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Root Extensions and Factorization in Affine
Domains

P. Etingof, P. Malcolmson, and F. Okoh

Abstract. An integral domain R is IDPF (Irreducible Divisors of Powers Finite) if, for every non-zero

element a in R, the ascending chain of non-associate irreducible divisors in R of an stabilizes on a finite

set as n ranges over the positive integers, while R is atomic if every non-zero element that is not a

unit is a product of a finite number of irreducible elements (atoms). A ring extension S of R is a root

extension or radical extension if for each s in S, there exists a natural number n(s) with sn(s) in R. In

this paper it is shown that the ascent and descent of the IDPF property and atomicity for the pair of

integral domains (R, S) is governed by the relative sizes of the unit groups U(R) and U(S) and whether

S is a root extension of R. The following results are deduced from these considerations: An atomic

IDPF domain containing a field of characteristic zero is completely integrally closed. An affine domain

over a field of characteristic zero is IDPF if and only if it is completely integrally closed. Let R be a

Noetherian domain with integral closure S. Suppose the conductor of S into R is non-zero. Then R is

IDPF if and only if S is a root extension of R and U(S)/ U(R) is finite.

1 Introduction

In this paper all rings are integral domains. For any element a in R, the set of prime

divisors of an coincides with the set of prime divisors of a. This elementary fact

played a key role in [15], where we investigated integral domains with the property

that every non-zero element is contained in only finitely many principal prime ideals.

The results there led to another proof of Zariski’s version of the Nullstellensatz [15,

Corollary 1.15].

We considered the consequences of working with irreducible elements instead of

prime elements[16]. This led us to the notion of IDPF. An integral domain R is IDPF

if for every non-zero element a in R the ascending chain of non-associate irreducible

divisors in R of an, n = 1, 2, . . . stabilizes on a finite set. If every non-zero element

in an integral domain R has only finitely many non-associate irreducible divisors, R

is said to be IDF, see [10]. Thus if R is IDPF, then it is IDF, but not conversely [16].

The concept of IDPF is also defined in [9] under the term locally finitely generated. In

[9] there are many results in IDPF of an asymptotic nature. In [9, 16] it was proved

that a Krull domain, in particular a Noetherian integrally closed domain, is IDPF.

We now give the definition of IDPF used in this paper. For any element a ∈ R, let

DR(a) denote the set
⋃

∞

n=1 Dn(a), where Dn(a) is the set of non-associated irreducible

divisors in R of an. Thus R is IDPF if DR(a) is finite for every non-zero element a in

R and R is IDF if D1(a) is finite for every non-zero element a in R. Let R ⊆ S be a

ring extension with S IDPF. Following [6], we say that a domain R is atomic if every
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non-zero element in R that is not a unit is a product of a finite number of irreducible

elements (atoms).

A ring extension R ⊆ S is a root extension or radical extension if for each s ∈ S,

there exists a natural number n(s) depending on s with sn(s) ∈ R. In [13, 19] it was

shown that when R and S are fields and S is a root extension, they must have positive

characteristic. In [5] the authors use the results in [8, 13] to show the following.

Theorem 1.1 If R is a domain that contains a field of characteristic zero and R is a

proper subring of a domain S, then S is not a root extension of R.

It was shown in [16, §§2, 3] that a subring R of the ring of Gaussian integers S is

IDPF if and only if S is a root extension of R. As a result, Z[2i] is IDPF while Z[5i] is

not IDPF. Hence field cannot be deleted from Theorem 1.1.

However every subring of the Gaussian integers is atomic and IDF. It was shown

that a domain R is atomic and IDF if and only if it is FFD (Finite Factorization Do-

main), that is, every non-zero element is contained in only finitely many principal

ideals [1]. The similarity between IDPF and FFD invites comparison between the re-

sults of [2] and those in this paper. In that connection we recall the following results

from [2] after fixing some notation. Throughout the paper S is a ring extension of R.

The conductor of S to R, {r ∈ R : rS ⊆ R}, will be denoted by [R :S] and the unit

group of R will be denoted by U(R). We follow the practice in [14] by calling each of

our results a theorem.

