (x + x−1)2(y + y−1)2(1 + z)3z−2 − s, n3(s) := m(Bs),

Cs := x4 + y4 + z4 + 1 + s1/4xyz, n4(s) := 4m(Cs),

s2(q(τ )) := −
∆
(
τ + 1

2

)
∆(2τ + 1)

,

s3(q(τ )) :=
(

27
( η(3τ )

η(τ )

) 6
+
( η(τ )

η(3τ )

) 6) 2
,

s4(q(τ )) :=
∆(2τ )

∆(τ )

(
16
( η(τ )η(4τ )2

η(2τ )3

) 4
+
( η(2τ )3

η(τ )η(4τ )2

) 4) 4
,

where ∆(τ ) = η24(τ ) and q(τ ) = e2πiτ . By abuse of notation, we will sometimes
write s j(τ ) instead of s j(q(τ )), while they actually represent the same function.

The main result we will show in this section is stated as follows.
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Theorem 3.1 The following identities are true:

n4(26856 + 15300
√

3) =
5

12

(
20L′(g12, 0) + 4L′(g48, 0) + 11L′(χ−3,−1)

+ 8L′(χ−4,−1)
)
,

n4(26856− 15300
√

3) =
5

6

(
−20L′(g12, 0) + 4L′(g48, 0)− 11L′(χ−3,−1)

+ 8L′(χ−4,−1)
)
,

where g12(τ ) = η3(2τ )η3(6τ ) ∈ S3(Γ0(12), χ−3), and g48(τ ) is the quadratic twist of
g12 by χ−4 and belongs to S3(Γ0(48), χ−3).

Proof By a result in [25, Prop. 2.1], we have that n4(s) can be expressed as an Eisen-
stein–Kronecker series when s is parameterized by s4(τ ), namely

(3.2) n4(s4(τ )) =
10 Im(τ )

π3

∑′

m,n∈Z

(
−
( 4n2

(m2|τ |2 + n2)3
− 1

(m2|τ |2 + n2)2

)
+ 4
( 4n2

(4m2|τ |2 + n2)3
− 1

(4m2|τ |2 + n2)2

))
for every τ ∈ C such that τ is purely imaginary and Im(τ ) ≥ 1/

√
2. It is clear that

s4(τ ) can be rewritten in the form

s4(τ ) =
1

f8
1(2τ )

( 16

f8
1(4τ )

+
f8

1(4τ )

f8
1(2τ )

) 4
,

where f1(τ ) :=
η( τ2 )
η(τ ) , also known as a Weber modular function. We obtain from

[31, Tab. VI] that

f4
1(
√
−12) = 2

7
6 (1 +

√
3), f8

1(
√
−48) = 2

19
6 (1 +

√
3)(
√

2 +
√

3)2(1 +
√

2)2.

Therefore, after simplifying, we have s4(
√
−3) = 26856 + 15300

√
3, and substituting

τ =
√
−3 in (3.2) yields

(3.3)

n4(26856 + 15300
√

3) =
10
√

3

π3

∑′

m,n∈Z

(
−
( 4n2

(3m2 + n2)3
− 1

(3m2 + n2)2

)
+ 4
( 4n2

(12m2 + n2)3
− 1

(12m2 + n2)2

))
=

10
√

3

π3

∑′

m,n∈Z

(
2(3n2 −m2)

(m2 + 3n2)3
+

8(m2 − 12n2)

(m2 + 12n2)3

+
4

(m2 + 12n2)2
− 1

(m2 + 3n2)2

)
.

It was proved in [4, Cor. 4.4] that the following identity holds:

(3.4)
9

8

∑′

m,n∈Z

m2 − 3n2

(m2 + 3n2)3
=
∑′

m,n∈Z

( m2 − 12n2

(m2 + 12n2)3
+

4n2 − 3m2

(3m2 + 4n2)3

)
.
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Equivalently, one has that
(3.5)∑′

m,n∈Z

( 2(3n2 −m2)

(m2 + 3n2)3
+

8(m2 − 12n2)

(m2 + 12n2)3

)
=

5

2

∑′

m,n∈Z

m2 − 3n2

(m2 + 3n2)3

+ 4
∑′

m,n∈Z

( m2 − 12n2

(m2 + 12n2)3
+

3m2 − 4n2

(3m2 + 4n2)3

)
= 5L(g12, 3) + 8L(g48, 3),

where the last equality is a direct consequence of [25, Lemmas 2.7 and 2.12].
Recall from Glasser and Zucker’s results on lattice sums [8, Tab. VI] that

