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The Haar System in the Preduals of
Hyperfinite Factors

D. Potapov and F. Sukochev

Abstract. We shall present examples of Schauder bases in the preduals to the hyperfinite factors of

types II1, II∞, IIIλ, 0 < λ ≤ 1. In the semifinite (respectively, purely infinite) setting, these systems

form Schauder bases in any associated separable symmetric space of measurable operators (respec-

tively, in any non-commutative Lp-space).

1 Introduction

A sequence x = {xn}n≥1 in a Banach space X is called a (Schauder) basis of X if, for
every x ∈ X there exists a unique sequence of scalars {αn}n≥1 so that

x =

∑

n≥1

αnxn.

A sequence x such that xn 6= 0 for all n and the closed linear span of {xn}n≥1 coin-
cides with X, i.e., such that [xn]n≥1 = X, forms a basis of X if and only if there is a
constant c so that for every choice of scalars {αn}k

j=1 and integers m < k we have

∥

∥

∥

∑

1≤ j≤m

α jx j

∥

∥

∥

X
≤ c

∥

∥

∥

∑

1≤ j≤k

α jx j

∥

∥

∥

X
(cf. [11]).

The smallest such constant c is called the basis constant of x. In this note we shall be
concerned with the construction of Schauder bases in spaces of operators associated
with the hyperfinite factors of type II and IIIλ, 0 < λ ≤ 1. In the setting of symmetric
spaces of measurable operators affiliated with the hyperfinite factors of type II and
with some hyperfinite von Neumann algebras of type I∞, the problem was recently
considered in [4,17,18] where “non-commutative Walsh system”, “non-commutative
trigonometric system”, and “non-commutative Vilenkin systems” were constructed.
However, as with their classical counterparts, these systems fail to form a Schauder
basis in the preduals. In order to construct a Schauder basis in the preduals to the
hyperfinite factors, we use an analogy with another classical function system (which
forms a Schauder basis in every separable symmetric function space on (0, 1) [9,11]),
namely with the Haar system.
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2 Preliminaries

Let M be a von Neumann algebra with a fixed faithful normal state ρ. Let M∗ stand
for the predual of M, we consider this predual as a subspace of M∗ consisting of all
normal linear functionals equipped with ‖ · ‖∗ := ‖ · ‖M∗ , cf. [16, Theorem 1.10].

We consider several different norms on M. ‖ · ‖ is the operator norm. The
norm ‖ · ‖∗ of the predual M∗ induces the norms ‖ · ‖♯ and ‖ · ‖♭ on M by means
of the left and right embeddings x ∈ M → xρ := ρ( · x) ∈ M∗ and x ∈ M → ρx :=
ρ(x · ) ∈ M∗, respectively. These embeddings are injective and the ranges of M under
these embeddings are dense in M∗, [8,15]. Thus, if M♯ and M♭ are completions of M

with respect to the norms ‖ · ‖♯ and ‖ · ‖♭, then these spaces are isometric to M∗. Ob-
viously, ‖ · ‖ ≥ ‖·‖♯ and ‖ · ‖ ≥ ‖ · ‖♭, and the embeddings M ⊆ M♯ and M ⊆ M♭ are
continuous. Let us also note that the space M♯ (resp. M♭) is a left (resp. right) mod-
ule with respect to M, i.e., xa ∈ M♯ (resp. ax ∈ M♭) provided a ∈ M and x ∈ M♯

(resp. x ∈ M♭); moreover, we have

‖xa‖M♯
≤ ‖x‖M♯

‖a‖ (resp. ‖ax‖M♭
≤ ‖a‖ ‖x‖M♭

).

We introduce a left (resp. right) Lp-space associated with the algebra M as

L
p

♯(resp. ♭)(M) := [M,M♯(resp. ♭)] 1
p
, 1 ≤ p ≤ ∞.

Here, [ · , · ]θ is the method of complex interpolation, [2]. The space L
p

♯(resp. ♭)(M) is

isomorphic to Haagerup’s Lp-spaces Lp(M), [20]. Clearly, L1
♯(resp. ,♭)(M) = M♯(resp. ♭)

and L∞
♯ = L∞

♭ = M. Moreover, the Hilbert space L2
♯(resp. ♭)(M) coincides with

the completion of M with respect to the inner product 〈x, y〉♯ := ρ(y∗x) (resp.
〈x, y〉♭ := ρ(xy∗)), x, y ∈ M. We refer the reader to [8, 15] for further details on
this construction and also to [20] for the construction of Haagerup’s Lp-spaces.

In this note, we shall prove the results for the left norm ‖ · ‖♯. The argument for
the right norm ‖ · ‖♭ is generally the same. We shall make appropriate remarks when
it is necessary.

We denote by σρ the modular automorphism group for the state ρ, i.e., the unique
automorphism group of M such that

(i) ρ(x) = ρ(σρ
t (x)), t ∈ R, x ∈ M and

(ii) for every x, y ∈ M, there is a complex function fx,y(z) bounded in the strip S̄

and holomorphic in S, where S = {z ∈ C : 0 < Im z < 1} such that
ρ(σρ

t (x) y) = fx,y(t) and ρ(y σρ
t (x)) = fx,y(t + i), cf. [7, Section 9.2].

Let N ⊆ M be a von Neumann subalgebra such that the modular group σρ (with
respect to M) leaves N globally invariant. In this case the restriction of σρ onto N

gives the modular group of ρ|N in the algebra N, and we can speak about the mod-
ular action σρ without referring to the particular algebra N or M. In this (and only
this) setting, according to the main result of [19], there is a normal conditional ex-
pectation E : M → N such that

(a) ρ(x) = ρ(Ex), x ∈ M;
(b) E(axb) = aE(x)b, a, b ∈ N, x ∈ M;
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(c) 0 ≤ E(x)∗E(x) ≤ E(x∗x).