Remark 1.2 A local domain (R, M) with R/M infinite is FFD if and only if R is

integrally closed [2, Corollary 4], while an FFD containing a field of characteristic

zero need not be integrally closed [2, Remark 4].

Theorem 1.3 (i) Suppose that R ⊆ S is a pair of integral domains with non-zero

conductor. Then R an FFD implies that U(S)/ U(R) is finite and S is an FFD.

[2, Theorem 4]

(ii) Let R be a Noetherian domain with its integral closure S a finitely generated

R-module. Then R is an FFD if and only if U(S)/ U(R) is finite ( see [2, Corol-

lary 3]or [12, Theorem 7]).

Throughout the paper, a certain comparability result is used several times. Given

two n-tuples of non-negative integers a = (a1, . . . , an) and b = (b1, . . . , bn), we say

a ≤ b if ai ≤ bi for i = 1, 2, . . . , n. In that case we say a and b are comparable.

Lemma 1.4 ([16, Lemma 3.1]) Let n be any positive integer. Then every infinite set

of n-tuples contains comparable pairs of n-tuples x and y with x 6= y.

2 Root Extensions and the IDPF Property

In this section we discuss the descent and ascent of atomicity and the IDPF property

in ring extensions.

Theorem 2.1 (Descent of atomicity and the IDPF property) Let R ⊆ S with S

atomic and IDPF. Suppose U(S)/ U(R) is finite. If S a root extension of R, then R is

IDPF and atomic.
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Proof To prove R atomic, we proceed by contradiction. Suppose R is not atomic.

Then R is not FFD; that is, some non-zero element g ∈ R has infinitely many non-

associated divisors in R. Since S is FFD, all but finitely many of these divisors in R are

associated in S. Let A = {g1, g2, . . . } be the resulting infinite set of elements that are

associated in S. Then gi = uih where h is a fixed member of A and ui ∈ U(S).

Since U(S)/ U(R) is finite, infinitely many of the ui ’s are in the same coset of U(R)

in U(S). By renumbering, this means that {u1, u2, . . . } ⊆ u U(R) for some u ∈ U(S).

Hence u2 = uv2 and u3 = uv3, where {v2, v3} ⊆ U(R). But g2 = u2h, g3 = u3h, and

u2 = vu3, where v = u2/u3 ∈ U(R). So u2h = vu3h, i.e, g2 and g3 are associated in R.

This contradicts the choice of the gi ’s.

We now prove that R is IDPF. Suppose not. Then for some 0 6= g ∈ R − U(R),

DR(g) is infinite. Since S is IDPF, DS(g) is some finite set {g1, . . . , gk}.

Since S is a root extension of R, there is a positive integer m with gm
i ∈ R for

every i with 1 ≤ i ≤ k. Form Zk
m = {(n1, n2, . . . , nk) : 0 ≤ ni < m}. For each

τ = (z1, . . . , zk) ∈ Zk
m and each coset u U(R) (with u in U(S) a fixed representative

of u U(R)), consider

Tτ ,u = {h ∈ DR(g) : h is associated in R with u
k∏

i=1

gri

i , with ri ≡ zi (mod m)}.

Each element h ∈ DR(g) is associated in S with a product of the gi ’s because

{g1 . . . , gk} = DS(g). There are only finitely many Tτ ,u’s because Zk
m and U(S)/ U(R)

are finite sets. So DR(g) =
⋃

τ ,u Tτ ,u, as τ ranges over Zk
m and u ranges over the set of

representatives of the cosets of U(R) in U(S), is a finite union. Since DR(g) is infinite,

one of the Tτ ,u’s is infinite.

Choose and fix one such infinite Tτ ,u and let W = {0, 1, 2, . . . }. Define Φ : Wk →
S by Φ(x1, x2, . . . , xk) = ugmx1+z1

1 · · · gmxk+zk

k . Observe that Φ maps onto the infi-

nite set Tτ ,u consisting of irreducible elements associated with elements in DR(g).