(3.6)

∑′

m,n∈Z

1

(m2 + 3n2)2
=

9

4
ζ(2)L(χ−3, 2) =

3π2

8
L(χ−3, 2),

∑′

m,n∈Z

1

(m2 + 12n2)2
=

69

64
ζ(2)L(χ−3, 2) + L(χ12, 2)L(χ−4, 2)

=
23π2

128
L(χ−3, 2) +

π2

6
√

3
L(χ−4, 2).

Then we substitute (3.5) and (3.6) in (3.3) to get

n4(26856 + 15300
√

3) =
50
√

3

π3
L(g12, 3) +

80
√

3

π3
L(g48, 3)

+
55
√

3

16π
L(χ−3, 2) +

20

3π
L(χ−4, 2).

Finally, the derivative expression follows directly from the functional equations for
the involved L-functions.

The second formula can be shown in a similar manner by choosing τ0 =
√
−3/2.

Although Weber did not list an explicit value of f1(
√
−3) in his book, one can find it

easily using the identity f1(2τ ) = f(τ )f1(τ ) and the fact that f(
√
−3) = 2

1
3 . There-

fore, we have s4(τ0) = 26856− 15300
√

3, and

n4(s4(τ0))

=
20
√

3

π3

∑′

m,n∈Z

( 8(3m2 − 4n2)

(3m2 + 4n2)3
+

2(m2 − 3n2)

(m2 + 3n2)3
+

1

(m2 + 3n2)2
− 4

(3m2 + 4n2)2

)
=

20
√

3

π3

(
−5L(g12, 3) + 8L(g48, 3)− 11π2

32
L(χ−3, 2) +

2π2

3
√

3
L(χ−4, 2)

)
,

where we again use (3.4), (3.6), and the identity

2L(χ12, 2)L(χ−4, 2) =
∑′

m,n∈Z

( 1

(m2 + 12n2)2
− 1

(3m2 + 4n2)2

)
(see [25, Lem. 2.6]).
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4 Arithmetic of K3 Surfaces

For additional details omitted from this section, the reader can consult [4, §2] and
[28]. Recall that a smooth projective surface X is called a K3 surface if H1(X,OX) = 0
and the canonical bundle of X is trivial. Hence every K3 surface admits a holomor-
phic 2-form, unique up to scalar multiplication. Also, one has that H2(X,Z) is a free
abelian group of rank 22 and can be decomposed into H2(X,Z) ∼= NS(X) ⊕ T(X),
where NS(X), called the Néron-Severi group, is the group of algebraic equivalence
classes of divisors on X, and T(X), the transcendental lattice, is the orthogonal com-
plement of NS(X) in H2(X,Z). The rank of NS(X), denoted by ρ(X), is called the Pi-
card number of X. Over any field of characteristic zero, we have 1 ≤ ρ(X) ≤ 20, and
X is said to be singular if ρ(X) = 20. Let {γ1, γ2, . . . , γ22} be a basis for H2(X,Z), and
let ω be the nowhere-vanishing holomorphic 2-form on X. Then the integral

∫
γi
ω

is called a period of X, which vanishes if and only if γi ∈ NS(X). We shall denote by
Xs,Ys, and Zs the projective hypersurfaces corresponding to the one-parameter fam-
ilies As,Bs, and Cs, respectively. The family Zs is sometimes called the Dwork family
and is known to be K3 surfaces (see, e.g., [10]). To see that, for all but finitely many
s, Xs is a K3 surface, it suffices to show that it is birational to an elliptic surface that
has a minimal Weierstrass form

y2 = x3 + A4(z)x + A6(z),

where A4(z),A6(z) ∈ Z[s, z] with deg(Ai) ≤ 2i for all i and deg(Ai) > i for some i
[29, §4]. Indeed, one can manipulate this using Maple and find that

A4(z) = −768(z2 + 1)4 + 48sz2(z2 + 1)2 − 3s2z4,

A6(z) = 8192(z2 + 1)6 − 768sz2(z2 + 1)4 − 48s2z4(z2 + 1)2 + 2s3z6.

Since A4(z) and A6(z) satisfy the conditions above, it follows that Xs is generically a
family of K3 surfaces. Also, using the Weierstrass model above, we have that Xs is
defined over Q if s ∈ Q . Letting s = 1/µ, we have that a period of Xs(µ) is

u0(µ) :=
1

(2πi)3

∫
T3

1

1− µ1/2(x + x−1)(y + y−1)(z + z−1)

dx

x

dy

y

dz

z

=3F2

( 1
2 ,

1
2 ,

1
2

1, 1
; 64µ

)
.

