
Proceedings of the Edinburgh Mathematical Society (2003) 46, 279–292 c©
DOI:10.1017/S0013091502000391 Printed in the United Kingdom

EXISTENCE OF POSITIVE SOLUTIONS FOR
SUPERLINEAR SEMIPOSITONE m-POINT

BOUNDARY-VALUE PROBLEMS

RUYUN MA

Department of Mathematics, Northwest Normal University,
Lanzhou 730070, Gansu, People’s Republic of China (mary@nwnu.edu.cn)

(Received 18 April 2002)

Abstract In this paper we consider the existence of positive solutions to the boundary-value problems

(p(t)u′)′ − q(t)u + λf(t, u) = 0, r < t < R,

au(r) − bp(r)u′(r) =
m−2∑

i=1

αiu(ξi),

cu(R) + dp(R)u′(R) =
m−2∑

i=1

βiu(ξi),

where λ is a positive parameter, a, b, c, d ∈ [0, ∞), ξi ∈ (r, R), αi, βi ∈ [0, ∞) (for i ∈ {1, . . . m − 2}) are
given constants satisfying some suitable conditions. Our results extend some of the existing literature
on superlinear semipositone problems. The proofs are based on the fixed-point theorem in cones.
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1. Introduction

Multipoint boundary-value problems (BVPs) for ordinary differential equations arise in
a variety of areas of applied mathematics and physics. For example, the vibrations of a
guy wire of uniform cross-section and composed of N parts of different densities can be
set up as a multipoint BVP [7]; also, many problems in the theory of elastic stability can
be handled by multipoint problems [9].

In [5], Il’in and Moiseev studied the existence of solutions for a linear multipoint
BVP. Motivated by that study, Gupta [3] studied certain three-point BVPs for non-
linear ordinary differential equations. Since then, more general nonlinear multipoint
BVPs have been studied by several authors. We refer the reader to [3,4,6,10] for some
references.
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In this paper, we are interested in the existence of positive solutions for the second-
order m-point BVP

(p(t)u′)′ − q(t)u + λf(t, u) = 0, r < t < R,

au(r) − bp(r)u′(r) =
m−2∑
i=1

αiu(ξi),

cu(R) + dp(R)u′(R) =
m−2∑
i=1

βiu(ξi),




(1.1)

where p, q ∈ C([r, R], (0,∞)), a, b, c, d ∈ [0,∞), ξi ∈ (Y, R), αi, βi ∈ (0,∞) (for i ∈
{1, . . . m − 2}) are given constants. If q ≡ 0 and αi = βi = 0 for i = 1, . . . , m − 2, then
the m-point BVP (1.1) reduces to the two-point BVP

(p(t)u′)′ + λf(t, u) = 0, r < t < R,

au(r) − bp(r)u′(r) = 0,

cu(R) + dp(R)u′(R) = 0.


 (1.2)

In 1996, Anuradha, Hai and Shivaji [1] studied the existence of positive solutions for
(1.2) under the assumptions:

(A1) p ∈ C([r, R], (0,∞));

(A2) a, b, c, d ∈ [0,∞) with ac + ad + bc > 0;

(A3) f : [r, R] × [0,∞) → R is continuous and there exists an M > 0 such that
f(t, u) � −M for every t ∈ [r, R], u � 0; and

(A4) limu→∞(f(t, u)/u) = ∞ uniformly on a compact subinterval [α, β] of (r, R).

They established the following result for (1.2).

Theorem 1.1 (see Theorem 1 in [1]). Suppose that (A1)–(A4) hold. Then (1.2)
has a positive solution for λ > 0 sufficiently small.

If r = 0, R = 1, λ = 1, p(t) ≡ 1, q(t) ≡ 0, f(t, u) = h(t)f̄(u), a = c = 1, b = d = 0,
αi = 0 for i = 1, . . . , m − 2, and βj = 0 for j = 2, . . . , m − 2, then (1.1) reduces to the
three-point BVP

u′′ + h(t)f̄(u) = 0, 0 < t < 1,

u(0) = 0, u(1) = β1u(ξ1).