Therefore Φ
−1(Tτ ,u) is an infinite subset of Wk. By Lemma 1.4 there must exist

x = (x1, . . . , xk) and y = (y1, . . . , yk), x 6= y, in Φ
−1(Tτ ,u) that satisfy xi ≤ yi

for all i. Then yi = xi + di with di ≥ 0 and

Φ(y1, . . . , yk) = ugmx1+md1+z1

1 · · · gmxk+mdk+zk

k = u(gmx1+z1

1 · · · gmxk+zk

k )(gmd1

1 · · · gmdk

k )

= Φ(x1, . . . , xk)(gm
1 )d1 · · · (gm

k )dk .

Since Φ(y1, . . . , yk) ∈ Tτ ,u is irreducible in R, we must have d1 = · · · = dk = 0.

So (y1, . . . , yk) = (x1, . . . , xk). This contradicts x 6= y. Hence R is IDPF.

The following example from [2, Remark 2, p. 392] shows that the hypothesis

U(S)/ U(R) finite is necessary in Theorem 2.1.

Example 2.2 Let R = F1 + XF2[[X]] and let S = F2[[X]], where F1 is an infinite alge-

braic extension of its prime subfield Zp and F1 is a subfield of F2 with 1 < [F2 :F1] <
∞ and F2[[X]] is the power series over F2 in the variable X. Then U(S)/ U(R) ∼=
U(F2)/ U(F1) is torsion. Since F1 is an infinite field and F1 6= F2, U(F2)/ U(F1) is

infinite [4]. To see that S is a root extension of R, let f = f0 + f1X + · · · . If f0 = 0,
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then f ∈ R. If f0 6= 0, then f = f0(1 +
f1

f0
X + · · · ). Since U(F2)/ U(F1) is torsion,

f k
0 ∈ U (F1) for some positive integer k. Then f k

= f k
0 (1 +

f1

f0
X + · · · )k ∈ R. Thus S is

a root extension of R. As noted in [2], R is not an FFD. Both R and S are Noetherian,

hence atomic. So R not an FFD means that R is not IDF, hence not IDPF.

Theorem 2.3 (Ascent of atomicity and the IDPF property) Let R ⊆ S with

[R :S] 6= {0}. If R is atomic and IDPF, then S is atomic and IDPF, U(S)/ U(R) is

finite, and S is a root extension of R.

Proof Since R is atomic and IDPF it is atomic and IDF, and hence R is FFD, as noted

in the introduction. Then by Theorem 1.3, we get that U(S)/ U(R) is finite and S is

an FFD, hence is atomic and IDF.

We first prove that S is a root extension of R. So for each g ∈ S we must find

n = n(s) such that gn ∈ R. If g ∈ U(S), then gn ∈ U (R), where n = |U(S)/ U(R)|.
So let g ∈ S − U(S). We have by hypothesis that cS ⊆ R for some 0 6= c ∈ R. In

particular, cg ∈ R. Since R is IDPF, there is a finite set of atoms {F1, . . . , Fk} ⊆ R

such that DR(cg) = {F1, . . . , Fk}.

Now cgm divides (cg)m in R. Since R is atomic, cgm
=

∏l
i=1 Gi , where G1, . . . , Gl

are atoms in R. Each Gi also divides (cg)m in R. So Gi ∈ DR(cg) = {F1, . . . , Fk}.

Hence cgm
= umFα1(m)

1 · · · Fαk(m)
i , where um ∈ U(R) and αi(m)’s are nonneg-

ative integers. Every factorization in R of cgm comes with a k-tuple α(m) =

(α1(m), . . . , α1(m)). For each positive integer m, we choose one such α(m). Let

Φ(m) = α(m). In this way we get a map Φ : N → Wk, where N and W are the set of

natural numbers and the set of nonnegative integers respectively.

If Im(Φ) is infinite, then by Lemma 1.4 there are distinct elements x and y in

Im(Φ) with x ≤ y. So for some positive integer m and some non-zero integer r,

x = (α1(m), . . . , α1(m)) and y = (α1(m + r), . . . , α1(m + r)).

Then (α1(m), . . . , α1(m)) ≤ (α1(m + r), . . . , α1(m + r)). Hence

cgm+r
= um+rF

α1(m+r)
1 · · · Fα1(m+r)

k

=
um+r

um

umFα1(m)
i · · · Fαk(m)

k Fα1(m+r)−α1(m)
1 · · · Fαk(m+r)−αk(m)

k

=
um+r

um

Fα1(m+r)−α1(m)
1 · · · Fαk(m+r)−αk(m)

k

=
um+r

um

cgmFα1(m+r)−α1(m)
1 · · · Fαk(m+r)−αk(m)

k .

