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Abstract

Many industrial applications require finding solutions to challenging combinatorial problems.
Efficient elimination of symmetric solution candidates is one of the key enablers for high-
performance solving. However, existing model-based approaches for symmetry breaking are lim-
ited to problems for which a set of representative and easily solvable instances is available,
which is often not the case in practical applications. This work extends the learning frame-
work and implementation of a model-based approach for Answer Set Programming to overcome
these limitations and address challenging problems, such as the Partner Units Problem. In par-
ticular, we incorporate a new conflict analysis algorithm in the Inductive Logic Programming
system ILASP, redefine the learning task, and suggest a new example generation method to
scale up the approach. The experiments conducted for different kinds of Partner Units Problem
instances demonstrate the applicability of our approach and the computational benefits due to
the first-order constraints learned.

KEYWORDS: answer set programming, inductive logic programming, symmetry breaking
constraints

1 Introduction

Finding solutions to hard combinatorial problems is important for various applications,

including configuration, scheduling, or planning. Modern declarative solving approaches

allow programmers to easily encode various problems and then use domain-independent

solvers to find solutions for given instances. The search performance depends highly on
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both the encoding quality and selected solver parameters. The latter issue can partially

be solved using portfolio solvers that use machine learning to select the best possible

parametrization of underlying solving algorithms (Hoos et al. 2014). However, writing an

optimal encoding remains a challenge that requires an experienced programmer to clearly

understand the problem up to details, such as possible structures present in instances,

their invariants, and symmetries.

Automatic computation of symmetry breaking constraints (SBCs) can greatly simplify

the programming task by extending a given encoding with constraints eliminating sym-

metric solution candidates, that is, a set of candidates where each one can be obtained

from another by renaming constants (Margot 2007; Katebi et al. 2010; Walsh 2012).

Existing approaches compute SBCs either for a first-order problem encoding or for only

one instance of a given problem. The latter – instance-specific methods – compute SBCs

online, that is, before or during each invocation of a solver (Puget 2005; Cohen et al.

2006; Drescher et al. 2011). As a result, the obtained SBCs are not transferable to other

instances and their computation might significantly increase the total solving time since

the problem of finding SBCs is intractable. The model-based methods are usually applied

offline and aim at finding general SBCs breaking symmetries of a class of instances. How-

ever, these methods are either limited to local symmetries occurring due to definitions

of variable domains (Devriendt et al. 2016) or require representative sets of instances

(Mears et al. 2008; Tarzariol et al. 2021) to identify SBCs that highly likely eliminate

symmetries for all instances of this class. Roughly, model-based approaches apply graph-

based methods, for example, saucy (Darga et al. 2004), to find candidate symmetries of

the given instances and then lift the obtained information to first-order SBCs.

The main challenge in the application of model-based approaches is that they must

be able to access or generate instances that (i) comprise symmetries representative for

the whole instance distribution and (ii) are simple enough to allow the implementation

to compute all of their solutions. Consider a small example of the well-studied Partner

Unit Problem (PUP) (Aschinger et al. 2011; Teppan et al. 2016), which is an abstract

representation of configuration problems occurring in railway safety or building security

systems. As shown in Figure 1a, the input of the problem is given by a set of units U and

a bipartite graph G = (S,Z,E), where S is a set of sensors, Z is a set of security/safety

zones, and E is a relation between S and Z. The task is to find a partition of vertices

v ∈ S ∪Z into bags ui ∈ U , presented in Figure 1b, such that the following requirements

hold for each bag: (i) the bag contains at most UCAP many sensors and UCAP many

zones and (ii) the bag has at most IUCAP adjacent bags, where the bags u1 and u2 are

adjacent whenever vi ∈ u1 and vj ∈ u2 for some (vi, vj) ∈ E. The given example shows

the smallest instance representing a class of building security systems named double by

Aschinger et al. (2011). Despite being the simplest instance, it has 145, 368 solutions,

98.9% of which can be identified as symmetric (for instance, by renaming the units of a

solution). Therefore, the enumeration of symmetries for PUP instances is problematic,

even for the smallest and simplest ones.

The model-based method suggested by Tarzariol et al. (2021) applies an instance-

specific tool for identifying symmetries of small but representative instances of a target

distribution, and then generalizes respective examples by means of Inductive Logic Pro-

gramming (ILP). To lift the symmetries, the method needs to investigate all solutions

of the analyzed instances, making it inapplicable if no trivial satisfiable instances exist.

In this work, we address such limitations and extend the framework’s applicability to
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(a) (b)

Fig. 1. Partner Unit Problem example with UCAP = IUCAP = 2.

combinatorial problems lacking trivial representative instances. In particular, our paper

makes the following contributions:

• We propose a new definition of the ILP learning task and a corresponding imple-

mentation for the input generation, which allow the approach to scale with respect

to the number of answer sets of the analyzed instances, thus, learning efficient

first-order constraints.

• We provide a novel conflict analysis method for the learning system ilasp (Law

et al. 2020) that significantly improves the efficiency of the constraint learning.