}
(1.3)

In 1999, Ma [6] obtained the following result for (1.3).

Theorem 1.2 (see Theorem 1 in [6]).

(H1) 0 < β1ξ1 < 1.

(H2) f̄ ∈ C([0,∞), [0,∞)).

(H3) h ∈ C([0, 1], [0,∞)) and there exists t0 ∈ [ξ1, 1] such that h(t0) > 0.
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Then (1.3) has at least one positive solution in one of the two following cases:

(i) f̄0 = 0 and f̄∞ = ∞,

(ii) f̄0 = ∞ and f̄∞ = 0,

where

f̄0 := lim
u→0+

f̄(u)
u

, f̄∞ := lim
u→∞

f̄(u)
u

.

Theorem 1.2 has been improved by Webb [10]. We remark that in the proof of Theo-
rem 1.2 we rewrite (1.3) as the following equivalent integral equation:

u(t) = −
∫ t

0
(t − s)h(s)f̄(u(s)) ds − β1t

1 − β1ξ1

∫ ξ1

0
(ξ1 − s)h(s)f̄(u(s)) ds

+
t

1 − β1ξ1

∫ 1

0
(1 − s)h(s)f̄(u(s)) ds

:= (Au)(t). (1.4)

Clearly, (Au)(t) contains one positive term and two negative terms. This form is not
convenient for studying the existence of positive solutions. In fact, in order to apply the
fixed-point theorem in cones, we need to show that

(Ay)(t) � 0, for all y ∈ C([0, 1], [0,∞)) and t ∈ [0, 1]. (1.5)

Since Ay contains two negative terms, it is not easy to show that (H1)–(H3) imply that
(1.5) holds.

In this paper, we consider the more general m-point BVP (1.1). To deal with (1.1), we
give a new integral equation which is equivalent to

(p(t)u′)′ − q(t)u + y(t) = 0, r < t < R,

au(r) − bp(r)u′(r) =
m−2∑
i=1

αiu(ξi),

cu(R) + dp(R)u′(R) =
m−2∑
i=1

βiu(ξi),

and contains two positive terms if y � 0. Our most important result (see Theorem 3.1
below) extends the main results of [1] in two directions:

(i) the m-point BVP (1.1) is considered; and

(ii) the case q(t) > 0 is studied.

By a positive solution of (1.1) we understand a function u(t) which is positive on (r, R)
and satisfies the differential equation and the boundary conditions in (1.1).

The main tool of this paper is the following well-known Guo–Krasnoselskii fixed-point
theorem.
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Theorem 1.3 (see [2]). Let E be a Banach space, and let K ⊂ E be a cone. Assume
Ω1, Ω2 are open bounded subsets of E with 0 ∈ Ω1, Ω̄1 ⊂ Ω2, and let

A : K ∩ (Ω̄2 \ Ω1) → K

be a completely continuous operator such that

(i) ‖Au‖ � ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Au‖ � ‖u‖, u ∈ K ∩ ∂Ω2; or

(ii) ‖Au‖ � ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Au‖ � ‖u‖, u ∈ K ∩ ∂Ω2.

Then A has a fixed point in K ∩ (Ω̄2 \ Ω1).

2. Preliminary lemmas

In the rest of the paper, we make the following assumptions:

(C1) p ∈ C1([r, R], (0,∞)), q ∈ C([r, R], (0,∞)); and

(C2) a, b, c, d ∈ [0,∞) with ac + ad + bc > 0, αi, βi ∈ [0,∞) for i ∈ {1, . . . m − 2}.

To state and prove the main results of this paper, we need the following lemmas.

Lemma 2.1. Let (C1) and (C2) hold. Let ψ and φ be the solutions of the linear
problems

(p(t)ψ′(t))′ − q(t)ψ(t) = 0,

ψ(r) = b, p(r)ψ′(r) = a

}
(2.1)

and
(p(t)φ′(t))′ − q(t)φ(t) = 0,

φ(R) = d, p(R)φ′(R) = −c,

}
(2.2)

respectively. Then

(i) ψ is strictly increasing on [r, R], and ψ(t) > 0 on (r, R]; and

(ii) φ is strictly decreasing on [r, R], and φ(t) > 0 on [r, R).