We now show that the existence of the conditional expectation implies that

(i) N♯ continuously embeds into M♯ and
(ii) the space N♯ is a 1-complemented subspace in M♯.

Indeed, (i) follows from the inequality

(2.1)

‖x‖M♯
:= ‖xρ‖M∗

= sup
y∈M

‖y‖−1 |ρ(yx)|

(since x ∈ N) = sup
y∈M

‖y‖−1 |ρ(E(y)x)|

(since ‖E(y)‖ ≤ ‖y‖) ≤ sup
y∈N

‖y‖−1 |ρ(yx)|

= ‖xρ‖N∗
= ‖x‖N♯

, x ∈ N.

For (ii), it is sufficient to show that

(2.2) ‖E(x)‖N♯
≤ ‖x‖M♯

, x ∈ M.

Let us recall that the predual M∗ is a subspace of M∗ consisting of all normal linear
functionals. Let us consider the mapping E ′ : M∗ → N∗ given by E ′(φ) = φ|N. It
follows from properties (a)–(c) of E above that

(2.3) E
′(xρ) = E(x)ρ and E

′(ρx) = ρE(x), x ∈ M.

Now (2.2) follows from (2.3), since E ′ is a norm one linear operator. It follows
from (2.1) and (2.2) that the embedding N♯ ⊆ M♯ is isometric, and therefore the
space N♯ is a 1-complemented subspace of M♯.

It this paper, we only consider von Neumann subalgebras N ⊆ M, which are
globally invariant under σρ. Therefore, we shall refer to the norms in the spaces N♯

and M♯ simply as ‖ · ‖♯ without specifying the particular algebra.
The assertions above may be similarly carried to the right predual space and to Lp

spaces (left and right) by interpolation. That is, the space L
p

♯(resp. ♭)
(N) is 1-com-

plemented in L
p

♯(resp. ♭)(M), 1 ≤ p ≤ ∞, and L
p

♯(resp. ♭)(N) embeds isometrically

into L
p

♯(resp. ♭)
(M), 1 ≤ p ≤ ∞.

3 Matrix Spaces

Let ν ∈ N and 0 < α ≤ 1
2

be fixed throughout the text. Let Nν be the class of
all complex 2ν × 2ν-matrices with the unit matrix 1ν . Tr is the standard trace on
matrices. The state ρν on Nν is given by

ρν(x) = Tr(xAν), x ∈ Nν , Aν =

ν
⊗

k=1

[

α 0
0 1 − α

]

.

The definition of the state ρν immediately implies that

(3.1) ρν+µ(x ⊗ y) = ρν(x) ρµ(y), x ∈ Nν , y ∈ Nµ.
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We consider the ultra-weak, continuous, ∗-isomorphic embedding iν : Nν → Nν+1

given by

(3.2) iν(x) = x ⊗ 11, x ∈ Nν .

Due to (3.1), we have that ρν+1(iν(x)) = ρν(x), x ∈ Nν , i.e., the restriction of the
state ρν+1 onto the subalgebra iν(Nν) is equal to the state ρν .

The modular automorphism group of the state ρν is given by σρν
t (x) = Ait

ν xA−it
ν ,

t ∈ R, x ∈ Nν . Indeed,

ρν(σρν
t (x) y) = Tr(A1+it

ν xA−it
ν y) = fx,y(t),

ρν(y σρν
t (x)) = Tr(Ait

ν xA1−it
k y) = fx,y(t + i),

where the holomorphic function fx,y is given by fx,y(z) = Tr(A1+iz
ν xA−iz

ν y), x, y ∈
Nν . Therefore, it is readily seen that the group σρν+1 leaves the subalgebra iν(Nν)
globally invariant. According to the preceding section, the space iν(Nν,♯) is 1-com-
plemented in Nν+1,♯ and the mapping iν embeds Nν,♯ isometrically into Nν+1,♯. We
denote Eν the norm one projection Nν+1,♯ → iν(Nν,♯). From now on, we shall refer
to the norms in the spaces Nν,♯ simply as ‖ · ‖♯, omitting the index ν.

Similarly, we introduce the Lp-space L
p
ν,♯ := L

p
♯ (Nν), ν ≥ 1 and we refer to the

norm in this space as ‖ · ‖♯,p.
We also introduce the p-th Schatten–von Neumann norm ‖ · ‖Cp

, 1 ≤ p < ∞
on Nν as

‖x‖Cp
:= (Tr((x∗x)

p
2 ))

1
p , x ∈ Nν .

Let ‖ · ‖C∞
stand for the operator norm. We denote by C

(ν)
p the matrix space Nν

equipped with the norm ‖ · ‖Cp
, 1 ≤ p ≤ ∞. We now may express the norms ‖ · ‖♯

and ‖ · ‖♭ as

(3.3) ‖x‖♯ = ‖xAν‖C1
, ‖x‖♭ = ‖Aνx‖C1

, x ∈ Nν .

The last identities may be carried to the Lp-spaces associated with Nν as follows.

Remark 3.1 We fix ν ∈ N and consider the function f ♯ : C × (Nν + Nν♯) →
C(ν)
∞ + C

(ν)
1 given by

f ♯(z, x) = xAz
ν , z ∈ C, x ∈ Nν + Nν,♯.

For every fixed z ∈ C, f ♯
z ( · ) := f ♯(z, · ) is a linear operator Nν + Nν,♯ → C(ν)

∞ + C
(ν)
1 .