• We present an extensive experimental study conducted on three kinds of PUP

benchmarks shows that the new method clearly outperforms the legacy approach

in terms of learning and solving performance.

The paper is organized as follows: after a short introduction of preliminaries in Sec-

tion 2, we introduce the revised learning framework and new conflict analysis method

in Section 3. Results of our experimental study are presented in Section 4, followed by

conclusions and future work in Section 5.

2 Background

In this section, we briefly introduce basic notions of Answer Set Programming, Inductive

Logic Programming, and the work by Tarzariol et al. (2021), which uses ILP to learn

first-order constraints from symmetries of ground ASP programs.

2.1 Answer Set Programming

Answer Set Programming (ASP) is a declarative programming paradigm based on non-

monotonic reasoning and the stable model semantics (Gelfond and Lifschitz 1991). Over

the past decades, ASP has attracted considerable interest thanks to its elegant syntax,

expressiveness, and efficient system implementations, successfully adopted in numerous

domains like, for example, configuration, robotics, or biomedical applications (Erdem

et al. 2016; Falkner et al. 2018). We briefly present the syntax and semantics of ASP,

and refer the reader to textbooks (Gebser et al. 2012; Lifschitz 2019) for more in-depth

introductions.

Syntax. An ASP program P is a set of rules r of the form:

a0 ← a1, . . . , am,not am+1, . . . ,not an,
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where not stands for default negation and ai, for 0 ≤ i ≤ n, are atoms. An atom is

an expression of the form p(t), where p is a predicate, t is a possibly empty vector of

terms, and the predicate ⊥ (with an empty vector of terms) represents the constant

false. Each term t in t is either a variable or a constant. A literal l is an atom ai
(positive) or its negation not ai (negative). The atom a0 is the head of a rule r, denoted

by H(r) = a0, and the body of r includes the positive or negative, respectively, body

atoms B+(r) = {a1, . . . , am} and B−(r) = {am+1, . . . , an}. A rule r is called a fact if

B+(r) ∪B−(r) = ∅, and a constraint if H(r) = ⊥.

Semantics. The semantics of an ASP program P is given in terms of its ground instan-

tiation Pgrd , which is obtained by replacing each rule r ∈ P with its instances obtained

by substituting the variables in r by constants occurring in P . Then, an interpretation

I is a set of (true) ground atoms occurring in Pgrd that does not contain ⊥. An inter-

pretation I satisfies a rule r ∈ Pgrd if B+(r) ⊆ I and B−(r) ∩ I = ∅ imply H(r) ∈ I,
and I is a model of P if it satisfies all rules r ∈ Pgrd . A model I of P is stable if it is a

subset-minimal model of the reduct {H(r)← B+(r) | r ∈ Pgrd , B
−(r) ∩ I = ∅}, and we

denote the set of all stable models, also called answer sets, of P by AS (P ).

2.2 Inductive Logic Programming

Inductive Logic Programming (ILP) is a form of machine learning whose goal is to learn

a logic program that explains a set of observations in the context of some pre-existing

knowledge (Cropper et al. 2020). Since its foundation, the majority of research in the field

has addressed Prolog semantics although applications in other paradigms appeared in

the last years. The most expressive ILP system for ASP is Inductive Learning of Answer

Set Programs (ilasp), which can solve a variety of ILP tasks (Law et al. 2014, 2021).

Learning from Answer Sets. A learning task for ilasp is given by a triple 〈B,E,HM 〉,
where an ASP program B defines the background knowledge, the set E comprises two

disjoint subsets E+ and E− of positive and negative examples, and the hypothesis space

HM is defined by a language bias M , which limits the potentially learnable rules (Law

et al. 2014). Each example e ∈ E is a pair 〈epi , C〉 called Context Dependent Partial

Interpretation (CDPI), where (i) epi is a Partial Interpretation (PI) defined as pair of

sets of atoms 〈T, F 〉, called inclusions (T ) and exclusions (F ), respectively, and (ii) C

is an ASP program defining the context of PI epi . Given a (total) interpretation I of

a program P and a PI epi , we say that I extends epi if T ⊆ I and F ∩ I = ∅. Given

an ASP program P , an interpretation I, and a CDPI e = 〈epi , C〉, we say that I is an

accepting answer set of e with respect to P if I ∈ AS (P ∪ C) such that I extends epi .

Each hypothesis H ⊆ HM learned by ilasp must respect the following criteria: (i) for

each positive example e ∈ E+, there is some accepting answer set of e with respect to

B ∪H; and (ii) for any negative example e ∈ E−, there is no accepting answer set of e

with respect to B ∪H. If multiple hypotheses satisfy the conditions, the system returns

one of those with the lowest cost. By default, the cost cr of each rule r ∈ HM corresponds

to its number of literals (Law et al. 2014); however, the user can define a custom scoring

function for defining the rule costs. Law et al. (2018) extend the expressiveness of ilasp

by allowing noisy examples. With this setting, if an example e is not covered, that is, there
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is an accepting answer set for e if it is negative, or none if e is positive, the corresponding

weight is counted as a penalty. If no dedicated weight is specified, the example’s weight

is infinite, thus forcing the system to cover the example. Therefore, the learning task

becomes an optimization problem with two goals: minimize the cost of H and minimize

the total penalties for the uncovered examples.