One can observe from the definition of the Mahler measure that in this case, for
s > 64,

dn2(s)

ds
= 2µ

1
2 u0(µ).

Furthermore, it can be checked easily that u0 is a holomorphic solution around µ = 0
of the third-order differential equation

µ2(64µ− 1)
d3u

dµ3
+ µ(288µ− 3)

d2u

dµ2
+ (208µ− 1)

du

dµ
+ 8u = 0,

called the Picard–Fuchs equation of Xs(µ). Since the order of the Picard–Fuchs equa-
tion equals the rank of T(X), the generic Picard number of Xs must be 19, and we
have from Morrison’s result [17, Cor. 6.4] that Xs admits a Shida–Inose structure for
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every nonzero s. Roughly speaking, this means that there are isogenous elliptic curves
Es and E′s together with the following diagram:

Xs Es × E′s

Km(Es × E′s).

Here Km(Es×E′s) is the Kummer surface for Es and E′s, and the dashed arrows denote
rational maps of degree 2. In addition, Es is a CM elliptic curve if and only if Xs is
singular. It is known from the results of Ahlgren, Ono, and Penniston [1] and Long
[15, 16] that u0

(
− µ

64

)
is a holomorphic solution around µ = 0 of the Picard-Fuchs

equation of the family of K3 surfaces given by the equation

X̃µ : z2 = xy(x + 1)(y + 1)(x + µy).

In particular, they proved that the family of elliptic curves associated to X̃µ via a
Shioda–Inose structure is

Ẽµ : y2 = (x − 1)
(

x2 − 1

1 + µ

)
.

Hence, by simple reparametrization, the family of elliptic curves

Es : y2 = (x − 1)
(

x2 − s

s− 64

)
,

gives rise to the Shioda–Inose structure of Xs, and the j-function of Es is

j(Es) =
(s− 16)3

s
.

Recall from [30, §A.3] that if Es is defined over Q , then Es has complex multiplication
if and only if

j(Es) ∈{−6403203,−52803,−9603,−3 · 1603,−963,−323,−153,

0, 123, 203, 2 · 303, 663, 2553} =: C1.

Furthermore, with the aid of Sage, we find that the set of the CM j-invariants in
Q(
√

2) is

C1 ∪ {41113158120± 29071392966
√

2, 26125000± 18473000
√

2,

2417472± 1707264
√

2, 3147421320000± 2225561184000
√

2} =: C2.

As a consequence, we can explicitly determine the values of s such that Es has a CM
j-invariant in C2. Some of these values are given below, together with j(Es), the
discriminant D, and the conductor f of the order of the complex multiplication.

For each value of s in Table 2, it turns out that n2(s) (conjecturally) equals rational
linear combinations of L-values of CM weight three newforms and those of Dirichlet
characters, as listed in Table 4. Note, however, that there are several algebraic values of
s other than those in Table 2 that yield CM elliptic curves Es, but we have not been able
to determine whether the corresponding n2(s) are related to L-values. For example,
if s = 16 + 1600 3

√
2− 1280 3

√
4, then j(Es) = −3 · 1603, so Es is CM. We hypothesize
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s j(Es) D f
16 0 −3 1

256,−104± 60
√

3 2 · 303 −3 2
−8, 64 123 −4 1

−512, 280± 198
√

2 663 −4 2

1, 47±45
√
−7

2 −153 −7 1
4096,−2024± 765

√
7 −153 −7 2

−64, 56± 40
√

2 203 −8 1
−1088± 768

√
2 2417472∓ 1707264

√
2 −24 1

568 + 384
√

2± 336
√

3± 216
√

6 2417472 + 1707264
√

2 −24 1
568± 384

√
2 + 336

√
3± 216

√
6 2417472− 1707264

√
2 −24 1

Table 2: Some values of s for which Es is CM.

from the known examples that n2(s) should involve exactly three modular L-values,
though no such conjectural formula has been found.

