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Abstract In this paper we consider the existence of positive solutions to the boundary-value problems

(p@®)u) —qt)u + Af(t,u) =0, r<t<R,

m—2

au(r) — bp(r)v/(r) = Z au(é;),
i=1
m—2

cu(R) + dp(R)u'(R) = Biu(&s),

1

7

where )\ is a positive parameter, a, b, ¢,d € [0,00), & € (1, R), a;,(; € [0,00) (for i € {1,...m — 2}) are
given constants satisfying some suitable conditions. Our results extend some of the existing literature
on superlinear semipositone problems. The proofs are based on the fixed-point theorem in cones.
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1. Introduction

Multipoint boundary-value problems (BVPs) for ordinary differential equations arise in
a variety of areas of applied mathematics and physics. For example, the vibrations of a
guy wire of uniform cross-section and composed of N parts of different densities can be
set up as a multipoint BVP [7]; also, many problems in the theory of elastic stability can
be handled by multipoint problems [9].

In [5], I'in and Moiseev studied the existence of solutions for a linear multipoint
BVP. Motivated by that study, Gupta [3] studied certain three-point BVPs for non-
linear ordinary differential equations. Since then, more general nonlinear multipoint
BVPs have been studied by several authors. We refer the reader to [3,4,6,10] for some
references.
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In this paper, we are interested in the existence of positive solutions for the second-
order m-point BVP

(p()u) — qt)u+ Af(t,u) =0, r<t<R,
au(r) — bp(r Z a;u(&), )
cu(R) + dp(R Z Biu(&),

where p,q € C([’f‘, RL(0,00)), avba Cad € [0700)7 gi € (Y7 R)v aiaﬁi € (0,00) (fOI‘ i€
{1,...m — 2}) are given constants. If g =0 and o; = 8; =0 for i = 1,...,m — 2, then
the m-point BVP (1.1) reduces to the two-point BVP
(p()u") + Mf(t,u) =0, r<t<R,
au(r) — bp(r)u’(r) =0, (1.2)
cu(R) + dp(R)u'(R) = 0.

In 1996, Anuradha, Hai and Shivaji [1] studied the existence of positive solutions for
(1.2) under the assumptions:

(A1) p € C([r, B], (0, 00));

(A2) a,b,c,d € [0,00) with ac + ad + be > 0;

(A3) f

A3 : [r,R] x [0,00) — R is continuous and there exists an M > 0 such that

f(t,u) = —M for every t € [r, R],u > 0; and
(A4) limy oo (f(¢,u)/u) = oo uniformly on a compact subinterval [«, 8] of (r, R).

They established the following result for (1.2).

Theorem 1.1 (see Theorem 1 in [1]). Suppose that (Al)—(A4) hold. Then (1.2)
has a positive solution for A\ > 0 sufficiently small.

Ifr=0,R=1,A=1,pt)=1,q1t) =0, f(t,u)=h(t)f(u),a=c=1,b=d =0,
a=0fori=1,...,m—2,and §; =0 for j = 2,...,m — 2, then (1.1) reduces to the
three-point BVP

W' (1)) =0, 0<t< 1’} (13)

u(0) =0, u(l) = fru(&y).
In 1999, Ma [6] obtained the following result for (1.3).
Theorem 1.2 (see Theorem 1 in [6]).
(H1) 0 < p1& < 1.
(H2) f e C([0,00),[0,00)).
(H3) h € C([0,1],]0,00)) and there exists tg € [£1, 1] such that h(ty) > 0.
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Then (1.3) has at least one positive solution in one of the two following cases:
(i) fo =0 and fo = oo,
(ii) fo =00 and fo =0,

where _
fo:= lim M, foo := lim —-2

u—0t U u—o0o U

Theorem 1.2 has been improved by Webb [10]. We remark that in the proof of Theo-
rem 1.2 we rewrite (1.3) as the following equivalent integral equation:

t &1
) = = [ = ns)Flute)) ds = 25— [ 6 = Db Futs) as
t ! -
e [ 0 he ) as
— (Au)(). (1.4)

Clearly, (Au)(t) contains one positive term and two negative terms. This form is not
convenient for studying the existence of positive solutions. In fact, in order to apply the
fixed-point theorem in cones, we need to show that

(Ay)(t) =20, for all y € C(]0,1],]0,00)) and ¢ € [0, 1]. (1.5)

Since Ay contains two negative terms, it is not easy to show that (H1)—(H3) imply that
(1.5) holds.