The language bias M for the ilasp learning task is specified using mode declarations.

Constraint learning, that is, when the search space exclusively consists of rules r with

H(r) = ⊥, requires only mode declarations for the body of a rule: #modeb(R,P,(E)). In

this definition, the optional element R is a positive integer, called recall, which sets the

upper bound on the number of mode declaration applications in each rule. P is a ground

atom whose arguments are placeholders of type var(t) for some constant term t. In

the learned rules, the placeholders will be replaced by variables of type t. For each rule,

there are at most Vmax variables and Bmax literals in the body, which are both equal to 3

by default. Finally, E is an optional modifier that restricts the hypothesis space further,

limited in our paper to the anti reflexive and symmetric options that both work with

predicates of arity 2. When using the former, the atoms of the predicate P should be

generated with two distinguished argument values, while rules generated with the latter

take into account that the predicate P is symmetric.

In a constraint learning task, just as in other ILP applications (Cropper and Dumani

2020), the language bias must be defined manually for each ASP program P . A careful

selection of the bias is essential since a too weak bias might not provide enough limitations

for a learner to converge. In contrast, a too strong bias may exclude solutions from the

search space, thus resulting in suboptimal learned constraints.

Conflict Driven Inductive Logic Programming (CDILP). Several ilasp releases have been

developed in the last years, extending its learning expressiveness and applying more

efficient search techniques (Law et al. 2020). Recently, Law (2022) introduced CDILP – a

new search approach that overcomes the limitation of previous ilasp versions regarding

scalability with respect to the number of examples and further aims at efficiently address-

ing tasks with noisy examples. The approach exploits a set CC of coverage constraints,

each defined by a pair 〈e, F 〉, where e ∈ E is a CDPI and F is a propositional formula

over identifiers for the rules in HM . The formula is defined such that, for any H ⊆ HM ,

if H does not respect F , then H does not cover e. CDILP interleaves the search for an

optimal hypothesisH (for the current CC ) with a “conflict analysis” phase. In this phase,

ilasp identifies (at least) one example e not covered by H, which was not determined

by the current CC ; then, it creates a new conflict for e and adds it to CC . If such an

example does not exist, ilasp returns the current H as an optimal solution. Otherwise,

the system repeats the procedure with the updated set of conflicts. Using the Python

interface, PyLASP, one can apply different conflict analysis methods as long as they are

proven to be valid, that is, a method must terminate and compute formulas F such that

the current hypothesis H does not respect them. This requirement guarantees that the

CDILP procedure terminates and returns an optimal hypothesis for the learning task.

There are currently three built-in methods for conflict analysis in ilasp, denoted by

α, β, and γ, each of which determines a coverage constraint for an example e that is not

covered by a given hypothesisH. In the most stringent case, γ, ilasp computes a coverage

constraint that is satisfied by exactly those hypotheses that cover e. Identifying such a
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comprehensive coverage formula has the advantage that any example will be analyzed in

at most one iteration, so that ilasp with γ for conflict analysis usually requires a small

number of iterations only. On the other hand, computing such a precise coverage formula

is complex, meaning that an iteration can take long time. For this reason, α and β were

introduced. Both methods yield smaller formulas that can be computed in less time.

While this can lead to more iterations of CDILP, in some domains, the overall runtime

benefits from significantly shorter iterations. However, our preliminary investigations

showed that, for highly combinatorial PUP instances, even α and β struggle to compute

coverage constraints in acceptable time. In this work, we thus introduce a new conflict

analysis method that brings significant improvements over α, β, and γ on PUP instances.

2.3 Lifting SBCs for ASP

Tarzariol et al. (2021) presented an approach to lift ground SBCs for ASP programs

using ILP. Their system takes four kinds of inputs: (i) an ASP program P modeling a

combinatorial problem; (ii) two sets S and Gen of small satisfiable instances representa-

tive for a practical problem solved using P ; (iii) the hypothesis space HM ; and (iv) the

Active Background Knowledge ABK as an ASP program comprising auxiliary predicate

definitions and constraints learned so far. The generalization set Gen contains instances

used to generate positive examples that the set of learned constraints must preserve. As

a result, we increase the likelihood for the learned constraints to generalize beyond the

training examples. The instances of the training set S are passed to the instance-specific

symmetry breaking system sbass (Drescher et al. 2011) to identify the symmetries of

each instance in S. The output of sbass, Π, is a set of permutation group generators

(also called permutations) subsuming groups of symmetric answer sets for the analyzed

ground program. The framework by Tarzariol et al. (2021) uses this information to define

the positive and negative examples for an ILP task and applies ilasp to solve it. The

negative examples are associated with a weight, as the system aims at constraints that

remove as many symmetric answer sets as possible but does not require eliminating all

of them.