Cancelling cgm we get that gr
= Fα1(m+r)−α1(m)

1 · · · Fαk(m+r)−αk(m)
k ∈ R. If r < 0, then

gr ∈ U(S) because g ∈ S, gr ∈ S, and g−r ∈ S. So g ∈ U(S), contradicting the

hypothesis that g 6∈ U(S). So r > 0 and gr ∈ R as required. Thus we are done if

Im(Φ) is infinite.

Suppose Im(Φ) is finite. Then (α1(m), . . . , α1(m)) = (α1(m + r), . . . , α1(m + r))

for some positive integers m and r. Then

cgm+r
= um+rF

α1(m)
1 · · · Fα1(m)

i = um+r/umcgm,
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so gr
= um+r/um ∈ U(R). Hence g ∈ U(R) ⊆ U(S), contradicting the hypothesis

that g 6∈ U(S).

Thus far we have proved that S is atomic, IDF, and a root extension of R. We now

prove that S is IDPF. Let g ∈ S, g not a unit, g 6= 0. The proof is by contradiction.

Suppose DS(g) is infinite. Let n > 0 with gn ∈ R (using that s a root extension

of R). Note that DS(g) infinite implies that DS(gn) is also infinite. Let h1, h2, . . . , be

respective non-associated irreducible divisors in S of gnk1 , gnk2 , . . . . Then gnk j = g jh j ,

h j , g j ∈ S. Let 0 6= c ∈ [R :S]. Then for k j ≥ 3, ck j gnk j = ck j h jg j = (ch j)(cg j)ck j−2.

Each factor on the right-hand side is in R. Thus ch j divides (cgn)k− j in R. Since R

is IDPF, there are only finitely many non-associated irreducible divisors of (gn)k, k =

3, 4, . . . in R. So DR(gn) = {F1, F2, . . . , Fl}, some finite set of atoms in R. So each

ch j = u jF
α1( j)
1 · · · F

αl( j)
l , where u j is in U (R) and αi( j) is a non-negative integer for

i = 1, . . . , l. Among such factorizations in R of ch j , choose one. In this way we get a

map Φ : N − {1, 2} → Wl, given by Φ( j) = (α1( j), . . . , αl( j)). If the image of Φ is

finite, then for some r > 0 and some m > 0, Φ(m) = Φ(m + r). Then

chm = umFα1(m)
1 · · · Fαl(m)

l and chm+r = um+rF
α1(m+r)
1 · · · Fαl(m+r)

l .

So chm+r = um+ru
−1
m chm, um+ru

−1
m ∈ U(R) ⊆ U(S). Cancelling c contradicts that hm

and hm+r are non-associated in S. So we may assume that the image of Φ is infinite.

By Lemma 1.4, there is a comparable pair αm = (α1(m), . . . , αl(m)) and αm+r =

(α1(m + r), . . . , αl(m + r)) with αm 6= αm+r. So α j(m + r) > α j(m) for some

j ∈ {1, 2, . . . , l}. Then chm+r = um+ru
−1
m Fα1(m+r)−α1(m)

1 · · · Fαl(m+r)−αl(m)
l chm, where

α j(m + r) > α j(m) for some j and α j(m + r) ≥ α j(m) for each j ∈ {1, 2, . . . , l}.

If Fα1(m+r)−α1(m)
1 · · · Fαl(m+r)−αl(m)

l is a unit in S, then once again, cancelling

c contradicts the hypothesis that hm and hm+r are non-associated in S. If

Fα1(m+r)−α1(m)
1 · · · Fαl(m+r)−αl(m)

l is not a unit in S, again cancelling c leads to a proper

factorization of hm+r in S contradicting the hypothesis that hm+r is irreducible in S.

Therefore DS(gn) is finite. As remarked earlier, this implies that DS(g) is finite. Since

g was an arbitrary element of S, this proves that S is IDPF.