Now let us consider the family Zs of quartic surfaces defined by Cs = 0. Again, it
follows from Long’s result [14, §5.2] that if we parameterize s by

s = s(u) := − 210u4

(u4 − 1)2
,

then a family of elliptic curves Gs(u) whose j-function is given by

j(Gs(u)) =
64(3u2 + 1)3(u2 + 3)3

(u4 − 1)2(u2 − 1)2

gives rise to a Shioda–Inose structure of Zs(u). Indeed, a Weierstrass form of Gs is
explicitly determined in our forthcoming paper [26]. Thus it can be shown in a
similar manner that if s is an algebraic number in the second column of Table 6, then
Zs is a singular K3 surface, and n4(s) relates to modular and Dirichlet L-values. See
below for a table containing information analogous to that in Table 2.

What is remarkable about a singular K3 surface defined over Q is that it is al-
ways modular, as mentioned in the introduction. Nevertheless, the modularity of
singular K3 surfaces defined over arbitrary number fields is not known. The nu-
merical evidences of relationships between the three-variable Mahler measures and
L-values obtained in Section 6 might give us some clues about modularity of the cor-
responding K3 surfaces defined over some number fields. Nevertheless, this certainly
requires further investigation. It would also be highly desirable to find all possible
Mahler measure formulas n j(s), j = 2, 3, 4, that can be expressed in terms of special
L-values.

5 Functional Equations in the Three-variable Case

One has seen from [12] that m2(t) satisfies some functional equations that can be
applied in establishing new Mahler measure formulas as shown in Section 2. This
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s j(Gs) D f
−144, 26856− 15300

√
3 2 · 303 −3 2

26856 + 15300
√

3 1417905000 + 818626500
√

3 −3 4
648, 143208− 101574

√
2 663 −4 2

−12288 76771008 + 44330496
√

3 −4 3
143208 + 101574

√
2 41113158120 + 29071392966

√
2 −4 4

81 −153 −7 1
−3969, 8292456− 3132675

√
7 2553 −7 2

8292456 + 3132675
√

7 137458661985000 + 51954490735875
√

7 −7 4
256, 3656− 2600

√
2 203 −8 1

3656 + 2600
√

2 26125000 + 18473000
√

2 −8 2
614656 188837384000 + 77092288000

√
6 −8 3

−192303±85995
√

5
2

37018076625∓16554983445
√

5
2 −15 2

−1024 632000 + 282880
√

5 −20 1
2304, 1207368 + 853632

√
2− 2417472 + 1707264

√
2 −24 1

697680
√

3− 493272
√

6
1207368− 853632

√
2− 2417472− 1707264

√
2 −24 1

697680
√

3 + 493272
√

6
1207368± 853632

√
2+ 5835036074184± 4125993565824

√
2+ −24 2

697680
√

3± 493272
√

6 3368859648336
√

3± 2382143496408
√

6
20736 212846400 + 95178240

√
5 −40 1

−82944 3448440000 + 956448000
√

13 −52 1
−893952± 516096

√
3 799200236736∓ 461418467328

√
3+ −84 1

302069634048
√

7∓ 174399982848
√

21
347648256± 141926400

√
6 120858928019208000± 49340450750976000

√
6± −168 1

32300907105600000
√

14 + 26373580212672000
√

21

Table 3: Some values of s for which Gs is CM.

section aims to derive a functional equation for three-variable Mahler measures. We
will show the following theorem.

Theorem 5.1 If t ∈ C\{0} and |t| is sufficiently small, then

n2

( 16

t(1− t)

)
= 9n2

( 4(1 +
√

1− t)6

t2
√

1− t

)
+ 4n2

( −210(1 +
√

1− t)6
√

1− t

t4

)
− n2

( −16(1− t)2

t

)
− 8n2

( 2(1 + 4
√

1− t)12

t(1−
√

1− t)3 4
√

1− t

)
.

Proof The proof requires some preliminary results from [21, Thm. 2.3] and Ra-
manujan’s theory of elliptic functions. Following notations in [21], we let

G(q) := Re
(
− log(q) + 240

∞∑
n=1

n2 log(1− qn)
)
, χ(q) :=

∞∏
n=0

(
1 + q2n+1

)
.
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Recall from Rogers’ result that if |q| is sufficiently small, then the following matrix
equation holds: G(q)

G(−q)
G(q2)

 =

−19 −4 12
−4 −19 12
−3 −3 4

 n2(s2(q))
n2(s2(−q))

2n2

(
s2(q2)

)
− n2

(
s2(−q2)

)
 .

Expressing G(q2) in two different ways, one finds that

(5.2) n2(s2(q)) = 9n2

(
s2(q2)

)
+ 4n2

(
s2(−q4)

)
− n2(s2(−q))− 8n2

(
s2(q4)

)
.