In their subsequent work, Tarzariol et al. (2022b) discuss four approaches for creating

training examples with sbass for ground programs Pi, obtained by grounding P with

the instances i ∈ S. In particular, enum enumerates all answer sets of Pi and classifies

each solution as a positive or negative example, according to the common lex-leader

approach. That is, if an answer set I can be mapped to a lexicographically smaller,

symmetric answer set using the permutations Π, that is, if I is dominated, it will produce

a negative example. Otherwise, I yields a positive example. In both cases, the inclusions

are I∩atoms(Π), where atoms(Π) denotes the set of atoms occurring in Π, the exclusions

are atoms(Π)\I, and the context is i. On the other hand, the fullSBCs approach exploits

the clingo API to interleave the solving phase, which returns a candidate answer set I,
with the analysis of all its symmetric solutions. Thanks to the properties of permutation

groups (Sakallah 2009), fullSBCs can determine all symmetric answer sets by repeatedly

applying the permutations Π to I until no new solutions can be obtained. This approach

leads to a partition of the answer sets for an instance, where every partition cell consists

of symmetric solutions. For each obtained cell, the system labels the smallest answer set
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Fig. 2. Revised learning framework implementation.

as a positive example and all remaining ones as negative examples, thus achieving full

rather than partial symmetry breaking, while the enum approach yields the latter only.

Tarzariol et al. (2022b) evaluate the performance of their methods on three versions of

the pigeon-hole problem and the house-configuration problem (Friedrich et al. 2011). The

ABK they use contains predicates emulating arithmetic built-ins, and the search space is

split to apply the learning framework iteratively and thus increase the learning efficiency.

Given that the considered problem instances are defined in terms of unary predicates

and those in the training set S have a small number of solutions (from about a dozen

up to a few hundred), the suggested formulation of the ILP task admits a fast learning

of first-order constraints speeding up the solving of (unsatisfiable) instances. However,

instances of complex application problems lack the presupposed characteristics, rendering

the previously proposed approaches inapplicable and calling for a more scalable handling

of training instances.

3 Method

This section presents an alternative version of the framework introduced by Tarzariol

et al. (2021), extending its applicability. First, we propose a revised ILP learning task

and procedures necessary to define inputs of this task for difficult combinatorial problems,

as illustrated in Figure 2. Then, we describe a new conflict analysis method for the ilasp

system enabling efficient constraint learning to handle this revised task.
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3.1 Revised ILP task

Training Examples. Tarzariol et al. (2021) propose approaches to the example generation

for an ILP learning task, which yield a number of examples proportional to the number

of solutions for each problem instance in S. However, for difficult problems with many

symmetries, even the simplest instances might yield a large number of answer sets. Their

enumeration might thus take unacceptably long time. Moreover, even if the enumeration

succeeds, the number of obtained examples is often too large to be handled by ilasp.

To overcome these issues, we propose two scalable approaches to the generation of ex-

amples for each instance in S based on the enum and fullSBCs strategies by Tarzariol

et al. (2021). The scalable enum strategy generates examples from a portion of solutions,

which are sampled from at most n random answer sets. For each candidate solution, the

lex-leader criterion is applied to determine whether another symmetric answer set dom-

inates it. This approach does not guarantee a fixed ratio between positive and negative

examples, and it might fail to identify symmetric answer sets, as inspecting single applica-

tions of permutation group generators does not achieve full symmetry breaking (Sakallah

2009). Nevertheless, the fixed number of considered answer sets provides means to limit

the time required for the definition of a learning task. The scalable fullSBCs approach

creates a set of examples configured by two parameters: (i) cells defines the number of

cells of symmetric solutions to analyze and (ii) max cell size limits the maximal num-

ber of negative examples generated per cell. For each cell, the approach adds the first

max cell size symmetric answer sets as negative examples. Next, it explores the whole

cell of symmetric solutions and takes the smallest one as a positive example. As a result,

this method generates a controlled number of positive and negative examples, regardless

of how many solutions there may be for a given instance. In fact, at most cells many

positive and cells ×max cell size many negative examples can be obtained in total.

Background Knowledge. Learning SBCs that improve the grounding and solving effi-

ciency is crucial for difficult combinatorial problems. Therefore, the background knowl-

edge ABK should provide necessary auxiliary predicates that allow an ILP system to in-

corporate such constraints in the search space. Previous formulations of ABK for learning

SBCs have issues with expressing appropriate constraints since the provided predicates

do not take the structure of problem instances into account. In this paper, we propose

a new version of ABK comprising two new types of auxiliary predicates. The first type

encodes local properties of nodes in an input graph, while the second enables a more

efficient constraint representation. That is, for two different nodes N and M, the predicate

close(N,M) holds if these nodes share a common neighbor. In case of bipartite graphs

containing two types of nodes, A and B (standing for sensors and zones in case of PUP

instances), we define two versions of this auxiliary predicate, distinguishing the two types

by closeA/2 and closeB/2. The second auxiliary predicate introduces an ordering on

value assignments as follows: let [1..maxx] and [1..maxy] be the domains of two variables

X and Y, and p(X,Y) be a binary predicate that holds for at most one value X ∈ [1..maxx]

per Y ∈ [1..maxy] in each answer set. Then, we define the following auxiliary predicate:

pGEQ(X,Y) :- p(X,Y).

pGEQ(X,Y) :- pGEQ(X+1,Y), 0 < X.
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If pGEQ(X,Y) is true, we know that p(X’,Y) holds for some value X’ equal to X or greater.

