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Abstract

In this paper, for the convolution and convex combination of harmonic mappings, the radii of univalence,
full convexity and starlikeness of order α are explored. All results are sharp. By way of application,
the univalent radius and the Bloch constant of the convolution of two bounded harmonic mappings are
obtained.

2010 Mathematics subject classification: primary 31A05; secondary 30C45.

Keywords and phrases: harmonic mappings, radius, fully convex of order α, fully starlike of order α,
convex combination, convolution, Bloch constant.

1. Introduction

Let H denote the class of all complex-valued harmonic functions f in the unit disk
D normalized by f (0) = fz(0) − 1 = 0. Each f ∈ H can be decomposed as f = h + ḡ,
where h and g are analytic in D such that

h(z) = z +

∞∑
n=2

anzn and g(z) =

∞∑
n=1

bnzn. (1.1)

Denote by SH the class of univalent and orientation-preserving functions f ∈ H .
Then the Jacobian of f is given by J f (z) = |h′(z)|2 − |g′(z)|2. According to Lewy’s
theorem [12], f is locally univalent in D if and only if J f (z) , 0 for any z ∈ D.

Let KH , S∗H and CH be the subclass of SH mapping D onto convex, starlike
and close-to-convex domains, respectively. Denoted by Ko

H , S∗oH , Co
H and So

H the
class consisting of those functions f in KH , S∗H , CH and SH respectively, for which
fz̄(0) = b1 = 0.

In [5], it was conjectured that if f ∈ So
H then

|an| ≤
1
6 (2n + 1)(n + 1) and |bn| ≤

1
6 (2n − 1)(n − 1)
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for all n ≥ 1. This coefficient conjecture remains an open problem for the full class So
H .

However, it was verified for some subclasses ofSo
H , such as typically real functions [5],

starlike functions [17] and close-to-convex functions [18]. The extremal function is the
harmonic Koebe function

K(z) =

∞∑
n=1

1
6

(2n + 1)(n + 1)zn +

∞∑
n=1

1
6

(2n − 1)(n − 1)zn

=
z − 1

2 z2 + 1
6 z3

(1 − z)3 +

1
2 z2 + 1

6 z3

(1 − z)3 .

If f ∈ Ko
H , then Clunie and Sheil-Small [5] proved that

|an| ≤
n + 1

2
and |bn| ≤

n − 1
2

for all n ≥ 1. Equality occurs for the harmonic half plane mapping

L(z) =

∞∑
n=1

n + 1
2

zn +

∞∑
n=1

(
−

n − 1
2

)
zn

=
z − 1

2 z2

(1 − z)2 +
− 1

2 z2

(1 − z)2 .

The convexity and starlikeness are hereditary properties for conformal mappings.
That is to say, if an analytic function maps D onto a convex domain or starlike domain,
then it also maps each concentric subdisk onto a convex domain or starlike domain,
respectively. However, these hereditary properties do not generalize to harmonic
mappings (see [16, 17]). The failure of the hereditary property of starlike and convex
harmonic mapping leads to the notion of fully starlike and fully convex functions,
which was discussed in [4].

A harmonic mapping f of D is said to be fully convex of order α, 0 ≤ α < 1, if it
maps every circle |z| = r < 1 in a one-to-one manner onto a convex curve satisfying

∂

∂θ

(
arg

(
∂

∂θ
f (reiθ)

))
> α, 0 ≤ θ < 2π, 0 < r < 1.

If α = 0, then f is said to be fully convex.
Similarly, a harmonic mapping f of D with f (0) = 0 is said to be fully starlike of

order α, 0 ≤ α < 1, if it maps every circle |z| = r < 1 in a one-to-one manner onto a
curve that bounds a domain starlike with respect to the origin satisfying

∂

∂θ
(arg( f (reiθ))) > α, 0 ≤ θ < 2π, 0 < r < 1.

If α = 0, then f is said to be fully starlike.
Let FKH(α) and FS∗H(α) denote the subclass of KH consisting of fully convex

functions of order α and the subclass of S∗H consisting of fully starlike functions
of order α, respectively. The following two lemmas give a sufficient condition for
functions f ∈ H to be FKH(α) and FS∗H(α), respectively.

https://doi.org/10.1017/S1446788716000252 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788716000252


[3] Radii of harmonic mappings in the plane 333

Lemma 1.1 [9]. Let f = h + ḡ, where h and g are given by (1.1). Furthermore, let
∞∑

n=2

n(n − α)
1 − α

|an| +

∞∑
n=1

n(n + α)
1 − α

|bn| ≤ 1

and 0 ≤ α < 1. Then f is harmonic univalent in D, and f ∈ FKH(α).