Now let

z2(t) = 2F1

( 1
2 ,

1
2

1
; t

)
, y2(t) =

πz2(1− t)

z2(t)
, q2(t) = e−y2 .

Note that q2(t) defined above is sometimes called the signature 2 elliptic nome. It is
known from [2, §17] that the following identities hold:

χ(q2) = 21/6
( q2

t(1− t)

) 1/24
, χ(−q2) = 21/6(1− t)1/12

( q2

t

) 1/24
,

χ(−q2
2) = 21/3(1− t)1/24

(q2

t

)1/12
.

Moreover, we can deduce formulas for χ(q2
2), χ(q4

2), and χ(−q4
2) from the identities

above using a process called obtaining a formula by duplication; that is, if we have
Ω(t, q2, z2) = 0, then

Ω
(( 1−

√
1− t

1 +
√

1 + t

) 2
, q2

2,
z2(1 +

√
1− t)

2

)
= 0.

Therefore, by some manipulation, we find that

χ24(q2
2) =

4(1 +
√

1− t)6

t2
√

1− t
q2

2, χ24(q4
2) =

2(1 + 4
√

1− t)12

t(1−
√

1− t)3 4
√

1− t
q4

2,

χ24(−q4
2) =

210(1 +
√

1− t)6
√

1− t

t4
q4

2.

The theorem then follows immediately from these identities and (5.2).

As an application of Theorem 5.1, we can deduce a five-term relation

n2(64) = 9n2(280 + 198
√

2) + 4n2(−143360− 101376
√

2)

− n2(−8)− 8n2(71704 + 50688
√

2 + 60282 4
√

2 + 42633 4
√

8)

by letting t = 1/2. It would be interesting to see if each term in the equation above is
related to special L-values. It turns out that only a partial answer can be given here.
First, it was rigorously proved in [25, Thm. 1.2] that n2(64) = 8L′(g16, 0), where
g16(τ ) = η6(4τ ) ∈ S3(Γ0(16), χ−4). Then, using the hypergeometric representation
of n2(s) given in [21, Prop. 2.2], we are able to verify numerically that the following
formulas hold:

n2(−8)
?
= 4L′(g16, 0) + L′(χ−4,−1),

n2(280 + 198
√

2)
?
=

1

8
(36L′(g16, 0) + 4L′(g64, 0) + 13L′(χ−4,−1) + 4L′(χ−8,−1)),
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where g64(τ ) is the normalized newform of weight 3 and level 64 with rational Fourier
coefficients. Nevertheless, no similar evidence for the remaining two terms has been
found. From the previous examples and numerical observations exhibited at the end
of this paper, it is not unreasonable to conjecture that

n2(−143360− 101376
√

2) and n2(71704 + 50688
√

2 + 60282 4
√

2 + 42633 4
√

8)

involve two and four modular L-values, respectively, corresponding to weight 3 new-
forms of higher level. However, we are still unable to find the L-values of the new-
forms that are likely to be our possible candidates.

It is also possible to obtain a functional equation for n4(s) defined in Section 3
using similar arguments above. Again, we see from [21] that for |q| sufficiently small G(q)

G(−q)
G(q2)

 =

−5 −2 4
−2 −5 4
−1 −1 2

 n4(s4(q))
n4(s4(−q))
n4(s4(q2))

 .

Hence we find that

n4(s4(q)) = 7n4

(
s4(q2)

)
+ 2n4

(
s4(−q2)

)
− n4(s4(−q))− 4n4

(
s4(q4)

)
.

To express s4(q), s4(−q), s4(q2), s4(−q2), and s4(q4) in terms of algebraic functions of
some parameter we need the Ramanujan’s theory of signature 4. (See [3] for ref-
erences.) However, the results we found are quite complicated because of multiple
radical terms, so we do not include them here.