A constraint may then contain pGEQ(Y,Y) instead of the equivalent test p(X,Y), Y <= X,

thus reducing the ground instantiation size. Moreover, this encoding can bring benefits

for solving as well, as we obtain a more powerful propagation (Crawford and Baker 1994).

From a technical perspective, the framework presented by Tarzariol et al. (2021) runs

sbass on a ground program resulting from the union of P , an instance i ∈ S, and ABK .

The inclusion of ABK caused no difference in the symmetries for their approach (without

iterative constraint learning), given that the introduced auxiliary predicates do not affect

atoms occurring in P . On the other hand, the predicate pGEQ/2 alters the identification of

symmetries for atoms over the predicate p/2 contained in P . Hence, we do not necessitate

ABK to contribute to a ground program passed to sbass, as indicated in Figure 2.

Language Bias. To address difficult combinatorial problems, we suggest the following set

of mode declarations to define the search space HM :

#modeb(1,r(var(t),var(t))).

#modeb(1,close(var(t),var(t)),(symmetric,anti_reflexive)).

#modeb(2,pGEQ(var(t),var(t))).

#modeb(1,q(var(t),var(t))).

Assuming that the predicate r/2 specifies the graph provided by an instance, the mode

declaration in the first line expresses that one such atom can occur per constraint. Then,

for each close/2 or pGEQ/2 predicate in ABK , we include a respective mode declaration

as in the second and third lines. Moreover, if atoms over another predicate q/2 occur

in P , but not in ABK , we supply a mode declaration of the last kind, where considering

binary predicates is sufficient for PUP instances. Let us notice that only one type t of

variables is used for all mode declarations. In this way, there is no restriction on the

variable replacements, and we may explore inherent yet hidden properties of the input

labels. Furthermore, we introduce an alternative scoring function assigning the cost cid
to each rule rid ∈ HM . For every literal obtainable from the mode declarations, we

overwrite its default cost 1 with a custom cost, except for literals over domain predicates

like, for example, r/2. For literals over other predicates, in case the same variable is used

for both of the contained arguments, the cost is 2, and 3 otherwise. For example, the

cost of the constraint :- pGEQ(V1,V1), close(V1,V2), q(V2,V3). would be equal to

1 + 1 + 1 = 3 with the default scoring function but 2 + 1 + 3 = 6 with our custom costs.

3.2 Conflict analysis

As discussed in Section 2.2, ilasp’s Conflict Driven ILP (CDILP) approach requires a

conflict analysis method that, given a hypothesis H and an example e that H does not

cover, returns a coverage formula F . For ilasp to function correctly, this formula must

(i) not be satisfied by H, and (ii) be satisfied by every hypothesis H ′ ⊆ HM covering e.

Ilasp has several built-in methods for conflict analysis, some of which are described by

Law (2022). However, for learning tasks with hypothesis spaces that consist of constraints

only, these methods all behave equivalently when processing positive examples. For pos-

itive examples e = 〈epi , C〉 such that B ∪ C has many answer sets, the built-in methods

can return extremely long coverage formulas that also take long time to compute. For this

reason, we define a new conflict analysis method leading to shorter coverage constraints

that can be computed much faster.
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Definition 1

Let T = 〈B,E,HM 〉 be a learning task such that HM consists of constraints, and let

e ∈ E+ be a positive example. For any H ⊆ HM that does not cover e, the subsumption-

based conflict analysis method sbca(e,H, T ) returns the formula
∨

r∈H,r′∈HM

∧

r′⊆θr

¬r′id ,
where r′ ⊆θ r denotes that r′ subsumes r.

Example 1

Consider a scenario such that ilasp is run on a task T with the language bias given in

the previous subsection. At some point in the execution, T may generate the hypothesis

H = {:- close(V1,V2). :- not pGEQ(V1,V1), q(V1,V1).}. Within the hypothesis

space computed by ilasp,1 the first rule is only subsumed by itself, and the second rule

is subsumed by the following rules:

:- q(V1,V1). :- not pGEQ(V1,V1), q(V1,V1).

:- q(V1,V2). :- not pGEQ(V1,V1), not pGEQ(V1,V2), q(V1,V2).

:- pGEQ(V1,V1). :- not pGEQ(V1,V1), not pGEQ(V2,V1), q(V1,V2).

:- pGEQ(V1,V2). :- not pGEQ(V1,V1), not pGEQ(V2,V2), q(V1,V2).

:- not pGEQ(V1,V1), q(V1,V2). :- not pGEQ(V1,V2), not pGEQ(V2,V1), q(V1,V2).