In this paper, we consider the more general m-point BVP (1.1). To deal with (1.1), we
give a new integral equation which is equivalent to

(p(t)u) —q()u+y(t) =0, r<t<R,

au(r) — bp(r (1) = 3 (),
i=1
cu(R) + dp(R)u/'(R) = '_ Biu(&;),

and contains two positive terms if y > 0. Our most important result (see Theorem 3.1
below) extends the main results of [1] in two directions:

(i) the m-point BVP (1.1) is considered; and
(ii) the case ¢(t) > 0 is studied.

By a positive solution of (1.1) we understand a function w(t) which is positive on (r, R)
and satisfies the differential equation and the boundary conditions in (1.1).

The main tool of this paper is the following well-known Guo—Krasnoselskii fixed-point
theorem.
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Theorem 1.3 (see [2]). Let E be a Banach space, and let K C E be a cone. Assume
{21, £25 are open bounded subsets of E with 0 € (21, {21 C {25, and let

A: KN 2\ 2) = K
be a completely continuous operator such that
(1) JAu| < ||ull, v € KNO2y, and ||Aul| = ||u||, v € K N dL2s; or
(ii) [|Au| = ||u||, v € KN Oy, and ||Au|| < ||ull, v € K NI2s.

Then A has a fixed point in K N (23 \ ;).

2. Preliminary lemmas

In the rest of the paper, we make the following assumptions:

(C1) p e CY([r, K], (0,)), q € C([r, R, (0,0)); and

(C2) a,b,c,d € [0,00) with ac + ad 4+ be > 0, a;, §; € [0,00) for i € {1,...m — 2}.
To state and prove the main results of this paper, we need the following lemmas.

Lemma 2.1. Let (C1) and (C2) hold. Let v and ¢ be the solutions of the linear

problems
POV (1) =) (t) = 0 } (2.1)
Yr)=b,  pr)Y(r)=a
and
()6 (1)) — q(t)(t) = 0, } (2.2)
o(R)=d,  p(R)¢'(R) = —c, .

respectively. Then
(i) 9 is strictly increasing on [r, R], and 9 (t) > 0 on (r, R]; and
(ii) ¢ is strictly decreasing on [r, R|, and ¢(t) > 0 on [r, R).

Proof. We shall give a proof for (i) only. The proof of (ii) follows in a similar manner.
It is easy to see that (2.1) is equivalent to the problem

Now we divide the proof into three steps.
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Step 1. We show that there exists o € (0, R — r) such that 1) is strictly increasing on
(r,r 4 o).
If a > 0, then we are done. If a = 0, then we know from (C2) that b > 0. Therefore,
we have from (2.3) that
q(r)

’l/)” r)=>2>-2
=)
which implies that there exists o > 0 such that ¢'(¢) > 0 on (r,7 + o). Thus ¥(¢) is
strictly increasing on (r,r + o).

(r) >0,

Step 2. We show that ¢ has no local maxima on all of (r, R).

In fact, by Step 1, ¢ is positive and strictly increasing on (r,r + o). So we can apply
the maximum principle (see [8, Theorem 1 of Chapter 1]) to show that there are no local
maxima on (r, R). Moreover, v is non-decreasing on (r, R).