Thus, we may consider f
♯

( · ) as a function on the complex plane with values in B(Nν +
Nν,♯,C

(ν)
∞ + C

(ν)
1 ). Here B(X,Y ) is the Banach space of all bounded linear opera-

tors X → Y . The function f
♯

( · ) is holomorphic on 0 < Re z < 1. It follows from (3.3)
that the mapping f

♯
1+it is an isometry between C

(ν)
1 and Nν,♯, for every t ∈ R. On

the other hand, the mapping f
♯

it is clearly an isometry between C(ν)
∞ and Nν , for ev-

ery t ∈ R. Thus, interpolating, we obtain that the mapping f
♯

1/p
is an isometry

between C
(ν)
p and L

p
ν,♯, i.e.,

(3.4) ‖x‖p,♯ = ‖xA
1
p
ν ‖Cp

, x ∈ L
p
ν,♯.
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A similar argument for the right spaces gives

(3.5) ‖x‖p,♭ = ‖A
1
p
ν x‖Cp

, x ∈ L
p

ν,♭.

Let eν = {e(ν)
j }0≤ j<4ν be the matrix units in Nν given in the shell enumeration.1

The system of matrix units eν forms a basis of Cp with the basis constant 2, cf. [10,
Theorem 2.1]. The next lemma shows that this system remains a basis with the same
basis constant 2 with respect to the norms ‖ · ‖p,♯ and ‖ · ‖p,♭, 1 ≤ p ≤ ∞.

Lemma 3.2 For every 0 ≤ m < 4ν , every 1 ≤ p ≤ ∞, and any complex num-

bers α j ∈ C, 0 ≤ j < 4ν , we have
∥

∥

∥

∑

0≤ j≤m

α j e(ν)
j

∥

∥

∥

p,♯(resp. ♭)
≤ 2

∥

∥

∥

∑

0≤ j<4ν

α je
(ν)
j

∥

∥

∥

p,♯(resp. ♭)
.

Proof Let Pν,m be the basis projection corresponding to the number 0 ≤ m < 4ν .
The projection Pν,m is a Schur multiplier, i.e.,

Pν,m(x) = pν,m ◦ x,

where ◦ is the Schur (entrywise) product of matrices and

pν,m =

∑

0≤ j<m

e(ν)
j .

Let us note that the Schur product is commutative and multiplication by a diagonal
matrix is a special case of Schur multiplier. Thus, the claim of the lemma follows
from the result [10, Theorem 2.1], the identities (3.3), (3.4), (3.5), and the fact that
the operator Pν,m commutes with left and right multiplication by a diagonal matrix,
i.e.,

Pν,m(xA1/p
ν ) = Pν,m(x) A1/p

ν and Pν,m(A1/p
ν x) = A1/p

ν Pν,m(x).

At the end of the section we establish the explicit formula of the projection Eν on
elementary tensors, i.e.,

(3.6) Eν(x ⊗ y) = ρ1(y) iν(x), x ∈ Nν , y ∈ N1.

To this end, consider the Hilbert spaces H♯
ν := L2

ν,♯, which is the matrix space Nν ,
equipped with the inner product 〈x, y〉ν = ρν(y∗x), x, y ∈ Nν and observe that

the projection Eν is an orthogonal projection in the Hilbert space H
♯
ν+1 onto the

subspace iν(H♯
ν). If { f j}0≤ j<4ν is an orthonormal basis in H♯

ν , then, using (3.1), we
obtain (3.6) as follows

Eν(x ⊗ y) =

∑

0≤ j<4ν

〈iν( f j), x ⊗ y〉ν+1 iν( f j)

=

∑

0≤ j<4ν

ρ1(y) 〈 f j , x〉ν iν( f j)

= ρ1(y) iν(x), x ∈ Nν , y ∈ N1.

1In the shell enumeration, the couple (k, m) with k, m ≥ 1 is assigned the index j(k, m) = (m−1)2 +k,
if k ≤ m and k2 − m + 1 if k > m, see [1, 10].

https://doi.org/10.4153/CMB-2011-007-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-007-7


352 D. Potapov and F. Sukochev

4 The Haar System

We shall construct the Haar system on Nν with respect to ρν inductively. Let us first
note that we construct two Haar systems: the left and the right Haar system, which
coincide when ρν is a tracial state. We shall show the construction of the left Haar
system. At the outset, we fix an orthonormal basis of L2

1,♯, that is, elements r j ∈ N1,
0 ≤ j ≤ 3 such that

(4.1) ρ1(r∗j rk) = δ jk, 0 ≤ j, k ≤ 3.

We define the Haar system inductively. The Haar system h1 in N1 is the system h1 =

{r0, r1, r2, r3}. If hν = {h(ν)
j }0≤ j<4ν is the Haar system in Nν , then the system hν+1 =

{h(ν+1)
j }0≤ j<4ν+1 given by

h(ν+1)
j =

{

iν(h(ν)
k ) · (1ν ⊗ r0), if q = 0;

iν(e(ν)
k ) · (1ν ⊗ rq), if q 6= 0;

, 0 ≤ j < 4ν+1,

j = 4νq + k, 0 ≤ q ≤ 3, 0 ≤ k < 4ν

(4.2)

is the Haar system in Nν+1.
We shall now present an inductive estimate of the basis constant of the system hν

in the space Nν,♯.

Theorem 4.1 If cν,♯ is the basis constant for hν , then, we have

c1,♯ ≤
∑

0≤ j≤3

‖r j‖ ‖r j‖♯

and

cν+1,♯ ≤ max
{

cν,♯ ‖r0‖2, ‖r0‖2 + 2

3
∑

q=1

‖rq‖2
}

.

Proof For the first inequality, it is sufficient to note that, if x =

∑3
j=0 α jr j , then

α j = ρ1(r∗j x), 0 ≤ j ≤ 3, see (4.1), therefore, |α j | ≤ ‖r j‖ ‖x‖♯ and

∥

∥

∥

∑

0≤ j≤m

α jr j

∥

∥

∥

♯
≤

∑

0≤ j≤3

|α j | ‖r j‖♯ ≤ ‖x‖♯

∑

0≤ j≤3

‖r j‖ ‖r j‖♯, 0 ≤ m < 4.