Proof. We shall give a proof for (i) only. The proof of (ii) follows in a similar manner.
It is easy to see that (2.1) is equivalent to the problem

ψ′′(t) +
p′(t)
p(t)

ψ′(t) − q(t)
p(t)

ψ(t) = 0,

ψ(r) = b, ψ′(r) =
a

p(r)
.


 (2.3)

Now we divide the proof into three steps.
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Step 1. We show that there exists σ ∈ (0, R − r) such that ψ is strictly increasing on
(r, r + σ).

If a > 0, then we are done. If a = 0, then we know from (C2) that b > 0. Therefore,
we have from (2.3) that

ψ′′(r) =
q(r)
p(r)

ψ(r) > 0,

which implies that there exists σ > 0 such that ψ′(t) > 0 on (r, r + σ). Thus ψ(t) is
strictly increasing on (r, r + σ).

Step 2. We show that ψ has no local maxima on all of (r, R).
In fact, by Step 1, ψ is positive and strictly increasing on (r, r + σ). So we can apply

the maximum principle (see [8, Theorem 1 of Chapter 1]) to show that there are no local
maxima on (r, R). Moreover, ψ is non-decreasing on (r, R).

Step 3. We show that ψ is strictly increasing on [r, R].
If there exists t2, t3 ⊂ [r, R] with t2 < t3 such that ψ(t2) = ψ(t3), then

ψ(t) ≡ ψ(t3), t ∈ [t2, t3].

This implies
ψ′(t) = ψ′′(t) = 0, t ∈ [t2, t3].

We note that by Steps 1 and 2, ψ(t3) > 0. Thus from (2.3) we get

ψ′′(t3) =
q(t3)
p(t3)

ψ(t3) > 0.

This contradicts the fact that ψ′′(t3) = 0. �

Notation. Set

ρ := p(r)

∣∣∣∣∣φ(r) ψ(r)
φ′(r) ψ′(r)

∣∣∣∣∣ , ∆ :=

∣∣∣∣∣∣∣∣∣∣∣

−
m−2∑
i=1

αiψ(ξi) ρ −
m−2∑
i=1

αiφ(ξi)

ρ −
m−2∑
i=1

βiψ(ξi) −
m−2∑
i=1

βiφ(ξi)

∣∣∣∣∣∣∣∣∣∣∣
.

Lemma 2.2. Let (C1) and (C2) hold. Assume that

(C3) ∆ : �= 0.

Then for y ∈ C[r, R], the problem

(p(t)u′(t))′ − q(t)u(t) + y(t) = 0, r < t < R,

au(r) − bu′(r) =
m−2∑
i=1

αiu(ξi),

cu(R) + du′(R) =
m−2∑
i=1

βiu(ξi)




(2.4)
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has a unique solution

u(t) =
∫ R

r

G(t, s)y(s) ds + A(y)ψ(t) + B(y)φ(t), (2.5)

where

G(t, s) =
1
ρ

{
φ(t)ψ(s), r � s � t � R,

φ(s)ψ(t), r � t � s � R,
(2.6)

A(y) :=
1
∆

∣∣∣∣∣∣∣∣∣∣∣

m−2∑
i=1

αi

∫ R

r

G(ξi, s)y(s) ds ρ −
m−2∑
i=1

αiφ(ξi)

m−2∑
i=1

βi

∫ R

r

G(ξi, s)y(s) ds −
m−2∑
i=1

βiφ(ξi)

∣∣∣∣∣∣∣∣∣∣∣
(2.7)

and

B(y) :=
1
∆

∣∣∣∣∣∣∣∣∣∣∣

−
m−2∑
i=1

αiψ(ξi)
m−2∑
i=1

αi

∫ R

r

G(ξi, s)y(s) ds

ρ −
m−2∑
i=1

βiψ(ξi)
m−2∑
i=1

βi

∫ R

r

G(ξi, s)y(s) ds

∣∣∣∣∣∣∣∣∣∣∣
. (2.8)

Proof. The proof follows by routine calculations. �

Lemma 2.3. Let (C1) and (C2) hold. Assume

(C4) ∆ < 0, ρ −
∑m−2

i=1 αiφ(ξi) > 0, ρ −
∑m−2

i=1 βiψ(ξi) > 0.