Step 3. We show that 1 is strictly increasing on [r, R].
If there exists ta,t3 C [rr, R] with ¢3 < t3 such that ¥ (t2) = ¢ (¢3), then

w(t) = ¢(t3)a te [t27t3]'
This implies
P'(t) =" (t) =0, tE [tz ts].
We note that by Steps 1 and 2, 1(¢3) > 0. Thus from (2.3) we get

" o Q(t3)
This contradicts the fact that ¢ (¢t3) = 0. O
Notation. Set
m—2 m—2
=Y &) p— Y id()
BN I N = =
§r) )

p— Z Bip(&) - Z Bid(&)

Lemma 2.2. Let (C1) and (C2) hold. Assume that
(C3) A:#£0.
Then for y € C|r, R], the problem

(p@)u'(t)) —q(t)ut) +y(t) =0, r<t<R,
m—2
au(r) —bu'(r) = zzzl a;u(&), (2.4)
cu(R) + du'(R) = Biu(&s)
i=1
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has a unique solution

/ Gt )y(s) ds + Aly)(t) + B(y)o(o). (2.5)
where
o)=L {cb(t)w(s . r<s<t<R, 26)
p(s)p(t), r<t<s<R,
m—2 R m—2
1 > i [ Gl s p= 3 aute)
i=1 i=1
AV =R n . (2.7)
bi | Glensy(s)ds  — > Bio(&)
=1 1=
and
m—2 m—2 R
| d (&) D> %/ G(&, )
B(y) = - - . (2.8)
p— 3 Brole) @/ G(& 5)y(s) ds
i=1 i=1
Proof. The proof follows by routine calculations. O

Lemma 2.3. Let (C1) and (C2) hold. Assume

(C4) A <0, p— ST aip(&) >0, p— S0 Bip(&) > 0.

Then for y € C[r, R] with y > 0, the unique solution u of the problem (2.4) satisfies
u(t) =20, forte[r R (2.9)
Proof. This is an immediate consequence of the facts that G > 0 on [r, R] x [r, R] and
A(ly) 20,  B(y) =0. (2.10)
]

Lemma 2.4. Let (C1), (C2) and (C4) hold. Let

) mnd 20 20
at) = {<z><r>’ w<R>}' (211)

Then for y € C|r, R] with y > 0, the unique solution w of the problem (2.4) satisfies

u(t) = 3yl
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where ||u|| = max{u(t)|t € [r, R]} and

W0 1= 1[0 + A0 + Bo(0)
with kg € N a fixed integer such that
ki[q(t) + Ay(t) + Bo(t)] < 1, forallt € [r, R,
0
m—2 m—2
dowdl&) p— Y widl&)
e 1 |i=1 i=1
T K m—2 m—2
Biq(&)  — Z Bid(&)
i=1 i=1
and
m—2 m—2
- Z oY (&:) Z @iq(&:)
B 1 i=1 i=1
T Z m—2 m—2 ’
p— > Bib(&) Y. Bidl&)
i=1 i=1

Proof. We have from (2.6) that
0 < G(t,s) <G(s,s), te]rR]

which implies

R
u(t) < / G(s,s)y(s)ds + A(y)¥(t) + B(y)o(t), forallt € [r,R].

Applying (2.6), we have that for ¢ € [r, R]
(1)

G(t.s) _ ) #ls)’
G(ss) ¥(t)
WU(s)’

o) r<s
o) S°S
()

V(R)’
> q(t),

WV

285

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

where §(t) is as in (2.11). Combining (2.16) with (2.7) and (2.8), we can conclude that

R R
Aly) = A / G(s,s)y(s)ds,  B(y) > B / G(s, s)y(s) ds,
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where A and B are as in (2.13) and (2.14), respectively. Thus for ¢ € [r, R],

R
mw:/’GwQM$M+A@W@+B@ww

> % / G(t,s)y(s)ds + A(y)(t) + B(y)qﬁ(t)} + 3[A®W)Y(t) + B(y)o(t)]
:% AL G(s,5)y(5) ds-+ A0 + B0 + HAGS() + BG)o0)
2% /Gss ds+A/ G(s,s)y(s)dsi(t)

+B/'Gss ) dso(t } LLA(y)b () + By)(1)]

30) 1= 1) + A0 + Bo(t)
(|
Lemma 2.5. Let (C1)~(C4) hold and Let @ be the solution of
(p®)u' () —qt)u(t)+1=0, r<t<R,
au(r) —bu'(r) = 7:5_;2 a;u(&), (2.18)
cu(R) + du'(R) = S Biu(&;).

i=1

Then there exists a positive number C such that w(t) < Cv(t) for every t € [r, R).