Lemma 1.2 [10]. Let f = h + ḡ, where h and g are given by (1.1). Furthermore, let
∞∑

n=2

n − α
1 − α

|an| +

∞∑
n=1

n + α

1 − α
|bn| ≤ 1

and 0 ≤ α < 1. Then f is harmonic univalent in D, and f ∈ FS∗H(α).

According to the Radó–Kneser–Choquet theorem, a fully convex harmonic
mapping of order α is necessarily univalent in D. However, unlike fully convex
mappings, a fully starlike mapping need not be univalent.

The radius of harmonic functions is an interesting and important problem. In [16,
17], it was given that the radius of full convexity of the class Ko

H is
√

2 − 1, while
the radius of full convexity of class S∗oH is 3 −

√
8. In [11], the radius of close-to-

convexity and full starlikeness of harmonic mappings was determined. There results
are generalized in the context of fully starlike and fully convex functions of order α
in [1, 15].

Denote by BM
H the class of harmonic mappings f of the unit disk D with f (0) =

fz̄(0) = fz(0) − 1 = 0, and | f (z)| < M for z ∈ D. There are two important constants: one
is the radius of univalence, while the other is the Bloch constant. Estimates were given
in [2, 3, 7, 13]. But these results are not sharp. In [11], a better estimate for the radius
of close-to-convexity and full starlikeness of BM

H is given. The following lemma is
given in [11].

Lemma 1.3. Let h and g be given by (1.1) with |b1| < 1 and

|an| + |bn| ≤ C

for all n ≥ 2. Then f = h + ḡ satisfies the inequality

|h′(z) − 1| < 1 − |g′(z)| (1.2)

in the disk |z| < rs and is fully starlike in |z| < rs, where

rs = 1 −
√

C
C + 1 − |b1|

.

The result is sharp.

Remark 1.4. If f = h + ḡ satisfy (1.2), then f is close-to-convex in D (see [3, 5]).
Therefore, rs given in Lemma 1.3 is the radius of close-to-convexity (univalence) at
the same time.
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Linear combination is an important method to construct a new function.
MacGregor [14] showed that the linear combination t f + (1 − t)g for 0 ≤ t ≤ 1 of
analytic functions need not be univalent even if f and g are convex functions.

The convolution of two harmonic mappings in a simply connected domain is
defined as

f ∗ F = h ∗ H + g ∗G = z +

∞∑
n=2

anAnzn +

∞∑
n=1

bnBnzn,

where

f = h + ḡ = z +

∞∑
n=2

anzn +

∞∑
n=1

bnzn,

F = H + Ḡ = z +

∞∑
n=2

Anzn +

∞∑
n=1

Bnzn.

There have been some results about harmonic convolution; see [5, 6, 8]. The harmonic
convolution f ∗ F of two harmonic functions f and F may not preserve the properties
of f or F, such as convexity or even univalence.

The main results of this paper are shown in Sections 2–4. In Section 2 the radius of
linear convex combinations of harmonic mappings is studied. In Section 3 we explore
the radius of convolution of harmonic mappings. In Section 4 we consider the radius
of univalency and Bloch constant of the convolution of two harmonic mappings. All
these results are sharp.

2. Radius of linear convex combination of harmonic mappings

The following identities are quite useful in the following proofs of the theorems:

∞∑
n=1

nrn−1 =
1

(1 − r)2 ,

∞∑
n=1

n2rn−1 =
1 + r

(1 − r)3 ,

∞∑
n=1

n3rn−1 =
1 + 4r + r2

(1 − r)4 ,

∞∑
n=1

n4rn−1 =
(1 + r)(1 + 10r + r2)

(1 − r)5 ,

∞∑
n=1

n5rn−1 =
1 + 26r + 66r2 + 26r3 + r4

(1 − r)6 ,

∞∑
n=1

n6rn−1 =
1 + 57r + 302r2 + 302r3 + 57r4 + r5

(1 − r)7 .