6 Conjectural Formulas of Three-variable Mahler Measures

We conclude this paper by tabulating all three-variable Mahler measure formulas that
we found from numerical computations. The references to the proved formulas are
given in the last column of each table. In Tables 4-6, we use the following shorthand
notations:

dk := L′(χ−k,−1), MN := L′(gN , 0), MN⊗D := L′(gN ⊗ χD, 0),

with gN a normalized newform with rational Fourier coefficients in S3(Γ0(N), χ−N )
and gN ⊗ χD the quadratic twist of gN by χD. If there are more than one such new-
forms, we shall distinguish them using superscripts. Each value of τ in the first
column of each table can be determined as follows. Recall from the proof of [21,
Thm.2.3] that if

q j(α) = exp
(
− π

sin(π/ j)
2F1

( 1
j ,

j−1
j

1
; 1− α

)
/2F1

( 1
j ,

j−1
j

1
; α

))
,

then s2(q2(α)) = 16
α(1−α) , s3(q3(α)) = 27

α(1−α) , and s4(q4(α)) = 64
α(1−α) .Hence we can

recover a value of τ corresponding to s j(τ ) easily using these relations. For instance,
each τ in Table 4 is given by

τ =
i

2

2F1

(
1
2 ,

1
2

1 ; 1− 1+
√

1−64/s2(τ )

2

)
2F1

(
1
2 ,

1
2

1 ;
1+
√

1−64/s2(τ )

2

) .

https://doi.org/10.4153/CJM-2014-012-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-012-8


Mahler Measures as Linear Combinations of L-values 445

τ s2(τ ) n2(s2(τ )) Reference
√
−1
2 64 8M16 [25]

1+
√
−1

2 −8 4M16 + d4 -
√
−4
2 280 + 198

√
2 1

8

(
36M16 + 4M16⊗8 + 13d4 + 4d8

)
-

2+
√
−1

4 280− 198
√

2 1
2

(
36M16 − 4M16⊗8 − 13d4 + 4d8

)
-

1+
√
−4

2 −512 M64 + d8 -
√
−2
2 56 + 40

√
2 1

4

(
60M8 + 4M8⊗8 + 4d4 + d8

)
-

2+
√
−2

4 56− 40
√

2 1
2

(
60M8 − 4M8⊗8 + 4d4 − d8

)
-

1+
√
−2

2 −64 2
(

M8⊗8 + d4

)
-

√
−3
2 256 4

3

(
M12⊗(−4) + 2d4

)
[25]

1+
√
−3

4 16 8M12 -
3+
√
−3

6 −104 + 60
√

3 1
2

(
4M12⊗(−4) − 36M12 + 15d3 − 8d4

)
-

1+
√
−3

2 −104− 60
√

3 1
6

(
4M12⊗(−4) + 36M12 + 15d3 + 8d4

)
-

√
−6
2 568 + 384

√
2 1

24

(
60M(1)

24 + 12M(2)
24 + 4M(1)

24⊗(−8) + 4M(2)
24⊗(−8) -

+336
√

3 + 216
√

6 +60d3 + 24d4 + 8d8 + d24

)
6+
√
−6

12 568 + 384
√

2 1
4

(
60M(1)

24 + 12M(2)
24 − 4M(1)

24⊗(−8) − 4M(2)
24⊗(−8) -

−336
√

3− 216
√

6 −60d3 + 24d4 + 8d8 − d24

)
√
−6
6 568− 384

√
2 1

12

(
60M(1)

24 − 12M(2)
24 + 4M(1)

24⊗(−8) − 4M(2)
24⊗(−8) -

+336
√

3− 216
√

6 +60d3 + 24d4 − 8d8 − d24

)
−2+
√
−6

10 568− 384
√

2 1
12

(
60M(1)

24 − 12M(2)
24 − 4M(1)

24⊗(−8) + 4M(2)
24⊗(−8) -

−336
√

3 + 216
√

6 +60d3 − 24d4 + 8d8 − d24

)
3+
√
−6

6 −1088 + 768
√

2 M(1)
24⊗(−8) −M(2)

24⊗(−8) − 6d4 + 2d8 -
1+
√
−6

2 −1088− 768
√

2 1
3

(
M(1)

24⊗(−8) + M(2)
24⊗(−8) + 6d4 + 2d8

)
-

√
−7
2 4096 4

7

(
M7⊗(−4) + 8d4

)
-

3+
√
−7

8 1 8M7 -

±1+
√
−7

8

47± 45
√
−7

2
4
7

(
54M7 + d7

)
-

7+
√
−7

14 −2024 + 765
√

7 1
2

(
4M7⊗(−4) − 384M7 − 32d4 + 11d7

)
-

1+
√
−7

2 −2024− 765
√

7 1
14

(
4M7⊗(−4) + 384M7 + 32d4 + 11d7

)
-

Table 4: Some L-value expressions of n2(s)
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τ s3(τ ) n3(s3(τ )) Reference
1+
√
−2

3 8 15M8 -√
−3
3 108 15M12 [21]√
−6
3 216 15

4

(
M(2)