Proof. By Lemma 2.2, we know that
R
w(t) = / G(t,s)ds + A(1)y(t) + B(1)g(t)

L[ [ t
= pU ¢(t)w(8)d8+/r P(t)o(s) ds} +AQ)Y(t) + B(1)o(t)
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[/ o(t)() ds + / (t) ] AQL)() + BO)S(H)
e + A)(E) + B)(?)

N

=
|
:

)o(r)(R)q(t) + A1)y (1) + B(1)o(1)

o) + A A +

N

I
= b\Hb\Hb\
—~
=
|
<

N

I

QE
=2
==
o+
N

<
=
_|_

o)
=

where C := kop and

m—2 m—2
max{l(R — o(ry(r), 24, B } it S a0, S B £0,
P A B i=1 i=1
B(l) m—2 m—2
p= ¢ maxq —(R — r)o(r)v(R), 5 }, if Z a; #0, Z B; =0,
i=1 i=1
m—2 m—2
max{ 2 (8= (), 5 =0, A0
- = (2.19)
We note that
m—2
A>0 if Y Bi#0
i=1
and
m—2
B>0 if Y a; #0.
i=1
So the constant C' in (2.19) is well defined. O

3. The main result
The main result of the paper is the following theorem.

Theorem 3.1. Let (C1), (C2), (C4) and (A3) and (A4) hold. Then (1.1) has a positive
solution for A > 0 sufficiently small.

Remark 3.2. Theorem 3.1 extends [1, Theorem 1] in two main directions:
(i) the m-point BVPs (1.1) are considered; and

(ii) the case ¢(t) > 0 is studied.
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Proof of Theorem 3.1. Let \ satisfy

0 <A< mi ! = (3.1)

min — .
Cy||w|’ 2CM |’

where C7 = sup{g(t,u) | r <t < R, 0 < u < 1}, g(t,u) := f(t,u) + M and C is the

constant defined in Lemma 2.5. Let w = AM®@. Then u is a positive solution of (1.1) if

and only if & = u 4+ w is a solution of

(p(u) —q(t)u+Ag(t,u —w) =0, r<t<R,
au ( ) - bp Z ;U fz (32)
cu(R) + dp(R Z Biu(&),

with @(t) > w(t) on (r, R). Here
. g(t,u), for u > 0,
O S (33
g(t,0), for u < 0.

Let
K ={ueC[r,R] :u(t) = 37(®)|lull, t € [r, R]}, (3.4)

where 7 is as in (2.12). For each v € K, let uw = Tv be the solution of

(p()u) —q)u+Ag(t,v —w) =0, r<t<R,
au(r) — bp(r Z a;u(&), o)
cu(R) + dp(R Z Biu(&).

By Lemma 2.2,

R
T =\ [/ G(t,8)g(s,v(s) —w(s))ds+ A(g(-,v — w))Y(t) + B(g(-,v — w))QS(t)} . (3.6)

From Lemma 2.4, we know that T : K — K. It is easy to check that T is completely
continuous. We shall prove that T has a fixed point in K by using Theorem 1.3.
Define 2, = {u € C[r, R] : ||u|]| < 1}. For v € 81 N K,

R
(To)(t) = A[ [ G905, 5) = w(s)) s+ A0 = w))(0) + B0 - w)>¢<t>]

<Gy UR G(t, 5)ds + A(1)ob(t) + B(1)e(t)

= )\Clﬂ](t)
1

N

)
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since 0 <v—w < v < 1. Thus
ITu| < ||u|l, forwedfnkK.