(2.1)

In the following, we denote the radius of full starlikeness and full convexity (of
order α) by rs and rc , respectively.
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Theorem 2.1. Let f j = h j + g j ∈ H , j = 1, 2, where

h j = z +

∞∑
n=2

a jn zn, g j =

∞∑
n=2

b jn zn

with

|a1n | ≤
n + 1

2
, |b1n | ≤

n − 1
2

,

|a2n | ≤
1
6 (2n + 1)(n + 1) and |b2n | ≤

1
6 (2n − 1)(n − 1)

(2.2)

for n ≥ 2. Then for F = (1 − t) f1 + t f2, t ∈ (0, 1],

(1) the radius of full starlikeness of order α is rs, where rs = rs(α, t) is the unique
real root of the equation

2(1 − α)(1 − r)4 − (1 − t)[(1 + r)(1 − r) − α(1 − r)3] − t[(1 + r)2 − α(1 − r)2] = 0
(2.3)

in the interval (0, 1);
(2) the univalent radius is ru, where ru is the unique real root of the equation

2(1 − r)4 − (1 − t)(1 + r)(1 − r) − t(1 + r)2 = 0 (2.4)

in the interval (0, 1).

Furthermore, all the results are sharp.

Proof. By assumption, we have

F = (1 − t) f1 + t f2

= z +

∞∑
n=2

[(1 − t)a1n + ta2n ]zn +

∞∑
n=2

[(1 − t)b1n + tb2n ]zn.

For r ∈ (0, 1), it is sufficient to show that Fr(z) ∈ FS∗H(α) in D, where

Fr(z) =
F(rz)

r

= z +

∞∑
n=2

[(1 − t)a1n + ta2n ]rn−1zn +

∞∑
n=2

[(1 − t)b1n + tb2n ]rn−1zn. (2.5)

Consider the sum

S =

∞∑
n=2

n − α
1 − α

|(1 − t)a1n + ta2n |r
n−1 +

∞∑
n=2

n + α

1 − α
|(1 − t)b1n + tb2n |r

n−1.

According to Lemma 1.2, it is enough to show that S ≤ 1. Considering conditions
(2.2), we have

∞∑
n=2

n − α
1 − α

[
(1 − t)

n + 1
2

+
1
6

t(2n + 1)(n + 1)
]

rn−1

+

∞∑
n=2

n + α

1 − α

[
(1 − t)

n − 1
2

+
1
6

t(2n − 1)(n − 1)
]

rn−1 ≤ 1.
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Using the identities (2.1), the last inequality reduces to

2(1 − α)(1 − r)4 − (1 − t)[(1 + r)(1 − r) − α(1 − r)3]
− t[1 − α + 2(1 + α)r + (1 − α)r2] ≥ 0.

Thus, Fr(z) ∈ FS∗H(α) for r ≤ rs where rs is the unique real root of (2.3). The existence
and uniqueness of the root will be shown by Lemma 5.1.

Note that for fixed t ∈ (0, 1] the roots of Equation (2.3) in (0, 1) are decreasing
as a function of α ∈ [0, 1). Consequently, rs(α, t) ≤ rs(0, t). Therefore, taking α = 0,
Equation (2.3) reduces to (2.4). Then by Lemma 1.2, we know that f is harmonic
univalent in |z| ≤ ru, where ru = rs(0, t).

To prove sharpness, we take

f10 (z) = z −
∞∑

n=2

n + 1
2

zn +

∞∑
n=1

n − 1
2

zn

= 2z −
z − 1

2 z2

(1 − z)2 +

1
2 z2

(1 − z)2 = 2z − L(z),

f20 (z) = z −
∞∑

n=2

1
6

(2n + 1)(n + 1)zn +

∞∑
n=1

1
6

(2n − 1)(n − 1)zn

= 2z −
z − 1

2 z2 + 1
6 z3

(1 − z)3 +

1
2 z2 + 1

6 z3

(1 − z)3 .

Then

F0 = (1 − t) f10 + t f20

= 2z − (1 − t)
z − 1

2 z2

(1 − z)2 − t
z − 1

2 z2 + 1
6 z3

(1 − z)3 + (1 − t)
1
2 z2

(1 − z)2 + t
1
2 z2 + 1

6 z3

(1 − z)3

= H0(z) + G0(z).

Direct computation leads to

H′0(r) = 2 − (1 − t)
1

(1 − r)3 − t
1 + r

(1 − r)4 ,

G′0(r) = (1 − t)
r

(1 − r)3 + t
r + r2

(1 − r)4 .