Let r j,ν := 1ν ⊗ r j , 0 ≤ j ≤ 3. We shall estimate the constant cν+1,♯ in the
inequality

(4.3)
∥

∥

∥

∑

0≤ j≤m

α j h(ν+1)
j

∥

∥

∥

♯
≤ cν+1,♯

∥

∥

∥

∑

0≤ j<4ν+1

α j h(ν+1)
j

∥

∥

∥

♯
,

where 0 ≤ m < 4ν+1. We first establish the estimate

(4.4)
∥

∥

∥

∑

0≤ j<4ν

α j h(ν)
j

∥

∥

∥

♯
≤ ‖r0‖

∥

∥

∥

∑

0≤ j<4ν+1

α j h(ν+1)
j

∥

∥

∥

♯
.
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This inequality follows from the observations that (cf. (3.6), (4.1) and (4.2))

i−1
ν (Eν(r∗0,ν h(ν+1)

j )) =

{

h(ν)
j , if 0 ≤ j < 4ν ;

0, if j ≥ 4ν ;

and that the left multiplication is a bounded operation in ‖ · ‖♯. It follows from (4.4)
that, for 0 ≤ m < 4ν , we have

∥

∥

∥

∑

0≤ j≤m

α jh
(ν+1)
j

∥

∥

∥

♯
≤‖r0‖

∥

∥

∥

∑

0≤ j≤m

α j iν(h(ν)
j )

∥

∥

∥

♯

= ‖r0‖
∥

∥

∥

∑

0≤ j≤m

α jh
(ν)
j

∥

∥

∥

♯
≤ cν,♯ ‖r0‖

∥

∥

∥

∑

0≤ j<4ν

α jh
(ν)
j

∥

∥

∥

♯

≤ cν,♯ ‖r0‖2
∥

∥

∥

∑

0≤ j<4ν+1

α jh
(ν+1)
j

∥

∥

∥

♯
.

Therefore, if 0 ≤ m < 4ν , then the constant in (4.3) admits the estimate

cν+1,♯ ≤ cν,♯ ‖r0‖2.

Let us next establish the estimate

(4.5)
∥

∥

∥

∑

q4ν≤ j≤q4ν +m

α j h(ν+1)
j

∥

∥

∥

♯
≤ 2 ‖rq‖2

∥

∥

∥

∑

0≤ j<4ν+1

α j h(ν+1)
j

∥

∥

∥

♯
,

1 ≤ q ≤ 3, 0 ≤ m < 4ν .

To this end, we observe that, according to (3.6) and (4.1), for 1 ≤ q ≤ 3

i−1
ν (Eν(r∗q,ν h(ν+1)

j )) =

{

e(ν)
j−q4ν , if q4ν ≤ j < (q + 1)4ν ;

0, otherwise.

Thus, if Pν,m is the projection from Lemma 3.2, then the left side can be obtained
from the right side in (4.5) via the mapping x → rq,ν iν(Pν,mi−1

ν (Eν(r∗q,ν x))) and,
therefore, (4.5) follows.

Finally, if 4ν ≤ m < 4ν+1, then, combining (4.4) and (4.5), we obtain the estimate

cν+1,♯ ≤ ‖r0‖2 + 2

3
∑

q=1

‖rq‖2

for the constant in (4.3). The theorem is proved.
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Remark 4.2 For the right Haar system the construction is the same, except we start
with the system {r0, r1, r2, r3} such that

(4.6) ρ1(r jr
∗
k ) = δ jk, 0 ≤ j, k ≤ 3.

Clearly, in the proof of Theorem 4.1, all references to the left multiplication should be
replaced with those to the right multiplication. Thus, we obtain that the right Haar
system basis constant cν,♭ admits the similar estimates:

c1,♭ ≤
∑

0≤ j≤3

‖r j‖ ‖r j‖♭

and

cν+1,♭ ≤ max
{

cν,♭ ‖r0‖2, ‖r0‖2 + 2

3
∑

q=1

‖rq‖2
}

.

Remark 4.3 Inspection of the proof of Theorem 4.1 shows that the main ingredi-
ents of the proof are

(i) Lemma 3.2 and
(ii) the fact that the left multiplication by a bounded operator is continuous in the

norm ‖ · ‖♯ uniformly ν ≥ 1.

Clearly, both these ingredients hold in the space L
p
ν,♯, 1 ≤ p ≤ ∞. Thus, the Haar

system (4.2) is a basis in L
p
ν,♯. More precisely, the constant c

(p)
ν,♯ that guarantees the

inequality
∥

∥

∥

∑

0≤ j≤m

α jh
(ν)
j

∥

∥

∥

p,♯
≤ c

(p)
ν,♯

∥

∥

∥

∑

0≤ j<4ν

α jh
(ν)
j

∥

∥

∥

p,♯
,

for every 0 ≤ m < 4ν and every complex scalars α j admits the estimate

c
(p)
1,♯ ≤

∑

0≤ j≤3

‖r j‖ ‖r j‖p,♯

and

c
(p)
ν+1,♯ ≤ max

{

c
(p)
ν,♯ ‖r0‖2; ‖r0‖2 + 2

3
∑

q=1

‖rq‖2
}

.

Similar estimates hold true for the right spaces L
p

ν,♭ and the right Haar system.

Remark 4.4 The construction of the Haar system may be generalized as follows: in
the inductive definition (4.2) for each inductive step from hν to hν+1, we can use its
own set {r(ν)

0 , r(ν)
1 , r(ν)

2 , r(ν)
3 }, which possesses the property (4.1) (or (4.6), if we build

a right Haar system). Theorem 4.1 remains valid in this case with obvious changes to
the estimates of the constants cν,♯(resp. ♭).

We shall refer to the system hν constructed above as h(ν)
α (r0, r1, r2, r3) in the sequel,

to stress the fact that the Haar system h(ν)
α depends on 0 < α ≤ 1

2
and {r j}0≤ j≤3.
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Corollary 4.5 The system h(ν)
α (r0, r1, r2, r3), where {r j}0≤ j≤3 satisfies (4.1) (resp.,

(4.6)) and ‖r0‖ ≤ 1, is a basis in Nν,♯ (resp. Nν,♭) with the basis constant uniformly

bounded with respect to ν ∈ N.