Now choose a constant M > 0 such that

- B
1< 3AMTI inf / G(t, s)ds,

r<t<R

where

I := i t).
0213257( )

By (A4), we know that there is a constant D > 0 such that

gt ) > M, for (t,s) € [, 8] X [D,0).
s
Set
p2 = max{4, 4NCM, 4D}
r
and define

25 ={ueCr,R]: ||ul| < p2}.

For u € 025 N K, we have from Lemmas 2.5 and 2.4 that

u(s) —w(s) = u(s) — AMw(s)

> u(s) — AMC(s)
ANCM
> u(s) — ¢ 2u(s)
P2
> Lu(s)
and
Join (u(s) —w(s)) > min zu(s)
> min 1
> min_glluly(s)

Therefore, for u € 025 N K, we have

R
min (Tu)(t) = A min G(t,s)g(s,u —w)ds
min (Ta)(t) =X min, [ G(t.9)i(s,u— w)

+ A(G(u—w))(t) + B(g(, u — w))o(t)

R
> A min / G(t,s)g(s,u —w)ds
tE[aﬁ] T
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R ~
> Atg[li,rlﬁ]/T G(t, s)M(u(s) —w(s))ds

[}

R
> A min/ G(t,s)MLu(s)ds
tE[a,ﬂ] r

R
> A mi G(t,s)Miv(s)d
min, [ Gl (s) dslul

R
> A min / G(t,s)M%FdsHuH
tE[a,ﬂ] r

> Jull. (3.11)

This implies
|Au|| = [Ju|| for u € 022 N K.

By Theorem 1.3, T has a fixed point @ with 1 < ||a|| < po. It follows that
a(t) = 39(t) = 5(2ACM)(t) = AMw(t) = w(t),

and so u = & — w is a positive solution of (1.1), completing the proof of Theorem 3.1. [

4. An example
Let us consider the three-point BVP
u —u4 Au® —2) =0, O<t<1,} (4.1)
u(0) = bu(}).  u(1) = du(}).

Clearly, (C1) and (C2) hold. It is easy to check that

and 1 1
Co0) ¥(0)| | z(e—e) O L
"=low w0 =|ymemeny o THOT
Since
_ 101 101
- pﬁi?i) p;;;;) = —p(3(e—e7) — (e/* —e7V/?) <0,
p=30(3) = he—eT) —he eV >0
and

= 3U(z) = 3(e—e7h) — (/2 —e7%) >0,

we know that (C4) is satisfied. Let @ be the unique solution of

W —u+1=0, 0<t<l,
w(0) = gu(3),  u(l) = ju(3),
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1— —1\,t -1 —t
(e tle—net

2[(e!/? —e 1) + (e —e71)]

lwll = w(z)

lw]] = 0.203 347172171 906 298 02.

then
w =
Moreover,
and
From (2.11),
q(t) = min{
(t) 5
and

From (2.13) and (2.14), we know that

A
i

and

Clearly,

121:

Thus from (2.12)

D] =

30(3) P —59(3) IR SO
) ey | 2AM
—30(3) 3d3)| 1
p—tuth) dath| 28"

B = 0.338943 166 556 021 992 19.

q(t) + Av(t) + Bo(t) < (%) + Ay(1) + Bg(0)

So we can take kg = 1 and

in Lemma 2.4. By (4.10)

1_ a1 1 -1
p |e —e e —e
e e o |

N|—=

= q(

1 el —e™!
= —— <1+
el/2 4 o—1/2 e—e-1_¢l/2 4 e-1/2

= (0.886 818883970073 908 68.
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for all ¢ € [0,1]. This together with (4.3) imply that

a(t) < O (1), te 0,1, (4.12)
where
Cr = J|w|1| = 1.151 314817609928 832 4.
Ag(3)

Now, by the proof of Theorem 3.1, we know that (4.1) has at least one positive solution
for each A € (0, A) with

A ) 1 1
= mMINng ————
Ch||w]’ 2C*M

} = 0.217143 040 440 482 925 60,

where C7; =1, M = 2.
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