Considering Equation (2.4), we have

[H′0(r) −G′0(r)]|r=ru =
1

(1 − r)4 [2(1 − r)4 − (1 − t)(1 + r)(1 − r) − t(1 + r)2]
∣∣∣∣∣
r=ru

= 0.

Hence,

JF0 (r)|r=ru = [H′0(r) + G′0(r)][H′0(r) −G′0(r)]|r=ru = 0.
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Therefore, in view of Lewy’s theorem, the function F0 is not univalent in |z| < r if
r > ru. This shows that ru is sharp.

Furthermore,

∂

∂θ
(arg(F0(reiθ)))|θ=0 =

rH′0(r) − rG′0(r)
H0(r) + G0(r)

=
2tr(1 + r) + 1 − r2 − 2(1 − r)4

tr(1 − r)2 + (1 − r)3 − 2(1 − r)4 . (2.6)

At the same time, from Equation (2.3), we have

α =
2tr(1 + r) + 1 − r2 − 2(1 − r)4

tr(1 − r)2 + (1 − r)3 − 2(1 − r)4 . (2.7)

Thus it follows form (2.6) and (2.7) that

∂

∂θ
(arg(F0(reiθ)))|θ=0,r=rs(α) = α.

This shows that the bound rs is the best possible. �

Theorem 2.2. Under the hypothesis of Theorem 2.1, for t ∈ (0, 1], F = (1 − t) f1 + t f2
is fully convex of order α in |z| < rc, where rc = rc(α, t) is the unique real root of the
equation

2(1 − α)(1 − r)5 − (1 − t)[(1 + 4r + r2)(1 − r) − α(1 − r)3]
− t(1 + r)[1 − α + (6 + 2α)r + (1 − α)r2] = 0 (2.8)

in the interval (0, 1). Moreover, the result is sharp.

Proof. Let r ∈ (0, 1), it is sufficient to show that Fr(z) ∈ FK∗H(α) in D, where Fr(z) is
defined by (2.5).

Consider the sum

S =

∞∑
n=2

n(n − α)
1 − α

|(1 − t)a1n + ta2n |r
n−1 +

∞∑
n=2

n(n + α)
1 − α

|(1 − t)b1n + tb2n |r
n−1.

According to Lemma 1.1, it is enough to show S ≤ 1. Therefore, considering
assumption (2.2), we have

∞∑
n=2

n(n − α)
1 − α

[
(1 − t)

n + 1
2

+
1
6

t(2n + 1)(n + 1)
]

rn−1

+

∞∑
n=2

n(n + α)
1 − α

[
(1 − t)

n − 1
2

+
1
6

t(2n − 1)(n − 1)
]

rn−1 ≤ 1.

Using identities (2.1), the last inequality reduces to

2(1 − α)(1 − r)5 − (1 − t)[(1 + 4r + r2)(1 − r) − α(1 − r)3]
− t(1 + r)[1 − α + (6 + 2α)r + (1 − α)r2] ≥ 0.
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Therefore, Fr(z) ∈ FK∗H(α) for r ≤ rc, where rc is the unique real root of (2.8) in
(0, 1). The existence and uniqueness of rc will be shown by Lemma 5.2.

To prove sharpness, we take

f10 (z) = z −
∞∑

n=2

n + 1
2

zn −

∞∑
n=1

n − 1
2

zn

= 2z −
z − 1

2 z2

(1 − z)2 −

1
2 z2

(1 − z)2 ,

f20 (z) = z −
∞∑

n=2

1
6

(2n + 1)(n + 1)zn −

∞∑
n=1

1
6

(2n − 1)(n − 1)zn

= 2z −
z − 1

2 z2 + 1
6 z3

(1 − z)3 −

1
2 z2 + 1

6 z3

(1 − z)3 = 2z − K(z).

Then

F0 = (1 − t) f10 + t f20

= 2z − (1 − t)
z − 1

2 z2

(1 − z)2 − t
z − 1

2 z2 + 1
6 z3

(1 − z)3 − (1 − t)
1
2 z2

(1 − z)2 + t
1
2 z2 + 1

6 z3

(1 − z)3

= H0(z) + G0(z).