24 + d3

)
[25]√

−9
3 288 + 168

√
3 5

12

(
3M(2)

36 + 3M(1)
36 + 6d3 + 4d4

)
-

1+
√
−1

2 288− 168
√

3 5
6

(
3M(2)

36 − 3M(1)
36 − 6d3 + 4d4

)
-√

−12
3 1458 15

8

(
9M12 + 2d4

)
[25]√

−15
3 3375 3

5

(
20M(2)

15 + 13d3

)
-√

−18
3 3704 + 1456

√
6 5

24

(
3M8⊗(−3) + 72M8 + 18d3 + 4d8

)
-√

−2
2 3704− 1456

√
6 5

12

(
3M8⊗(−3) − 72M8 − 18d3 + 4d8

)
-√

−21
3 7344 + 2808

√
7 15

28

(
M(2)

84 + M(4)
84 + 4d4 + 2d7

)
-

3+
√
−21

6 7344− 2808
√

7 15
14

(
M(2)

84 −M(4)
84 − 4d4 + 2d7

)
-√

−24
3 14310 + 8262

√
3 15

32

(
7M(2)

24 + M(2)
24⊗(−8) + 11d3 + 6d4

)
-

−3+
√
−6

2 14310− 8262
√

3 15
8

(
7M(2)

24 −M(2)
24⊗(−8) + 11d3 − 6d4

)
-

√
−30
3 48168 + 15120

√
10 3

40

(
5M(2)

120 + 5M(4)
120 + 5d15 + 2d24

)
-

6+
√
−30

6 48168− 15120
√

10 3
20

(
5M(2)

120 − 5M(4)
120 + 5d15 − 2d24

)
-

Table 5: Some L-value expressions of n3(s)
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τ s4(τ ) n4(s4(τ )) Reference√
−2
2 256 40M8 [21]
√
−8
2 3656 + 2600

√
2 5

8

(
4M8⊗8 + 28M8 + 4d4 + d8

)
-

1+
√
−2

2 3656− 2600
√

2 5
4

(
4M8⊗8 − 28M8 + 4d4 − d8

)
-

√
−12
2 26856 + 15300

√
3 5

12

(
4M12⊗(−4) + 20M12 + 11d3 + 8d4

)
Thm. 3.1

√
−3
2 26856− 15300

√
3 5

6

(
4M12⊗(−4) − 20M12 − 11d3 + 8d4

)
Thm. 3.1

1+
√
−3

2 −144 10
3

(
4M12 + d3

)
-

√
−4
2 648 5

2

(
4M16 + d4

)
[25]

√
−16
2 143208 + 101574

√
2 5

16

(
4M16⊗8 + 20M16 + 9d4 + 4d8

)
-

1+
√
−4

2 143208− 101574
√

2 5
8

(
4M16⊗8 − 20M16 − 9d4 + 4d8

)
-

1+
√
−5

2 −1024 8
5

(
5M(1)

20 + 2d4
)

-
√
−6
2 2304 20

3

(
M(1)

24 + d3
)

[25]
√
−24
2 1207368 + 853632

√
2 5

48

(
4M(1)

24⊗(−8) + 4M(2)
24⊗(−8) + 28M(1)

24 + 12M(2)
24 -

+697680
√

3 + 493272
√

6 +28d3 + 24d4 + 8d8 + d24
)

1+
√
−6

2 1207368 + 853632
√

2 5
24

(
4M(1)

24⊗(−8) + 4M(2)
24⊗(−8) − 28M(1)

24 − 12M(2)
24 -

−697680
√

3− 493272
√

6 −28d3 + 24d4 + 8d8 − d24
)

√
−6
4 1207368− 853632

√
2 5

16

(
4M(1)

24⊗(−8) − 4M(2)
24⊗(−8) + 28M(1)

24 − 12M(2)
24 -

+697680
√

3− 493272
√

6 −28d3 − 24d4 + 8d8 + d24
)

2+
√
−6

4 1207368− 853632
√

2 5
12

(
−4M(1)

24⊗(−8) + 4M(2)
24⊗(−8) + 28M(1)

24 − 12M(2)
24 -

−697680
√

3 + 493272
√

6 +28d3 − 24d4 + 8d8 − d24
)