Then for y ∈ C[r, R] with y � 0, the unique solution u of the problem (2.4) satisfies

u(t) � 0, for t ∈ [r, R]. (2.9)

Proof. This is an immediate consequence of the facts that G � 0 on [r, R]× [r, R] and

A(y) � 0, B(y) � 0. (2.10)

�

Lemma 2.4. Let (C1), (C2) and (C4) hold. Let

q̃(t) := min
{

φ(t)
φ(r)

,
ψ(t)
ψ(R)

}
. (2.11)

Then for y ∈ C[r, R] with y � 0, the unique solution u of the problem (2.4) satisfies

u(t) � 1
2γ(t)‖u‖,
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where ‖u‖ = max{u(t)|t ∈ [r, R]} and

γ(t) :=
1
k0

[q̃(t) + Ãψ(t) + B̃φ(t)] (2.12)

with k0 ∈ N a fixed integer such that

1
k0

[q̃(t) + Ãψ(t) + B̃φ(t)] � 1, for all t ∈ [r, R],

Ã :=
1
∆

∣∣∣∣∣∣∣∣∣∣∣

m−2∑
i=1

αiq̃(ξi) ρ −
m−2∑
i=1

αiφ(ξi)

m−2∑
i=1

βiq̃(ξi) −
m−2∑
i=1

βiφ(ξi)

∣∣∣∣∣∣∣∣∣∣∣
(2.13)

and

B̃ :=
1
∆

∣∣∣∣∣∣∣∣∣∣∣

−
m−2∑
i=1

αiψ(ξi)
m−2∑
i=1

αiq̃(ξi)

ρ −
m−2∑
i=1

βiψ(ξi)
m−2∑
i=1

βiq̃(ξi)

∣∣∣∣∣∣∣∣∣∣∣
. (2.14)

Proof. We have from (2.6) that

0 � G(t, s) � G(s, s), t ∈ [r, R],

which implies

u(t) �
∫ R

r

G(s, s)y(s) ds + A(y)ψ(t) + B(y)φ(t), for all t ∈ [r, R]. (2.15)

Applying (2.6), we have that for t ∈ [r, R]

G(t, s)
G(s, s)

=




φ(t)
φ(s)

, r � s � t � R,

ψ(t)
ψ(s)

, r � t � s � R,

�




φ(t)
φ(r)

, r � s � t � R,

ψ(t)
ψ(R)

, r � t � s � R,

� q̃(t), (2.16)

where q̃(t) is as in (2.11). Combining (2.16) with (2.7) and (2.8), we can conclude that

A(y) � Ã

∫ R

r

G(s, s)y(s) ds, B(y) � B̃

∫ R

r

G(s, s)y(s) ds, (2.17)
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where Ã and B̃ are as in (2.13) and (2.14), respectively. Thus for t ∈ [r, R],

u(t) =
∫ R

r

G(t, s)y(s) ds + A(y)ψ(t) + B(y)φ(t)

� 1
2

[∫ R

r

G(t, s)y(s) ds + A(y)ψ(t) + B(y)φ(t)
]

+ 1
2 [A(y)ψ(t) + B(y)φ(t)]

=
1
2

[∫ R

r

G(t, s)
G(s, s)

G(s, s)y(s) ds + A(y)ψ(t) + B(y)φ(t)
]

+ 1
2 [A(y)ψ(t) + B(y)φ(t)]

� 1
2

[
q̃(t)

∫ R

r

G(s, s)y(s) ds + Ã

∫ R

r

G(s, s)y(s) dsψ(t)

+ B̃

∫ R

r

G(s, s)y(s) dsφ(t)
]

+ 1
2 [A(y)ψ(t) + B(y)φ(t)]

= 1
2k0γ(t)

∫ R

r

G(s, s)y(s) ds + 1
2 [A(y)ψ(t) + B(y)φ(t)]

� 1
2γ(t)

[∫ R

r

G(s, s)y(s) ds + A(y)ψ(t) + B(y)φ(t)
]

� 1
2γ(t)‖u‖ (by (2.15)),

where

γ(t) :=
1
k0

[q̃(t) + Ãψ(t) + B̃φ(t)].