By direct computation, we have

∂

∂θ

(
arg

(
∂

∂θ
F0(reiθ)

))∣∣∣∣∣
θ=0

=
H′0(r) + G′0(r) + r(H′′0 (r) + G′′0 (r))

H′0 −G′0(r)

=
2(1 − r)5 − (1 − t)(1 − r)(1 + 4r + r2) − t(1 + r)(1 + 6r + r2)

2(1 − r)5 − (1 − t)(1 − r)3 − t(1 + r)(1 − r)2 . (2.9)

Meanwhile, from Equation (2.8), we have

α =
2(1 − r)5 − (1 − t)(1 − r)(1 + 4r + r2) − t(1 + r)(1 + 6r + r2)

2(1 − r)5 − (1 − t)(1 − r)3 − t(1 + r)(1 − r)2 . (2.10)

Thus, from (2.9) and (2.10), we have

∂

∂θ

(
arg

(
∂

∂θ
F0(reiθ)

))∣∣∣∣∣
θ=0,r=rc

= α.

This shows that the bound rc given by Equation (2.8) is sharp. �

From Theorems 2.1 and 2.2 we have the following corollary.
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Corollary 2.3. Let f1 ∈ Ko
H and f2 ∈ Co

H . Then for F = (1 − t) f1 + t f2, t ∈ (0, 1],

(1) the univalent radius is ru, where ru is the real root of the Equation (2.4) in the
interval (0, 1);

(2) the radius of full starlikeness of order α is rs, where rs = rs(α, t) is the real root
of Equation (2.3) in the interval (0, 1);

(3) the radius of full convexity of order α is rc, where rc = rc(α, t) is the real root of
Equation (2.8) in the interval (0, 1).

Furthermore, all the results are sharp.

Remark 2.4. If t = 0, then Theorems 2.1 and 2.2 reduce to [15, Theorems 3.5 and 3.7],
respectively. If t = 1, then Theorems 2.1 and 2.2 reduce to [15, Theorems 3.1 and 3.3],
respectively.

3. Radius of convolution of harmonic mappings

Theorem 3.1. Let f = h + g ∈ H be given by (1.1) with

|an| ≤
1

36 (2n + 1)2(n + 1)2, n ≥ 2,

|bn| ≤
1

36 (2n − 1)2(n − 1)2, n ≥ 1.
(3.1)

Then, for f ,

(1) the radius of full starlikeness of order α is rs, where rs = rs(α) is the real root of
the equation

36(1 − α)(1 − r)6 − 4(1 + 26r + 66r2 + 26r3 + r4)
− (13 − 12α)(1 + 4r + r2)(1 − r)2 − (1 − 6α)(1 − r)4 = 0 (3.2)

in the interval (0, 1);
(2) the univalent radius is ru, where ru is the real root of the equation

36(1 − r)6 −4(1 + 26r + 66r2 + 26r3 + r4)−13(1 + 4r + r2)(1 − r)2 − (1 − r)4 = 0
(3.3)

in the interval (0, 1).

Furthermore, all the results are sharp.

Proof. The proof is similar to that of Theorem 2.1.
For r ∈ (0, 1), it is sufficient to show that fr(z) ∈ FS∗H(α) in D, where

fr(z) =
f (rz)

r
= z +

∞∑
n=2

anrn−1zn +

∞∑
n=1

bnrn−1zn. (3.4)

Consider the sum

S =

∞∑
n=2

n − α
1 − α

|an|rn−1 +

∞∑
n=1

n + α

1 − α
|bn|rn−1.

https://doi.org/10.1017/S1446788716000252 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788716000252


340 B.-Y. Long and H.-Y. Huang [10]

According to Lemma 1.2, it is enough to show that S ≤ 1. Considering conditions
(3.1), we have

∞∑
n=2

n − α
36(1 − α)

(2n + 1)2(n + 1)2rn−1 +

∞∑
n=1

n + α

36(1 − α)
(2n − 1)2(n − 1)2rn−1 ≤ 1.

Using identities (2.1), the last inequality reduces to

36(1 − α)(1 − r)6 − 4(1 + 26r + 66r2 + 26r3 + r4)
− (13 − 12α)(1 + 4r + r2)(1 − r)2 − (1 − 6α)(1 − r)4 ≥ 0.

Thus, Fr(z) ∈ FS∗H(α) for r ≤ rs, where rs is the real root of (3.2).
Taking α = 0, Equation (3.2) reduces to (3.3). In other words, ru = rs(0).
To prove sharpness, we take the function f0 = h0 + g0 with

h0(z) = 2z −
∞∑

n=1

1
36

(2n + 1)2(n + 1)2zn,

g0(z) =

∞∑
n=2

1
36

(2n − 1)2(n − 1)2zn.