5 The Hyperfinite Factors II1 and IIIλ, 0 < λ < 1

The collection of the algebras {(Nν , ρν)}ν∈N together with the embedding (3.2)
forms a directed system of C∗-algebras, [7, Section 11.4]. The inductive limit of this
system possesses a state ρα, induced by ρν , ν ≥ 1. We denote the GNS representation
of this inductive limit with respect to the state ρα as Rα. Rα is a factor of type IIIλ
if 0 < α < 1

2
, with λ =

α
1−α and a factor of type II1 if α =

1
2
. The properties of the

factor Rα are collected in the following lemma. We also refer the reader to [7, Sec-
tion 12.3], where the representation of the factor Rα as a discrete crossed product is
given.

Lemma 5.1 The factor Rα possesses a distinguished faithful normal state ρα. With Nν ,

ρν , ν ∈ N defined in the previous section, there are ultra-weakly continuous ∗-iso-

morphic embeddings πν : Nν → Rα, ν ∈ N such that

(i) the embedding iν : Nν → Nν+1, given in (3.2), carries into πν(Nν) ⊆ πν+1(Nν+1);

(ii) the state ρν is induced by ρα and πν , i.e., ρν(x) = ρα(πν(x)), x ∈ Nν , moreover,

the automorphism group σρα leaves every subalgebra πν(Nν) globally invariant;

(iii) the set ∪ν≥1πν(Nν) is dense in Rα with respect to the weak operator topology.

From now on we shall identify the algebras Nν with πν(Nν), ν ∈ N. Since the
group σρα leave the subalgebras Nν , ν ∈ N globally invariant, it follows from the
preliminaries that, for every 1 ≤ p ≤ ∞, we have

(5.1) L
p
1,♯ ⊆ · · · ⊆ L

p
ν,♯ ⊆ L

p
ν+1,♯ ⊆ · · · ⊆ L

p
♯ (Rα),

and all embeddings here are isometric. Thus, we may refer to the norms in all these
spaces as ‖ · ‖p,♯, omitting the index ν ∈ N. Moreover, these embeddings are 1-com-
plemented, i.e., there is norm one projection

Eν : L
p
♯ (Rα) → L

p
ν,♯, ν ∈ N.

We also note that ∪ν∈NL
p
ν,♯ is norm dense in L

p
♯ (Rα), 1 ≤ p < ∞, since

(5.2) lim
ν→∞

‖Eν(x) − x‖p,♯ = 0, x ∈ L
p
♯ (Rλ), 1 ≤ p < ∞.

The last statement (and its right counterpart) is established in [5, Theorem 8].

Since the space Rα is not separable, the convergence (5.2) cannot be extended to
the norm ‖ · ‖. Nonetheless, we have the ultra-weak convergence in this case, namely

Lemma 5.2 For every x ∈ Rα and φ ∈ Rα,∗, we have lim
ν→∞

φ(Eν(x) − x) = 0.
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Proof The proof is straightforward. First, from (5.2), we have

|ρα(y (Eν(x) − x))| ≤ ‖y‖ ‖Eν(x) − x‖♯ → 0, as ν → ∞, x, y ∈ Rα.

The latter means that we proved the lemma for the special case φ = ρy, y ∈ Rα.
Since the linear subspace {ρy}y∈Rα

is norm dense in Rα,∗ and the projections
Eν : Rα → Nν are uniformly bounded, ν ∈ N, the general case now follows from [16,
Lemma 1.2].

Alternatively, we may look at the tower (5.1) from an inductive limit point of view
as follows (see [13, p. 135] for the definition of inductive limits of Banach spaces).

Theorem 5.3 If 1 ≤ p < ∞, the collection of Banach spaces {Lp
ν,♯}ν∈N together with

the embedding (3.2) form a directed system of Banach spaces. The inductive limit of

this system is isomorphic to L
p
♯ (Rα).

Let us further note that the identities (3.3) and (3.4) mean that the Banach spaces
L

p
ν,♯ and C

(ν)
p are isometric with the isometry given by x ∈ L

p
ν,♯ → xA1/p

ν ∈ C
(ν)
p .

Applying this isometry to the directed system {Lp
ν,♯}ν∈N together with the embedding

iν , we obtain the following.

Corollary 5.4 The collection of matrix spaces {C(ν)
p }ν∈N, 1 ≤ p < ∞, equipped with

the p-th Schatten-von Neumann norm, together with the embedding

x ∈ C
(ν)
p → x ⊗ A

1/p
1 ∈ C

(ν+1)
p

is a directed system of Banach spaces with the inductive limit isomorphic to Haagerup’s

space Lp(Rα).

6 Haar System (cont.)

Consider the left (resp. right) Haar system h(ν)
α = h(ν)

α (r0, r1, r2, r3), where the sys-
tem {r j}0≤ j≤3 satisfies (4.1) (resp. (4.6)) such that r0 = 11. It then follows from (3.2)

and (4.2) that h(ν+1)
j = iν(h(ν)

j ), 0 ≤ j < 4ν , ν ∈ N. Thus, we can construct

a unified left (resp. right) Haar system hα = hα(r0, r1, r2, r3) = {h j} j≥0 in Rα

as h j = πν(h(ν)
j ), provided 0 ≤ j < 4ν . As a corollary of Theorem 4.1, we now

have the following.

Theorem 6.1 The left (resp. right) Haar system hα forms a basis in the space

Rα,♯(resp. ♭).

Proof To prove that hα is a basis, we need to prove

(i) hα is a basic sequence and
(ii) the linear span of hα is dense in Rα,♯ (resp. Rα,♭).