�

Lemma 2.5. Let (C1)–(C4) hold and Let w̄ be the solution of

(p(t)u′(t))′ − q(t)u(t) + 1 = 0, r < t < R,

au(r) − bu′(r) =
m−2∑
i=1

αiu(ξi),

cu(R) + du′(R) =
m−2∑
i=1

βiu(ξi).




(2.18)

Then there exists a positive number C such that w̄(t) � Cγ(t) for every t ∈ [r, R].

Proof. By Lemma 2.2, we know that

w̄(t) =
∫ R

r

G(t, s) ds + A(1)ψ(t) + B(1)φ(t)

=
1
ρ

[∫ t

r

φ(t)ψ(s) ds +
∫ t

r

ψ(t)φ(s) ds

]
+ A(1)ψ(t) + B(1)φ(t)
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� 1
ρ

[∫ t

r

φ(t)ψ(t) ds +
∫ R

t

ψ(t)φ(t) ds

]
+ A(1)ψ(t) + B(1)φ(t)

� 1
ρ
(R − r)φ(t)ψ(t) + A(1)ψ(t) + B(1)φ(t)

� 1
ρ
(R − r)φ(r)ψ(R)q̃(t) + A(1)ψ(t) + B(1)φ(t)

=
1
ρ
(R − r)φ(r)ψ(R)q̃(t) +

A(1)
Ã

Ãψ(t) +
B(1)
B̃

B̃φ(t)

� µ[q̃(t) + Ãψ(t) + B̃φ(t)]

= Cγ(t),

where C := k0µ and

µ :=




max
{

1
ρ
(R − r)φ(r)ψ(R),

A(1)
Ã

,
B(1)
B̃

}
, if

m−2∑
i=1

αi �= 0,

m−2∑
i=1

βi �= 0,

max
{

1
ρ
(R − r)φ(r)ψ(R),

B(1)
B̃

}
, if

m−2∑
i=1

αi �= 0,

m−2∑
i=1

βi = 0,

max
{

1
ρ
(R − r)φ(r)ψ(R),

A(1)
Ã

}
, if

m−2∑
i=1

αi = 0,

m−2∑
i=1

βi �= 0.

(2.19)
We note that

Ã > 0 if
m−2∑
i=1

βi �= 0

and

B̃ > 0 if
m−2∑
i=1

αi �= 0.

So the constant C in (2.19) is well defined. �

3. The main result

The main result of the paper is the following theorem.

Theorem 3.1. Let (C1), (C2), (C4) and (A3) and (A4) hold. Then (1.1) has a positive
solution for λ > 0 sufficiently small.

Remark 3.2. Theorem 3.1 extends [1, Theorem 1] in two main directions:

(i) the m-point BVPs (1.1) are considered; and

(ii) the case q(t) > 0 is studied.
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Proof of Theorem 3.1. Let λ satisfy

0 < λ < min
{

1
C1‖w̄‖ ,

1
2CM

}
, (3.1)

where C1 = sup{g(t, u) | r � t � R, 0 � u � 1}, g(t, u) := f(t, u) + M and C is the
constant defined in Lemma 2.5. Let w = λMw̄. Then u is a positive solution of (1.1) if
and only if ũ = u + w is a solution of

(p(t)u′)′ − q(t)u + λg̃(t, u − w) = 0, r < t < R,

au(r) − bp(r)u′(r) =
m−2∑
i=1

αiu(ξi),

cu(R) + dp(R)u′(R) =
m−2∑
i=1

βiu(ξi),




(3.2)

with ũ(t) > w(t) on (r, R). Here

g̃(t, u) =

{
g(t, u), for u � 0,

g(t, 0), for u < 0.
(3.3)

Let
K = {u ∈ C[r, R] : u(t) � 1

2γ(t)‖u‖, t ∈ [r, R]}, (3.4)

where γ is as in (2.12). For each v ∈ K, let u = Tv be the solution of

(p(t)u′)′ − q(t)u + λg̃(t, v − w) = 0, r < t < R,

au(r) − bp(r)u′(r) =
m−2∑
i=1

αiu(ξi),

cu(R) + dp(R)u′(R) =
m−2∑
i=1

βiu(ξi).