Then direct computation and Equation (3.3) lead to

[h′0(r) − g′0(r)]|r=ru =
1

18(1 − r)6 M(r)
∣∣∣∣∣
r=ru

= 0,

where M(r) = 36(1 − r)6 − 4(1 + 26r + 66r2 + 26r3 + r4) − 13(1 + 4r + r2)(1 − r)2 −

(1 − r)4. Hence,

J f0 (r)|r=ru = [h′0(r) + g′0(r)][h′0(r) − g′0(r)]|r=ru = 0.

Therefore the function f0 is not univalent in |z| < r if r > ru. This shows that ru is sharp.
Furthermore,

∂

∂θ
(arg( f0(reiθ)))|θ=0 =

rh′0(r) − rg′0(r)
h0(r) + g0(r)

=
M(r)

36(1 − r)6 − 6(1 − r)4 − 12(1 + 4r + r2)(1 − r)2 . (3.5)

At the same time, from Equation (3.2), we have

α =
M(r)

36(1 − r)6 − 6(1 − r)4 − 12(1 + 4r + r2)(1 − r)2 . (3.6)

Thus it follows form (3.5) and (3.6) that

∂

∂θ
(arg( f0(reiθ)))|θ=0,r=rs(α) = α.

This shows that the bound rs is the best possible. �
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Theorem 3.2. Under the hypothesis of Theorem 3.1, for α ∈ [0, 1), f = h + ḡ is fully
convex of order α in |z| < rc, where rc = rc(α) is the real root of the equation

36(1 − α)(1 − r)7 − 4(1 + 57r + 302r2 + 302r3 + 57r4 + r5)
− (13 − 12α)(1 + r)(1 + 10r + r2)(1 − r)2 − (1 − 6α)(1 + r)(1 − r)4 = 0 (3.7)

in the interval (0, 1). Moreover, the result is sharp for α ∈ [0, 1).

Proof. The proof is similar to that of Theorem 2.2.
For r ∈ (0, 1), it is sufficient to show that fr(z) ∈ FK∗H(α) in D, where fr(z) is given

by (3.4). Lemma 1.1 and assumption (3.1) lead to
∞∑

n=2

n(n − α)
36(1 − α)

(2n + 1)2(n + 1)2rn−1 +

∞∑
n=1

n(n + α)
36(1 − α)

(2n − 1)2(n − 1)2rn−1 ≤ 1.

Using identities (2.1), the last inequality reduces to

36(1 − α)(1 − r)7 − 4(1 + 57r + 302r2 + 302r3 + 57r4 + r5)
− (13 − 12α)(1 + r)(1 + 10r + r2)(1 − r)2 − (1 − 6α)(1 + r)(1 − r)4 ≥ 0.

Thus, fr(z) ∈ FK∗H(α) for r ≤ rc, where rc is the real root of (3.7).
To prove sharpness, we take f0 = h0 + g0, where

h0(z) = 2z −
∞∑

n=1

1
36

(2n + 1)2(n + 1)2zn,

g0(z) = −

∞∑
n=2

1
36

(2n − 1)2(n − 1)2zn.

By direct computation, we have

∂

∂θ

(
arg

(
∂

∂θ
f0(reiθ)

))∣∣∣∣∣
θ=0

=
h′0(r) + g′0(r) + r(h′′0 (r) + g′′0 (r))

h′0 − g′0(r)
=

H(r)
G(r)

. (3.8)

where H(r) = 36(1 − r)7 − (1 + r)(1 − r)4 − 13(1 + r)(1 + 10r + r2)(1 − r)2 −

4(1 + 57r + 302r2 + 302r3 + 57r4 + r5) and G(r) = 36(1 − r)7 − 6(1 + r)(1 − r)4 −

12(1 + r)(1 + 10r + r2)(1 − r)2. Meanwhile, from Equation (3.7), we have

α =
H(r)
G(r)

. (3.9)

Thus, from (3.8) and (3.9), we have

∂

∂θ

(
arg

(
∂

∂θ
f0(reiθ)

))∣∣∣∣∣
θ=0,r=rc

= α.

This shows that the bound rc given by Equation (3.7) is sharp. �

From Theorems 3.1 and 3.2 we have the following corollary.
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Corollary 3.3. Let f1, f2 ∈ Co
H and α ∈ [0, 1). Then for F = f1 ∗ f2,

(1) the univalent radius ru is the real root of the Equation (3.3) in the interval (0, 1);
(2) the radius of full starlikeness of order α is rs, where rs = rs(α) is the real root of

Equation (3.2) in the interval (0, 1);
(3) the radius of full convexity of order α is rc, where rc = rc(α) is the real root of

Equation (3.7) in the interval (0, 1).