:- not pGEQ(V1,V2), q(V1,V2). :- not pGEQ(V1,V2), not pGEQ(V2,V2), q(V1,V2).

:- not pGEQ(V2,V1), q(V1,V2). :- not pGEQ(V2,V1), not pGEQ(V2,V2), q(V1,V2).

:- not pGEQ(V2,V2), q(V1,V2).

Let r1 be the first rule in H and r2, . . . , r16 be the rules that subsume the second rule.

In this case, for any positive example e that is not covered by H, we obtain the coverage

constraint sbca(e,H, T ) = (¬r1id) ∨ ((¬r2id ) ∧ . . . ∧ (¬r16id )).
The following theorem shows that sbca is a valid method for conflict analysis for positive

examples, provided that the hypothesis space contains constraints only. This means that

in our application domain, when using the sbca method for some or all of the positive

examples, ilasp is guaranteed to return an optimal solution for any learning task.

Theorem 1

Let T = 〈B,E,HM 〉 be a learning task such that HM consists of constraints, and let

e ∈ E+ be a positive example. For any H ⊆ HM that does not cover e:

1. H does not satisfy sbca(e,H, T ).

2. Every H ′ ⊆ HM that covers e satisfies sbca(e,H, T ).

Proof

1. For each r ∈ H, r ⊆θ r implies that
∧

r′⊆θr

¬r′id is not satisfied by H. Thus, H cannot

satisfy any of the disjuncts of sbca(e,H, T ), that is, it does not satisfy sbca(e,H, T ).

2. Assume for contradiction that some H ′ ⊆ HM covers e = 〈epi , C〉 but does not

satisfy sbca(e,H, T ). Then, by the definition of covering e, there is some answer set

I ∈ AS (B ∪ C ∪ H ′) that extends epi . As H ′ does not satisfy sbca(e,H, T ), H ′

must include constraints that subsume each of the constraints in H. This means that

1 This space is smaller than the full hypothesis space as isomorphic rules are discarded. For instance,
:- q(V2, V2). is isomorphic to :- q(V1, V1). and thus not considered by ILASP.
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AS (B ∪ C ∪ H ′) ⊆ AS (B ∪ C ∪ H). Hence, I ∈ AS(B ∪ C ∪ H) contradicts the

condition that H does not cover e.

The advantage of the sbca method for conflict analysis, over the methods that are

already built-in to ilasp, is that this method does not need to compute answer sets of

B ∪C ∪H (for an uncovered example with context C). In other words, it does not need

to consider the semantics of the current hypothesis H and can instead focus on purely

syntactic properties. In combinatorial problem domains, where finding answer sets can be

computationally intensive, our preliminary experiments showed that sbca is much faster

than the existing conflict analysis methods of ilasp. On the other hand, the syntactic

coverage constraints generated by sbca tend to be more specific than the semantic con-

straints computed by ilasp’s built-in methods. That is, the formulas determined by sbca

apply to fewer hypotheses and cut out fewer solution candidates, which in turn means

that more (yet considerably faster) iterations of the CDILP procedure are required.

The sbca method is closely related to the ILP system Popper (Cropper and Morel

2021), which also identifies syntactically determined constraints based on subsumption.

Specifically, when Popper encounters a hypothesis H entailing an atom that should not

be entailed (a negative example for Popper), all hypotheses subsuming H are discarded

(as these would also entail the atom). Just like sbca, since Popper uses syntactically

determined constraints, it can compute these very quickly but may need many more

iterations (compared to the semantic conflict analysis methods of Ilasp). While both

approaches are closely linked, Popper learns under Prolog semantics. Therefore, Popper

cannot reason about logic programs with multiple answer sets and is inapplicable for

learning ASP constraints in the combinatorial problem domains we address.

PyLASP Script. The sbca method is essential to compute coverage formulas for positive

examples obtained from the generalization set Gen, including instances with a large

number of answer sets, in acceptable time. However, for other examples, the existing

conflict analysis methods of ilasp are better suited, as the obtained formulas are more

informative. Hence, we extended the default PyLASP script of ilasp with means to

specify examples requiring sbca usage by dedicated identifiers, associated with instances

in Gen on which clingo takes more than 5 s for enumerating the answer sets.

4 Experiments

For testing our new method, we decided to use PUP configuration benchmarks

(Teppan et al. 2016). We applied our framework to PUP instances supplied by Aschinger

et al. (2011), studying the double, doublev, and triple instance collections with UCAP =

IUCAP = 2. Instances of the same type represent buildings of similar topology with scal-

ing parameters that follow a common distribution. Although the benchmark instances

are synthetic, they represent a relevant configuration problem concerning safety and se-

curity issues in public buildings, like administration offices or museums. In addition, the

scalable synthetic benchmarks are easy to generate and analyze. That is, the nodes cor-

responding to rooms are labeled in a specific order, and the topologies follow a clear

pattern. The PUP instances and further details are provided by Tarzariol et al. (2022a).
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In all three experiments, we learn first-order constraints using the same inputs to the

ILP task, except for the two instance sets S and Gen: for S, we pick the smallest repre-

sentative instance of the selected type, while Gen comprises the three smallest satisfiable

instances other than the one in S. Components of the ILP task shared between the exper-

iments with different kinds of instances include (i) the input program P as an ASP en-

coding of PUP that comprises no SBCs and originates from work by Dodaro et al. (2016),

where it is referred to as ENC1; (ii) the background knowledge ABK defining the auxiliary

predicates closesensors/2, closezones/2, unit2zoneGEQ/2, and unit2sensorGEQ/2;

and (iii) the language bias M with mode declarations for the auxiliary predicates in

ABK as well as the predicates zone2sensor/2 and partnerunits/2, the latter taking

the roles of r/2 and q/2 according to the scheme described in Section 3.1.