(3.5)

By Lemma 2.2,

Tv = λ

[∫ R

r

G(t, s)g̃(s, v(s) − w(s)) ds + A(g̃(·, v − w))ψ(t) + B(g̃(·, v − w))φ(t)
]
. (3.6)

From Lemma 2.4, we know that T : K → K. It is easy to check that T is completely
continuous. We shall prove that T has a fixed point in K by using Theorem 1.3.

Define Ω1 = {u ∈ C[r, R] : ‖u‖ < 1}. For u ∈ ∂Ω1 ∩ K,

(Tv)(t) = λ

[∫ R

r

G(t, s)g̃(s, v(s) − w(s)) ds + A(g̃(·, v − w))ψ(t) + B(g̃(·, v − w))φ(t)
]

� λC1

[∫ R

r

G(t, s) ds + A(1)ψ(t) + B(1)φ(t)
]

= λC1w̄(t)

� 1,
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since 0 � v − w � v � 1. Thus

‖Tu‖ � ‖u‖, for u ∈ ∂Ω1 ∩ K.

Now choose a constant M̃ > 0 such that

1 � 1
4λM̃Γ inf

r�t�R

∫ β

α

G(t, s) ds, (3.7)

where
Γ := min

α�t�β
γ(t).

By (A4), we know that there is a constant D > 0 such that

g̃(t, s)
s

� M̃, for (t, s) ∈ [α, β] × [D,∞). (3.8)

Set

ρ2 = max
{

4, 4λCM,
4D

Γ

}

and define
Ω2 = {u ∈ C[r, R] : ‖u‖ < ρ2}.

For u ∈ ∂Ω2 ∩ K, we have from Lemmas 2.5 and 2.4 that

u(s) − w(s) = u(s) − λMw̄(s)

� u(s) − λMCγ(s)

� u(s) − λCM

ρ2
2u(s)

� 1
2u(s) (3.9)

and

min
α�s�β

(u(s) − w(s)) � min
α�s�β

1
2u(s)

� min
α�s�β

1
4‖u‖γ(s)

= 1
2ρ2Γ � D. (3.10)

Therefore, for u ∈ ∂Ω2 ∩ K, we have

min
t∈[α,β]

(Tu)(t) = λ min
t∈[α,β]

∫ R

r

G(t, s)g̃(s, u − w) ds

+ A(g̃(·, u − w))ψ(t) + B(g̃(·, u − w))φ(t)

� λ min
t∈[α,β]

∫ R

r

G(t, s)g̃(s, u − w) ds
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� λ min
t∈[α,β]

∫ R

r

G(t, s)M̃(u(s) − w(s)) ds

� λ min
t∈[α,β]

∫ R

r

G(t, s)M̃ 1
2u(s) ds

� λ min
t∈[α,β]

∫ R

r

G(t, s)M̃ 1
4γ(s) ds‖u‖

� λ min
t∈[α,β]

∫ R

r

G(t, s)M̃ 1
4Γ ds‖u‖

� ‖u‖. (3.11)

This implies
‖Au‖ � ‖u‖ for u ∈ ∂Ω2 ∩ K.

By Theorem 1.3, T has a fixed point ũ with 1 � ‖ũ‖ � ρ2. It follows that

ũ(t) � 1
2γ(t) � 1

2 (2λCM)γ(t) � λMw̄(t) = w(t),

and so u = ũ−w is a positive solution of (1.1), completing the proof of Theorem 3.1. �

4. An example

Let us consider the three-point BVP

u′′ − u + λ(u5 − 2) = 0, 0 < t < 1,

u(0) = 1
2u( 1

2 ), u(1) = 1
2u( 1

2 ).