4. Univalent radius and Bloch constant of convolution of bounded harmonic
mappings

Theorem 4.1. Let f j ∈ B
M j

H , j = 1, 2. Then for F = f1 ∗ f2, the radius of close-to-
convexity (univalence) and full starlikeness is r0, where

r0 = 1 −

√
8(M2

1 + M2
2)

π2 + 8(M2
1 + M2

2)
. (4.1)

Furthermore, F(Dr0 ) contains a univalent disk of radius at least

R0 = r0 −
8(M2

1 + M2
2)r2

0

π2(1 − r0)
, (4.2)

where Dr0 = {z : |z| < r0}.

Proof. Let

f j(z) = z +

∞∑
n=2

a jn zn +

∞∑
n=2

b jn zn, j = 1, 2.

Then

f1 ∗ f2 = z +

∞∑
n=2

a1n a2n zn +

∞∑
n=2

b1n b2n zn.

Because of f j ∈ B
M j

H , j = 1, 2, according to [3], we can obtain the sharp estimates

|a jn | + |b jn | ≤
4M j

π

for any n ≥ 1 and j = 1, 2. Then it follows that

|a1n a2n | + |b1n b2n | ≤
|a1n |

2 + |a2n |
2

2
+
|b1n |

2 + |b2n |
2

2

=
1
2

[|a1n |
2 + |b1n |

2 + |a2n |
2 + |b2n |

2] ≤
1
2

[(|a1n | + |b1n |)
2 + (|a2n | + |b2n |)

2]

≤
1
2

[(4M1

π

)2
+

(4M1

π

)2]
=

8(M2
1 + M2

2)
π2
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for any n ≥ 1. Noting that b11 b21 = 0, by Lemma 1.3 with C = 8(M2
1 + M2

2)/π2 and
Remark 1.4, we conclude that, for f1 ∗ f2, the radius of close-to-convexity and full
starlikeness is

r0 = 1 −

√
C

C + 1
= 1 −

√
8(M2

1 + M2
2)

π2 + 8(M2
1 + M2

2)
.

In particular, the radius of univalence of f1 ∗ f2 is r0.
Furthermore, for |z| = r0, we have

| f1 ∗ f2(z)| =
∣∣∣∣∣z +

∞∑
n=2

a1n a2n zn +

∞∑
n=2

b1n b2n zn
∣∣∣∣∣

≥ |z| −
∣∣∣∣∣ ∞∑
n=2

(a1n a2n zn + b1n b2n zn)
∣∣∣∣∣

≥ r0 −

∞∑
n=2

(|a1n a2n | + |b1n b2n |)r
n
0

≥ r0 −
8(M2

1 + M2
2)

π2

∞∑
n=2

rn
0

≥ r0 −
8(M2

1 + M2
2)r2

0

π2(1 − r0)
. �

Remark 4.2. (1) Equation (4.1) reduces to

8(M2
1 + M2

2)
π2 =

(1 − r0)2

1 − (1 − r0)2 . (4.3)

Substituting (4.3) into (4.2), we have

R0 =
r0

2 − r0
.

This gives the relationship between r0 and R0, directly.
(2) Let r j be the univalent radius of f j for j = 1, 2. Then according to [11,

Theorem 1.7], we have

r j = 1 −

√
4M j

π + 4M j
.

This reduces to

M j =
π(1 − r j)2

4[1 − (1 − r j)2]
. (4.4)

Substituting (4.4) into (4.3), we have

(1 − r0)2

1 − (1 − r0)2 =
1
2

[ (1 − r1)4

[1 − (1 − r1)2]2 +
(1 − r2)4

[1 − (1 − r2)2]2

]
.

The last equation shows the relationship between r1, r2 and r0, directly.
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5. Two lemmas

In this section, we will prove the existence and uniqueness of the roots of Equations
(2.3) and (2.8) in detail in the following two lemmas.

Lemma 5.1. For any α ∈ [0, 1) and t ∈ (0, 1], the equation

2(1 − α)(1 − r)4 − (1 − t)[(1 + r)(1 − r) − α(1 − r)3] − t[(1 + r)2 − α(1 − r)2] = 0

has a unique real root r = r(α, t) in the interval (0, 1).