The ring extension Z[X] ⊆ Q[X] shows that we cannot drop the conductor condi-

tion in Theorem 2.3. We now bring in our next theme: the influence of the complete

integral closure of a ring on the IDPF property.

Denote by Q(R) the quotient field of R. Recall that an element g in Q(R) is almost

integral if there exists an element 0 6= c ∈ R such that cgm ∈ R for each m ≥ 1. The

complete integral closure of R is the set of all almost integral elements in Q(R). A ring

is completely integrally closed if it is equal to its complete integral closure.

Lemma 2.4 ([2, Corollary 1]) If S is the complete integral closure of an FFD, then

U(S)/ U(R) is torsion.

Theorem 2.5 Let R be atomic and IDPF with S as its complete integral closure. Then

S is a root extension of R.

Proof Just as in the proof of Theorem 2.3, R is FFD. By Lemma 2.4, U(S)/ U(R) is

torsion.
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To prove that S is a root extension of R, for each g ∈ S we must find n = n(s) such

that gn ∈ R. If g ∈ U(S), then gn ∈ U(R) where n is the order of g in the torsion

group U(S)/ U(R). Suppose g ∈ S − U(S). Since g is almost integral over R, we have

the elements cgm used in the proof of Theorem 2.3 that S is a root extension of R.

Theorem 2.6 Let R be atomic and IDPF and R contains a field of characteristic zero.

Then R is completely integrally closed.

Proof Combine Theorem 2.5 and Theorem 1.1.

Example 2.7 We give an atomic completely integrally closed domain R that con-

tains a field of characteristic zero but R is not IDPF.

First we recall that a Noetherian domain is integrally closed if and only if it is

completely integrally closed. But an ascending union of completely integrally closed

domains need not be completely integrally closed. For instance, let A be a Noetherian

integrally closed domain that contains a prime element p. Let

R = A[pX, pX2, . . . , pXn, . . . ] =

∞⋃

n=1

An,

where An = A[pX, pX2, . . . , pXn]. The proof in [16, Example 6.3] that A is integrally

closed also works to show that the Noetherian ring An is integrally closed, hence

completely integrally closed. But R is not completely integrally closed because pXn ∈
R for n = 1, 2, . . . but X 6∈ R.

Let {X1, X2, . . . } and {Y1,Y2, . . . , } be two sets of indeterminates, and let K be a

field of characteristic zero. Let R0 = K[Z], where Z is an indeterminate. Let

R1 = K[X1,Y1]/〈X1Y1 − Z〉, R2 = R1[X2,Y2]/〈X2Y2 − Z〉.

For each positive integer k, let Rk+1 = Rk[Xk+1,Yk+1]/〈Xk+1Yk+1 − Z〉. Each Rk is

Noetherian. By [20, Lemma 2.12], Rk is integrally closed, hence completely integrally

closed.

Let R =
⋃

∞

k=1 Rk. If 0 6= r ∈ R is not a unit, then r ∈ Rn for some n. As Rn is

Noetherian, Rn is atomic. Thus r = r1 · · · rm, where each ri is an atom in Rn. If no ri

is Z, then ri does not split and we are done. If some ri is Z, then in Rn+1, r splits into

a product of atoms. So R is atomic. To show that R is completely integrally closed,

let d and x be non-zero elements of Q(R) with dxn ∈ R for all n ≥ 1. We must show

that x ∈ R. For some positive integer l, we have that d, x, and thus dxn are in Q(Rl)

for all n ≥ 1. Consider the retract of R to Rl obtained by Xi 7→ Z and Yi 7→ 1 for all

Xi , Yi not in Rl. This retract is the identity map on Rl. It also fixes dxn for all n ≥ 1.

Hence dxn ∈ Rl for all n ≥ 1. Since Rl is completely integrally closed, x ∈ Rl ⊂ R. So

R is completely integrally closed. Since Z has infinitely many non-associate divisors

Xi , R is not FFD. Since it is atomic, it is not IDF, hence not IDPF.

The following facts are needed in the proof of the next theorem. The integral

closure of a Noetherian ring is Krull (see [18, Theorem 33.10]) and a Krull ring is

atomic [2] and IDPF [9, 16].
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Theorem 2.8 Let R be a Noetherian domain with integral closure S and [R :S] 6= {0}.