For each PUP instance type, we tested the two proposed approaches (scalable enum

and scalable fullSBCs) combined with two versions of the scoring function: the default

function of ilasp as well as the custom costs introduced in Section 3.1. With both exam-

ple generation approaches, the sampling of answer sets was done using the --seed <seed>

option of clingo (v5.4.0). We executed the experiments using 120 different random seeds

to counterbalance the impact of randomness and get more reliable estimates of the rel-

ative learning and solving performance. For comparing the two approaches, we sampled

the same number of examples configured by n for scalable enum and cells×max cell size

for scalable fullSBCs. We limited the learning time to one hour, interrupting the process

in case no positive or negative examples could be obtained from the analysis by sbass.

In preliminary investigations, we tried the default PyLASP script of ilasp (v4.1.2)

as well as the one we devised to apply the sbca method for conflict analysis to positive

examples from Gen. As expected, no run with the default script could be finished within

one hour, and we thus focus below on results obtained with our new PyLASP script.

The learning efficiency for all three PUP instance types is such that scalable fullSBCs

yields more successful ILP tasks, that is, tasks solved by ilasp within the time limit,

than scalable enum.2 Using the scalable fullSBCs strategy and 120 different random seeds,

we were able to finish ilasp runs with 108 seeds for double, 88 for doublev, and 12 for

triple. The application of scalable enum resulted in only 10, 18, or 6 successful runs,

respectively, with some of the 120 seeds. Note that several scalable enum runs had to be

canceled because the generated ILP tasks were partial, that is, without either positive or

negative examples, so that trivial optimal hypotheses make learning with ilasp obsolete.

As scalable fullSBCs is the by far more successful example generation strategy, we restrict

the following considerations of solving performance to constraints learned with it.

Next, we compare the solving performance of clingo relative to constraints learned

with the default scoring function of ilasp or the custom costs distinguishing domain

predicates and variable recurrences as described in Section 3.1. To this end, we consider

those of the 120 random seeds for which ilasp runs finished successfully with both of the

scoring functions, and then provide the learned constraints as background knowledge to

clingo along with a PUP instance. Each clingo run is limited to 300 s solving time,

and Figure 3 displays box plots as well as average runtimes (Avg), standard deviation

(Std), and number of timeouts with the total number of runs in parentheses (TO) for

2 The results reflect the learning setting leading to the fastest runtime, using the alternative ordering
ord but no sat mode (Tarzariol et al. 2022b). Detailed records are provided by Tarzariol et al. (2022a).
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(a) (b) (c)

Fig. 3. Aggregated solving times for constraints learned with the two scoring functions.

the double, doublev, and triple instances. For all three PUP instance types and especially

the hard instances whose runtime is above average, we observe significant speed-ups due

to constraints learned by means of the custom scoring function. In fact, the custom costs

give preference to first-order constraints whose ground instances apply and prune the

search space more directly, thus benefiting the solving performance of clingo. We also

applied the Wilcoxon Signed-Rank test (Wilcoxon 1992) for non-normally distributed

runtimes, which confirms that the observed differences are statistically significant.

Finally, we contrast the best-performing learning setting, that is, the scalable full-

SBCs strategy for example generation along with our custom scoring function for assign-

ing costs to constraints, with originally proposed ASP encodings of PUP and instance-

specific symmetry breaking. In detail, Tables 1–3 show runtime results for the following

systems and encodings: (i) clingo on the plain ENC1 encoding; (ii) clingo on ENC1 aug-

mented with the most efficient learned constraints among those aggregated in Figure 3 as

ABK ; (iii) clingo on the advanced ENC2 encoding (Dodaro et al. 2016), incorporating

hand-crafted static symmetry breaking as well as an ordered representation (Crawford

and Baker 1994) of assigned units similar to pGEQ/2 in Section 3.1; (iv) sbass for per-

mutation and ground SBCs computation on ENC1; and (v) clasp
π denoting the solving

time of clingo on ENC1 augmented with ground SBCs by sbass.3 PUP instances are

named according to the scheme [un-]type-zones, where un indicates unsatisfiability due

to including one unit less than required, type denotes the double, doublev, and triple

collections by dbl, dblv, or tri, and the number of zones provides a measure of size. Each

run is limited to 600 s, and the TO entries mark unfinished runs.