√
−28
2 8292456 + 3132675

√
7 5

28

(
4M7⊗(−4) + 224M7 + 32d4 + 7d7

)
-

√
−7
2 8292456− 3132675

√
7 5

14

(
4M7⊗(−4) − 224M7 + 32d4 − 7d7

)
-

√
14+
√
−28

8 81 40M7 -
1+
√
−7

2 −3969 10
7

(
40M7 + d7

)
-

1+
√
−9

2 −12288 40
9

(
M(1)

36 + 2d3
)

-
√
−10
2 20736 4

5

(
5M(1)

40 + 2d8
)

[25]
1+
√
−13

2 −82944 40
13

(
M(1)

52 + 2d4
)

-

3+
√
−15

6

−192303 + 85995
√

5

2
1
5

(
160M(1)

15 − 120M(2)
15 − 88d3 + 5d15

)
-

1+
√
−15

2

−192303− 85995
√

5

2
1

15

(
160M(1)

15 + 120M(2)
15 + 88d3 + 5d15

)
-

√
−18
2 614656 40

3 (5M8 + d3) [25]
3+
√
−21

6 −893952 + 516096
√

3 20
7

(
M(3)

84 −M(4)
84 + 8d3 − 4d4

)
-

1+
√
−21

2 −893952− 516096
√

3 20
21

(
M(3)

84 + M(4)
84 + 8d3 + 4d4

)
-

√
−42
42 347648256 + 141926400

√
6 10

21

(
M(3)

168 + M(4)
168 + 20d3 + 4d8

)
-

√
−42
14 347648256− 141926400

√
6 10

7

(
M(3)

168 −M(4)
168 − 20d3 + 4d8

)
-

Table 6: Some L-value expressions of n4(s)

https://doi.org/10.4153/CJM-2014-012-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-012-8


448 D. Samart

Acknowledgments The author would like to express his gratitude to Matthew Pa-
panikolas for many helpful discussions and his continuous encouragement during
the period of this work. The author would also like to thank Mathew Rogers for
useful comments on the preliminary version of this paper, and he is indebted to the
referee for detailed remarks that helped improve many parts of the manuscript.

References
[1] S. Ahlgren, K. Ono, and D. Penniston, Zeta function of an infinite family of K3 surfaces. Amer. J.

Math. 124(2002), 353–368. http://dx.doi.org/10.1353/ajm.2002.0007
[2] B. C. Berndt, Ramanujan’s notebooks. Part III. Springer-Verlag, New York, NY, 1991.
[3] B. C. Berndt, S. Bhargava, and F. G. Garvan, Ramanujan’s theories of elliptic functions to alternative

bases. Trans. Amer. Math. Soc. 347(1995), no. 11, 4163–4244.
[4] M. J. Bertin, Mesure de Mahler d’hypersurfaces K3. J. Number Theory 128(2008), no. 11, 2890–2913.

http://dx.doi.org/10.1016/j.jnt.2007.12.012
[5] D. W. Boyd, Mahler’s measure and special values of L-functions. Experiment. Math. 7(1998), no. 1,

37–82. http://dx.doi.org/10.1080/10586458.1998.10504357
[6] I. Chen and N. Yui, Singular values of Thompson series. In: Groups, difference sets, and the Monster

(Columbus, OH, 1993), Ohio State Univ. Math. Res. Inst. Publ., 4, de Gruyter, Berlin, 1996,
pp. 255–326.

[7] C. Deninger, Deligne periods of mixed motives, K-theory and the entropy of certain Zn-actions. J.
Amer. Math. Soc. 10(1997), no. 2, 259–281. http://dx.doi.org/10.1090/S0894-0347-97-00228-2

[8] M. L. Glasser and I. J. Zucker, Lattice sums. In: Perspectives in theoretical chemistry: Advances and
perspectives, 5, Academic Press, New York, NY, 1980, pp. 67–139.

[9] J. Guillera and M. Rogers, Mahler measure and the WZ algorithm. Proc. Amer. Math. Soc., to appear.
[10] H. Hartmann, Period- and mirror-maps for the quartic K3. Manuscripta Math. 1412013, no. 3–4,

391–422. http://dx.doi.org/10.1007/s00229-012-0577-7
[11] N. Kurokawa and H. Ochiai, Mahler measures via the crystalization. Comment. Math. Univ. St. Pauli

54(2005), no. 2, 121–137.
[12] M. N. Lalı́n and M. D. Rogers, Functional equations for Mahler measures of genus-one curves. Algebra

Number Theory 1(2007), no. 1, 87–117. http://dx.doi.org/10.2140/ant.2007.1.87
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