Then the following are equivalent.

(i) R is IDPF.

(ii) U(S)/ U(R) is finite and S is a root extension of R.

Proof Since R is Noetherian, R is atomic. Hence Theorem 2.3 says that (i) implies

(ii). That (ii) implies (i) follows from Theorem 2.1 and the remarks preceding Theo-

rem 2.8.

Example 2.9 [5] Let R = Z[nX, X2, X3] and S = Z[X], where n is any positive

integer and X is an indeterminant. Both R and S are Noetherian, hence atomic. For

any f ∈ S, we have f n ∈ R and n f ∈ R. Since U(S) = U(R), Theorem 2.8 implies

that R is IDPF. The proof of [16, Proposition 1.7] can be adapted to show that if m

and n are distinct positive integers, then Z[mX, X2, X3] and Z[nX, X2, X3] are non-

isomorphic rings. Hence Z[X] contains infinitely many non-isomorphic subrings

that are IDPF.

Theorem 2.10 Let K be a field of characteristic zero. Let R be the coordinate ring of

an affine variety over K. Then R is normal if and only if it is IDPF.

Proof Since R is affine, it is Noetherian, hence atomic. Also for Noetherian rings,

completely integrally closed and normal coincide. If R is IDPF, then R is completely

integrally closed by Theorem 2.6. On the other hand, if R is integrally closed, then it

is Noetherian and integrally closed, hence IDPF as already remarked in the preamble

to Theorem 2.8.

Since a curve is non-singular if and only if it is normal (see [11]), IDPF character-

izes non-singular curves in zero characteristic.

Theorem 2.11 below and Example 2.9 present a contrast between the polynomial

ring Z[T] and the polynomial ring K[T], where K is a field of characteristic zero, as

far as IDPF-subrings are concerned.

Theorem 2.11 Let K be a field of characteristic zero, and K[T] the polynomial ring

over K. Then any K-subalgebra R of K[T] that is IDPF is isomorphic to K[T].

Proof By [7], R may be considered up to isomorphism as an affine subalgebra of

K[T] with K[T] integral over A. If R is IDPF, then by Theorem 2.10, R ∼= K[T].

There is another situation where an analogue of Theorem 2.8 can be obtained.

First we note the following fact.

Theorem 2.12 If R is a subring of a factorial domain S with U(S) ∩ R = U(R). Then

R is atomic.

Proof Let 0 6= g ∈ R−U(R). Let g = h1 · · · hl where each h j is irreducible in S.

Suppose g = g1 · · · gk is a factorization into non-units in R with k > l. Since S is

factorial, (after possibly permuting), gi = uihi , where ui ∈ U(S). Since k > l, this

implies that gl+1 is a unit in S, hence a unit in R because U(S) ∩ R = U(R). This

contradicts the assumption that gl+1 is not a unit in R. Hence k ≤ l. One deduces

from this that g is a product of at most l atoms in R. Hence R is atomic.
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Theorem 2.13 ([17, Theorem 2.3]) Let S be a factorial domain that contains a field

K. Let I be a non-zero proper ideal of S. Let R = K + I. Then the following are

equivalent.

(i) R is IDPF

(ii) U(S)/ U(R) is finite and S is a root extension of R.

Proof Since S is factorial, it is atomic and IDPF. Hence Theorem 2.1 says that (ii)

implies that R is atomic and IDPF.

As for (i) implies (ii), Theorem 2.12 gives us that R is atomic. Also [R :S] con-

tains the non-zero ideal I. By [17, Lemma 2.1(b)], U(S) ∩ R = U(R). Hence by

Theorem 2.12, R is atomic. So by Theorem 2.3, (i) implies (ii).

Remark 2.14 The positive characteristic situation. Let K be a field of characteristic

p > 0. The cuspidal algebra K[T2, T3] is shown in [16, Lemma 4.2] to be IDPF, while

[16, Proposition 4.5] shows that the nodal algebra K[T2 − 1, T(T2 − 1)] is not IDPF

if p 6= 2. Is this slim evidence a precursor of a significant relationship between the

types of singularities of curves and the IDPF-status of the corresponding coordinate

rings?