The first part is contained in Theorem 4.1 and the second one is guaranteed by (5.2).
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As an example of the system h(1)
α , we now take the system

(6.1) r0 = 11, r1 =

[

1√
λ

0

0 −
√

λ

]

, r2 =

[

0 1
1 0

]

, r3 =

[

0 −
√

λ
1√
λ

0

]

,

where λ =
α

1−α . The system h(1)
α satisfies (4.1) (resp. (4.6), if r3 replaced with r∗3 ).

Thus, from Theorem 6.1, we have the following.

Corollary 6.2 The left (resp. right) Haar system hα = hα(r0, r1, r2, r3), where

{r j}0≤ j≤3 are given in (6.1), is a basis in the predual of the hyperfinite factor IIIλ.

For the special case α =
1
2
, the system (6.1) turns into

r̂0 = 11, r̂1 =

[

1 0
0 −1

]

, r̂2 =

[

0 1
1 0

]

, r̂3 =

[

0 −1
1 0

]

,

and we also have the following.

Corollary 6.3 The Haar system h 1
2

= h 1
2
(r̂0, r̂1, r̂2, r̂3) is a basis in the predual of the

hyperfinite factor II1.

Let us next consider the diagonal subalgebras Aν ⊆ Nν , ν ∈ N. The weak-
operator closure of ∪ν∈Nπν(Aν) forms an Abelian subalgebra Aα in Rα, which is iso-
morphic to L∞([0, 1), mα), cf. [7, Section 12.3], the algebra of all essentially bounded
mα-measurable functions on [0, 1), where the measure mα is given by

mα

(

[ k

2ν
,

k + 1

2ν

]

)

=

ν−1
∏

s=0

[

(1 − ǫs)α + ǫs(1 − α)
]

,

where 0 ≤ k < 2ν and ǫs are binary digits of k, i.e., ǫs = 0, 1 such that

k = ǫ020 + ǫ121 + · · · + ǫν−12ν−1.

Since Aα is commutative, we have that Aα,♯ = Aα,♭ = Aα,∗. The modular auto-
morphism group σρα (resp. σρν ) leaves the subalgebra Aα (resp. Aν) globally invari-
ant. Thus, the embedding Aα,∗ ⊆ Rα,♯(resp. ♭) (resp. Aν,∗ ⊆ Nν,♯(resp. ♭)) is isometric
and complemented. Let E be the norm one projection E : Rα → Aα. We denote
by the same letter E the norm one projection E : Rα,♯(resp. ♭) → Aα,∗. The projec-
tion E : Nν → Aν vanishes on all non-diagonal matrix entries. Hence, we obtain
that, if hα = hα(r0, r1, r2, r3) = {h j} j≥0 is the left (or right) Haar system, with re-
spect to (6.1), then
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(6.2) E(h j) = h j , if 4ν ≤ j < 2 · 4ν and h j = iν(e(ν)
k ) · (1ν ⊗ r1)

with k = j − 4ν and e(ν)
k being a diagonal matrix

unit, see (4.2);

E(h j) = 0, otherwise.

Clearly, this implies that the non-zero subsystem χα = {χ j} j≥0 of E(hα) forms a
basis of Aα,∗. From (4.2) and (6.2), we obtain that χ0 = r0, χ1 = r1 and if 2ν ≤ j <
2ν+1,

(6.3) χ j = ε(ν)
k · (1ν ⊗ r1), j = 2ν + k, 0 ≤ k < 2ν ,

where ε(ν)
k is the k-th diagonal matrix unit in Nν . When α =

1
2
, the system χ 1

2
is the

classical Haar system, cf. [12, Section 2.c]. Thus, we have

Corollary 6.4 The system χα, given in (6.3) is a basis of L1([0, 1), mα). In particular,

for α =
1
2

this system coincides with the classical Haar system on L1(0, 1), [12, Sec-
tion 2.c].

Remark 6.5 Every result in this section extends to the Lp-spaces associated with the
factors IIIλ and II1. If p = ∞, then the results still hold true with norm convergence
replaced by ultra-weak convergence, cf. Lemma 5.2.

Remark 6.6 In analogy to the classical Haar system, we shall call the system (6.1)
and its derivatives r j,ν = 1ν ⊗ r j , 0 ≤ j ≤ 3, ν ∈ N the (non-commutative)

Rademacher system. Due to unconditionality of martingale differences in the spaces
Lp(R 1

2
), 1 < p < ∞, [14, 17, 18], the Rademacher system is an unconditional basis

sequence in Lp(R 1
2
), 1 < p < ∞.

7 Factors of Type III1 and II∞

Here we shall consider the construction of bases in the preduals of the factors of
type III1 and II∞. Since these two factors may be reduced to the factors of type IIIλ,
II1, and I∞ by means of tensor products, we shall first consider the extension of the
Haar system construction over preduals of tensor products. To this end, it is useful
to recall the notion of Schauder decomposition, [11].

Let D = {D j} j≥1 be a system of projections in a Banach space X such that
D jDk = 0, j 6= k. The system D is a Schauder decomposition of the Banach space X

if and only if the series
∑∞

j=1 D jx converges to x in the norm of X, for every x ∈ X.
As for bases, we have the equivalent criteria for the system D to be a Schauder decom-
position of X, [11]. Namely, a system D = {D j} j≥1, D jDk = 0, j 6= k is a Schauder
decomposition of X if and only if (i) [D j(X)] j≥1 = X; (ii) there is a constant c such
that

∥

∥

∥

∑

1≤ j≤m

D jx
∥

∥

∥

X
≤ c

∥

∥

∥

∑

1≤ j≤n

D jx
∥

∥

∥

X
, x ∈ X, 1 ≤ m ≤ n.
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We fix two von Neumann algebras N and M equipped with faithful normal states ρ
and φ, respectively. The tensor product algebra N⊗̄M with respect to the product
state ρ ⊗ φ is the weak operator completion of the GNS representation of the tensor
product C∗-algebra N ⊗ M with respect to the state ρ ⊗ φ, cf. [7, Chapter 11].