}
(4.1)

Clearly, (C1) and (C2) hold. It is easy to check that

ψ(t) = 1
2 (et − e−t), φ(t) = 1

2 (e1−t − et−1)

and

ρ =

∣∣∣∣∣φ(0) ψ(0)
φ′(0) ψ′(0)

∣∣∣∣∣ =

∣∣∣∣∣
1
2 (e − e−1) 0

1
2 (−e − e−1) 1

∣∣∣∣∣ = 1
2 (e − e−1).

Since

∆ =

∣∣∣∣∣ − 1
2ψ( 1

2 ) ρ − 1
2φ( 1

2 )

ρ − 1
2ψ( 1

2 ) − 1
2φ( 1

2 )

∣∣∣∣∣ = −ρ( 1
2 (e − e−1) − 1

2 (e1/2 − e−1/2)) < 0,

ρ − 1
2φ( 1

2 ) = 1
2 (e − e−1) − 1

4 (e1/2 − e−1/2) > 0

and
ρ − 1

2ψ( 1
2 ) = 1

2 (e − e−1) − 1
4 (e1/2 − e−1/2) > 0,

we know that (C4) is satisfied. Let w̄ be the unique solution of

u′′ − u + 1 = 0, 0 < t < 1,

u(0) = 1
2u( 1

2 ), u(1) = 1
2u( 1

2 ),

}
(4.2)
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then

w̄ =
(1 − e−1)et + (e − 1)e−t

2[(e1/2 − e−1/2) + (e − e−1)]
+ 1.

Moreover,
‖w‖ = w( 1

2 ) (4.3)

and
‖w‖ .= 0.203 347 172 171 906 298 02. (4.4)

From (2.11),

q̃(t) = min
{

φ(t)
φ(0)

,
ψ(t)
ψ(1)

}
= min

{
e1−t − et−1

e − e−1 ,
et − e−t

e − e−1

}
(4.5)

and
q̃(t) � q̃( 1

2 ) =
1

e1/2 + e−1/2 . (4.6)

From (2.13) and (2.14), we know that

Ã :=
1
∆

∣∣∣∣∣
1
2 q̃( 1

2 ) ρ − 1
2φ( 1

2 )
1
2 q̃( 1

2 ) − 1
2φ( 1

2 )

∣∣∣∣∣ = − 1
2∆

ρq̃( 1
2 ) (4.7)

and

B̃ :=
1
∆

∣∣∣∣∣ − 1
2ψ( 1

2 ) 1
2 q̃( 1

2 )

ρ − 1
2ψ( 1

2 ) 1
2 q̃( 1

2 )

∣∣∣∣∣ = − 1
2∆

ρq̃( 1
2 ). (4.8)

Clearly,
Ã = B̃

.= 0.338 943 166 556 021 992 19.

Thus from (2.12)

q̃(t) + Ãψ(t) + B̃φ(t) � q̃( 1
2 ) + Ãψ(1) + B̃φ(0)

= q̃( 1
2 )

{
1 +

ρ

−2∆

[
e1 − e−1

2
+

e1 − e−1

2

]}

=
1

e1/2 + e−1/2

{
1 +

e1 − e−1

e − e−1 − e1/2 + e−1/2

}
.= 0.886 818 883 970 073 908 68. (4.9)

So we can take k0 = 1 and

γ(t) = q̃(t) + Ãψ(t) + B̃φ(t) (4.10)

in Lemma 2.4. By (4.10)

γ(t) � Ãψ(t) + B̃φ(t)

= Ã(ψ(t) + φ(t))

� Ãψ( 1
2 ) (4.11)
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for all t ∈ [0, 1]. This together with (4.3) imply that

w̄(t) � C∗γ(t), t ∈ [0, 1], (4.12)

where

C∗ =
‖w‖

Ãφ( 1
2 )

.= 1.151 314 817 609 928 832 4.

Now, by the proof of Theorem 3.1, we know that (4.1) has at least one positive solution
for each λ ∈ (0, Λ) with

Λ = min
{

1
C1‖w̄‖ ,

1
2C∗M

}
.= 0.217 143 040 440 482 925 60,

where C1 = 1, M = 2.
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