Is the domain in Theorem 2.6 Krull? That is, one may wonder if a domain R that

is atomic and IDPF and contains a field of characteristic zero must be Krull. Since

Theorem 2.6 says that R is completely integrally closed, we are reduced by [3, The-

orem 2, p. 480] to asking whether R has the ascending chain condition on divisorial

integral ideals.
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[4] A. Brandis, Über die multiplikative Struktur von Körpererwiterungen. Math. Z. 87(1965), 71–73.

doi:10.1007/BF01109932

[5] M. Chacron, J. Lawrence, and D. Madison, A note on radical extensions of rings. Canad. Math. Bull.
18(1975), no. 3, 423–424.

[6] P. M. Cohn, Bezout rings and their subrings. Proc. Cambridge Philos. Soc. 64(1968), 251–264.
doi:10.1017/S0305004100042791

[7] P. M. Eakin, A note on finite-dimensional subrings of polynomial rings. Proc. Amer. Math. Soc
31(1972), 75–80. doi:10.2307/2038515

[8] C. Faith, Radical extensions of rings. Proc. Amer. Math. Soc. 12(1961), 274–283.
doi:10.2307/2034321

[9] A. Geroldinger and F. Halter-Koch, Non-unique factorizations. In: Algebraic, Combinatorial and
Analytic Theory. Pure and Applied Mathematics 278. Chapman and Hall, Boca Raton, FL, 2006.

[10] A. Grams and H. Warner, Irreducible divisors in domains of finite character. Duke Math. J. 42(1975),
271–284. doi:10.1215/S0012-7094-75-04225-8

https://doi.org/10.4153/CMB-2010-014-8 Published online by Cambridge University Press

http://dx.doi.org/10.1016/0022-4049(90)90074-R
http://dx.doi.org/10.1090/S0002-9939-96-03284-4
http://dx.doi.org/10.1007/BF01109932
http://dx.doi.org/10.1017/S0305004100042791
http://dx.doi.org/10.2307/2038515
http://dx.doi.org/10.2307/2034321
http://dx.doi.org/10.1215/S0012-7094-75-04225-8
https://doi.org/10.4153/CMB-2010-014-8


Root Extensions and Factorization in Affine Domains 255

[11] R. Hartshorne, Algebraic Geometry. Graduate Texts in Mathematics 52. Springer-Verlag, New York,
1977.

[12] F. Halter-Koch, Finiteness theorems for factorizations. Semigroup Forum 44(1992), no. 1, 1–12.
doi:10.1007/BF02574329

[13] I. Kaplansky, A theorem on division rings. Canad. J. Math. 3(1951), 290–292.
[14] , Commutative Rings. Revised Edition. University of Chicago Press, Chicago, 1974.
[15] P. Malcolmson and F. Okoh, Expansions of prime ideals. Rocky Mountain J. Math. 35(2005), no. 5,

1689–1706. doi:10.1216/rmjm/1181069657

[16] , A class of integral domains between factorial domains and IDF-domains. Houston J. Math.
32(2006), no. 2, 399–421.

[17] , Factorization in subalgebras of the polynomial algebra. Houston J. Math. 35(2009), no. 4,
991–1012.

[18] M. Nagata, Local Rings. Interscience Tracts in Pure and Applied Mathematics 13. Interscience
Publishers, New York, 1962.

[19] A type of integral extensions. J. Math. Soc. Japan 20(1968), 266–267.
doi:10.2969/jmsj/02010266

[20] M. Roitman, Polynomial extensions of atomic domains. J. Pure Appl. Algebra 87(1993), no. 2,
187–199. doi:10.1016/0022-4049(93)90122-A

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
e-mail: etingof@math.mit.edu

Department of Mathematics, Wayne State University, Detroit, MI 48202, USA
e-mail: petem@math.wayne.edu

okoh@math.wayne.edu

https://doi.org/10.4153/CMB-2010-014-8 Published online by Cambridge University Press

http://dx.doi.org/10.1007/BF02574329
http://dx.doi.org/10.1216/rmjm/1181069657
http://dx.doi.org/10.2969/jmsj/02010266
http://dx.doi.org/10.1016/0022-4049(93)90122-A
https://doi.org/10.4153/CMB-2010-014-8