We shall consider the algebra N as a von Neumann subalgebra of N ⊗ M under
the embedding x → x ⊗ 1, x ∈ N. It clearly follows from the modular condition that

σρ⊗φ
t (x ⊗ y) = σρ

t (x) ⊗ σφ
t (y), x ∈ N, y ∈ M, t ∈ R.

Thus, the modular group σρ⊗φ leaves subalgebra N globally invariant, and therefore,
the results in the preliminaries are applicable. In particular, the left predual N♯ iso-
metrically embeds into (N⊗̄M)♯, and the space N♯ is 1-complemented in (N⊗̄M)♯.
Let us denote the corresponding projection as EN. As in (3.6), we obtain the explicit
formula for the projection EN on elementary tensors

(7.1) EN(x ⊗ y) = (x ⊗ 1) φ(y), x ∈ N, y ∈ M.

Let us fix an orthonormal basis y = {y j} j≥1 ⊆ M in the predual M♯, i = 1, 2.
We assume that

(7.2) φ(y∗j yk) = δ jk.

Having basis y and the expectation EN at our disposal, we can construct the associ-
ated system of projections D = {D j} j≥1 of the predual (N⊗̄M)♯ by

(7.3) D jz = (1 ⊗ y j) EN((1 ⊗ y j)
∗ z), z ∈ N⊗̄M.

The left multiplication by an element of the tensor product N⊗̄M is a bounded op-
erator on (N⊗̄M)♯. Therefore, the operators D j are indeed bounded linear operators
on (N⊗̄M)♯. The fact that D j are projections and that D jDk = 0 if j 6= k follows
from (7.1) and (7.2). Furthermore, the identities (7.1) and (7.2) give the explicit for-
mula for the projection D j on the algebraic tensor product N⊗M. Indeed, if ak ∈ N,
bk ∈ M, 1 ≤ k ≤ n and

bk =

∑

s≥1

αks ys, αks ∈ C

is the expansion of the element bk with respect to the system y in M♯, then

(7.4) D j

(

∑

1≤k≤n

ak ⊗ bk

)

=

∑

1≤k≤n

αk j ak ⊗ y j .

Since the algebraic tensor product N⊗M is norm dense in (N⊗̄M)♯ and the norm in
the space (N⊗̄M)♯ is a cross-norm, we get [D j(N⊗̄M)] j≥1 = (N⊗̄M)♯. In general,
it is not the case that the system D constructed above is a Schauder decomposition of
the Banach space (N⊗̄M)♯.
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Theorem 7.1 If x = {x j} j≥1 and y = {yk}k≥1 are two bases in N♯ and M♯, respec-

tively, such that the associated systems of projections E = {E j} j≥1 and D = {Dk}k≥1,

defined in (7.3), are Schauder decompositions of the Banach space (N⊗̄M)♯, then the

product basis z = x ⊗ y := {x j ⊗ yk} j,k≥1, taken in the shell enumeration, is a basis in

the predual (N⊗̄M)♯.

Proof The proof is rather standard. The shell enumeration assigns to a pair ( j, k),
j, k ≥ 1 the number s( j, k) defined by

s( j, k) =

{

(k − 1)2 + j, if j ≤ k;

j2 − k + 1, if j > k.

Let z = {zs}s≥1 be the system z in the shell enumeration. It is clear that the linear
span of the system z is dense in (N⊗̄M)♯. Thus, to prove the theorem, we have to
establish, that there is a constant c such that

∥

∥

∥

∑

1≤s≤m

αszs

∥

∥

∥

♯
≤ c

∥

∥

∥

∑

1≤s≤n

αszs

∥

∥

∥

♯
, αs ∈ C, 1 ≤ m ≤ n.

Without loss of generality we may assume that n = n2
1, for some n1 ≥ 1. There is an

integer m1 ≥ 1 such that either of the relations is true (i) m2
1 + 1 ≤ m ≤ m2

1 + m1 or
(ii) m2

1 + m1 + 1 ≤ m ≤ (m1 + 1)2. Let us consider the first option. For the second
one the argument is similar. We have

∥

∥

∥

∑

1≤s≤m

αszs

∥

∥

∥

♯
≤

∥

∥

∥

∑

1≤s≤m2
1

αszs

∥

∥

∥

♯
+

∥

∥

∥

∑

m2
1+1≤s≤m

αszs

∥

∥

∥

♯

=

∥

∥

∥

∑

1≤ j,k≤m1

αs( j,k) x j ⊗ yk

∥

∥

∥

♯

+
∥

∥

∥

∑

1≤ j≤m−m2
1−1

αs( j,m1) x j ⊗ ym1

∥

∥

∥

♯
.

(7.5)

Letting

z =

∑

1≤s≤n

αszs =

∑

1≤ j,k≤n1

αs( j,k)x j ⊗ yk,

it then follows from (7.4) that the latter two terms on the right-hand side of (7.5) are
given by

∑

1≤ j,k≤m1

αs( j,k) x j ⊗ yk = Pm1
Qm1

(z)

and
∑

1≤ j≤m−m2
1−1

αs( j,m1) x j ⊗ ym1
= Pm−m2

1−1Dm1
(z),
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where P j and Qk are partial sum projections with respect to the decompositions E

and D, respectively, i.e., P j =

∑

1≤s≤ j Es and Qk =

∑

1≤s≤k Ds. Thus, we continue

∥

∥

∥

∑

1≤s≤m

αszs

∥

∥

∥

♯
≤ ‖Pm1

Qm1
(z)‖♯ + ‖Pm−m2

1−1Dm1
(z)‖♯ ≤ c ‖z‖♯.

The latter inequality is due to the fact that the partial sum projections are uniformly
bounded. The claim of the theorem follows.