Regarding different PUP encodings, ENC2 leads to more robust clingo performance

than the simpler ENC1 encoding, even if ground SBCs from sbass are included for claspπ.

That is, apart from a few shorter runs with ENC1 on satisfiable instances (dbl-30, dblv-45,

tri-18, and tri-21) in Tables 1–3, clingo scales better with ENC2, never times out on in-

stances finished with ENC1 or possibly clasp
π, and is able to solve some instances (dbl-50,

3 In the online usage of instance-specific symmetry breaking, the runtimes of sbass and clasp
π add up.
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Table 1. Runtimes for PUP double

ENC1 ABK ENC2 SBASS CLASPπ

dbl-10 0.02 0.01 0.01 0.04 0.02
un-dbl-10 505.91 0.01 0.16 0.03 TO
dbl-20 1.06 0.08 0.53 0.31 1.40
un-dbl-20 TO 0.34 TO 0.28 TO
dbl-30 1.70 0.46 2.21 3.12 0.91
un-dbl-30 TO 19.97 TO 3.19 TO
dbl-40 TO 5.50 11.50 14.58 482.17
un-dbl-40 TO 65.54 TO 9.52 TO
dbl-50 TO 54.89 542.09 57.91 TO
un-dbl-50 TO 61.27 TO 48.63 TO

Table 2. Runtimes for PUP doublev

ENC1 ABK ENC2 SBASS CLASPπ

dblv-15 0.03 0.03 0.02 0.05 0.03
un-dblv-15 TO 0.04 0.98 0.04 68.30
dblv-30 0.24 0.53 0.19 0.72 0.84
un-dblv-30 TO 0.73 TO 0.59 TO
dblv-45 3.36 3.07 8.04 6.11 51.57
un-dblv-45 TO 12.32 TO 4.40 TO
dblv-60 50.18 4.81 2.93 31.74 57.24
un-dblv-60 TO 53.74 TO 22.34 TO
dblv-75 517.05 69.51 280.90 98.88 TO
un-dblv-75 TO 98.63 TO 79.33 TO

Table 3. Runtimes for PUP triple

ENC1 ABK ENC2 SBASS CLASPπ

tri-12 0.02 0.03 0.01 0.04 0.02
un-tri-12 TO 0.13 3.38 0.03 TO
tri-15 0.03 0.04 0.03 0.08 0.24
un-tri-15 TO 73.88 393.70 0.05 TO
tri-18 0.08 1.62 0.62 0.16 1.05
un-tri-18 TO 72.03 TO 0.09 TO
tri-21 0.65 42.41 0.67 0.37 3.71
un-tri-21 TO 73.83 TO 0.19 TO
tri-24 7.20 78.18 2.80 0.62 12.57
un-tri-24 TO 269.38 TO 0.44 TO

un-tri-12, and un-tri-15) on which the latter two settings fail. Considering that sbass

produces ground SBCs within the time limit for all instances, the better performance

with ENC2 suggests that its hand-crafted static symmetry breaking approach provides a

more economic trade-off between the compactness and completeness of introduced SBCs.

However, we checked that static symmetry breaking by unit labels counteracts sbass to

detect any instance-specific symmetries, so that ENC2 commits to value symmetries only.

Indeed, when comparing ENC2 to clingo on ENC1 with first-order constraints learned

by ilasp as ABK , we observe further significant performance improvements thanks to our
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approach, particularly on the unsatisfiable instances in Tables 1–3. That is, the learned

ABK enables clingo to solve the considered PUP instances of three different types and

efficiently prunes the search space, which must be fully explored in case of unsatisfiability.

We checked that the learned constraints exploit the topology of instances to restrict the

assignable units, particularly using the predicate unit2sensorGEQ/2 for referring to the

assignment of sensors. The specific sets of efficient first-order constraints learned for each

of the three PUP instance types are provided in our repository (Tarzariol et al. 2022a).

5 Conclusions

This paper introduces an approach to learn first-order constraints for complex combina-

torial problems, which cannot be successfully tackled by previous, less scalable methods

(Tarzariol et al. 2022b). We devised and implemented two configurable strategies to gen-

erate the examples for an ILP task and extended the background knowledge by auxiliary

predicates admitting a more compact representation and potentially stronger propagation

of constraints on value assignments. Moreover, we introduced a custom scoring function

taking the ground instances of first-order constraints into account, along with a new con-

flict analysis method for ilasp that enables a much faster handling of positive examples

with many answer sets. The revised learning framework taking all proposed techniques to-

gether is able to learn efficient first-order constraints from non-trivial problem instances,

as demonstrated on three kinds of PUP benchmarks – a challenging configuration prob-

lem. In the future, we hope to introduce automatic (re-)labeling schemes for constants

appearing in instances to exploit common problem structure in a less input-specific way.

Moreover, we aim at extending our learning framework further to enable the model-based

analysis and breaking of symmetries for practically important optimization problems. Be-

yond graph-oriented applications, we plan to expand the scope of our constraint learning

methods to further areas, such as scheduling domains with symmetries among tasks and

resources, for example, several instances of products, machines, or workers with the same

skills.
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