We consider two specific examples. First, we take M = B(ℓ2
n). In this setting the

algebra N ⊗ M may be considered as the space of all bounded n × n-block matrices
with entries in N. The latter observation means, in particular, that the system of
projections E = {E j} j≥1, (7.3), associated with the matrix unit basis e is a Schauder
decomposition of the predual (N⊗̄M)♯; see the proof of Lemma 3.2. Let us also note
that the Schauder constant of the system E is uniformly bounded with respect to the
dimension of ℓ2

n.
As another example, we take M = Rα, 0 < α ≤ 1

2
. We fix the Haar system hα =

hα(r0, r1, r2, r3) = {h j} j≥1, where the Rademachers {r j}0≤ j≤3 are given in (6.1). We
denote the associated system of projections by Hα = Hα(r0, r1, r2, r3) = {H j} j≥1. To
establish that the system Hα is a Schauder decomposition in (N⊗̄M)♯ we only need
to verify that there is a constant c such that

∥

∥

∥

∑

1≤ j≤m

H jz
∥

∥

∥

♯
≤ c

∥

∥

∥

∑

1≤ j≤n

H jz
∥

∥

∥

♯
, z ∈ N ⊗ M, 1 ≤ m ≤ n.

The proof of the latter inequality is based on the following theorem.

Theorem 7.2 Let (Nν , ρν) be the algebras from the preceding sections and let N⊗̄Nν

be the tensor product von Neumann algebras equipped with the product states ρ ⊗ ρν ,

ν ∈ N. Let h(ν)
α = h(ν)

α (r0, r1, r2, r3) = {h(ν)
j } j≥1, where {r j}0≤ j≤3 satisfies (4.1), be

the left Haar system in Nν . If H(ν)
α = H(ν)

α (r0, r1, r2, r3) is the associated decomposition

defined by (7.3), then the minimal constant c, which guarantees the inequality

∥

∥

∥

∑

0≤ j<m

H(ν)
j z

∥

∥

∥

♯
≤ cν,♯

∥

∥

∥

∑

0≤ j<4ν

H(ν)
j z

∥

∥

∥

♯
, z ∈ N⊗̄Nν , 0 ≤ m < 4ν ,

admits the same inductive estimate as that in Theorem 4.1.

The proof of Theorem 7.2 is essentially a repetition of that of Theorem 4.1; we leave
details to the reader. Thus, we obtain the following.

Theorem 7.3 The system Hα = Hα(r0, r1, r2, r3) = {H j} j≥1, associated with the

Haar basis hα(r0, r1, r2, r3), where {r j}0≤ j≤3 is given by (6.1), is a Schauder decompo-

sition of the Banach space (N⊗̄Rα)♯.

Now we may apply the results above to the hyperfinite factors III1 and II∞. It is
known that III1 = IIIλ1

⊗̄IIIλ2
, where log λ1/log λ2 /∈ Q and II∞ = II1⊗̄I∞, cf. [3,6].

See the definitions of hα and h 1
2

in Corollaries 6.2 and 6.3. We obtain the following.
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Corollary 7.4 The system z = hα1
⊗ hα2

, αi =
λi

λi +1
, i = 1, 2,

log λ1

log λ2
/∈ Q , is a basis

in the predual of the hyperfinite factor of type III1.

Corollary 7.5 The system x = h 1
2
⊗e, is a basis in the predual of the hyperfinite factor

of type II∞.

Remark 7.6 Similarly to the preceding sections, all the results above hold true in
the setting of left and right Lp-spaces associated with the factors of type III1 and II∞.
Moreover, the system h 1

2
(resp. h 1

2
⊗ e) from Corollary 6.3 (resp. 7.5) forms a basis in

any symmetric operator space E(R 1
2
) (resp. E(M)), where R 1

2
(resp. M) is a hyperfi-

nite factor II1 (resp. II∞) and E is separable rearrangement invariant function space
(see definitions and further references in [4]).

Acknowledgments We would like to thank professors J. Arazy and A. Pełczyński for
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[16] Ş. Strătilă and L. Zsidó, Lectures on von Neumann algebras. Editura Academiei, Bucharest, 1979.

https://doi.org/10.4153/CMB-2011-007-7 Published online by Cambridge University Press

http://dx.doi.org/10.1007/BF01682937
http://dx.doi.org/10.2307/1971057
http://dx.doi.org/10.1007/BF01198137
http://dx.doi.org/10.1007/BF02392257
http://dx.doi.org/10.1016/0022-1236(84)90025-9
http://dx.doi.org/10.1007/s002200050224
https://doi.org/10.4153/CMB-2011-007-7


The Haar System in the Preduals of Hyperfinite Factors 363

[17] F. A. Sukochev and S. V. Ferleger, Harmonic analysis in symmetric spaces of measurable operators.
(Russian) Dokl. Akad. Nauk 339(1994), no. 3, 307–310.

[18] , Harmonic analysis in UMD-spaces: applications to basis theory. (Russian) Mat. Zametki
58(1995), no. 6, 890–905, 960.

[19] M. Takesaki, Conditional expectations in von Neumann algebras. J. Funct. Anal. 9(1972), 306–321.
doi:10.1016/0022-1236(72)90004-3

[20] M. Terp, Lp-spaces associated with von Neumann algebras. Copenhagen University, 1981.

School of Computer Science, Engineering and Mathematics, Flinders University, Bedford Park SA 5042,
AUSTRALIA
e-mail: denis.potapov@flinders.edu.au

School of Mathematics and Statistics, University of New South Wales, Kensington NSW 2052, AUSTRALIA
e-mail: f.sukochev@unsw.edu.au

https://doi.org/10.4153/CMB-2011-007-7 Published online by Cambridge University Press

http://dx.doi.org/10.1016/0022-1236(72)90004-3
https://doi.org/10.4153/CMB-2011-007-7