Proof. Let

f (r) = 2(1 − α)(1 − r)4 − (1 − t)[(1 + r)(1 − r) − α(1 − r)3] − t[(1 + r)2 − α(1 − r)2].

Then direct computations lead to

f (0) = 1 − α > 0, (5.1)
f (1) = −4t < 0, (5.2)

f ′(r) = g(r) + th(r), (5.3)

where g(r) = −3α(1 − r)2 − 8(1 − α)(1 − r)3 + 2r and h(r) = 3α(1 − r)2 − 2(1 + 2r) −
2α(1 − r). It follows that

f ′(0) = −(2 − α)t + 5α − 8 < 0, (5.4)
f ′(1) = 2 − 6t, (5.5)

f ′′(1) = 2[1 − t(2 − α)], (5.6)
f ′′′(r) = −48(1 − α)(1 − r) − 6α(1 − t) < 0. (5.7)

We divide the proof into two subclasses.
Subclass 1. t ∈ (0, 1

3 ). Equations (5.5) and (5.6) lead to

f ′(1) > 0 (5.8)

and

f ′′(1) > 0, (5.9)

for any α ∈ [0, 1) and t ∈ (0, 1
3 ), respectively. Thus, inequalities (5.7) and (5.9) lead to

f ′′(r) > 0 (5.10)

for all r ∈ (0, 1). From inequalities (5.4), (5.8) and (5.10), it is easy to see that there
exists a unique ξ1 ∈ (0,1), such that f ′(r) < 0 for r ∈ (0, ξ1) and f ′(r) > 0 for r ∈ (ξ1,1).
Therefore, it follows from inequalities (5.1) and (5.2), together with the monotonicity
of f , that there exists a unique ξ2 ∈ (0, ξ1) such that f (ξ2) = 0.

Subclass 2. t ∈ [ 1
3 , 1]. Since h(r) = 3α(1 − r)2 − 2(1 + 2r) − 2α(1 − r) = −2 + α −

4r − 4αr + 3αr2 < 0, Equation (5.3) leads to

f ′(r) ≤ g(r) + 1
3 h(r) (5.11)
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for all t ∈ [ 1
3 , 1]. Direct computations yields

g(r) + 1
3 h(r) = 2

3 (1 − r)[−12(1 − α)(1 − r)2 − (4 − 3r)α − 1] < 0. (5.12)

Therefore, it follows form inequalities (5.1), (5.2), (5.11) and (5.12) that there exists a
unique ξ3 ∈ (0, 1) such that f (ξ3) = 0. �

Lemma 5.2. For any α ∈ [0, 1) and t ∈ (0, 1], the equation

2(1 − α)(1 − r)5 − (1 − t)[(1 + 4r + r2)(1 − r) − α(1 − r)3]
− t(1 + r)[1 − α + (6 + 2α)r + (1 − α)r2] = 0

has a unique real root r = r(α, t) in the interval (0, 1).

Proof. Let

f (r) = 2(1 − α)(1 − r)5 − (1 − t)[(1 + 4r + r2)(1 − r) − α(1 − r)3]
− t(1 + r)[1 − α + (6 + 2α)r + (1 − α)r2].

Direct computations lead to

f (0) = 1 − α > 0, (5.13)
f (1) = −16t < 0, (5.14)

f ′(r) = g(r) + t h(r), (5.15)

where g(r) = −10(1 − α)(1 − r)4 − [3α(1 − r)2 − 1 − 4r − r2 + 2(1 − r)(2 + r)] and

h(r) = 2[−2 + α − 10r − 4αr − 3r2 + 3αr2] < 0. (5.16)

It follows that

f ′(1) = 5 − 30t,
f ′′(t) = G(r) + tH(r), (5.17)

where G(r) = 8 − 2(1 − r) + 6α(1 − r) + 40(1 − α)(1 − r)3 + 4r and

H(r) = 4[−5 − 3r + α(−2 + 3r)] < 0. (5.18)

We divide the proof into two subclasses.
Subclass 1. t ∈ (0, 1

5 ). Equation (5.17) and inequality (5.18) imply that

f ′′(r) > G(r) + 1
5 H(r) (5.19)

holds for all t ∈ (0, 1
5 ). Direct computations lead to

G(r) + 1
5 H(r) = 2

5 [10 + 6α − (1 − α)φ(r)], (5.20)

where φ(r) = 100r3 − 300r2 + 291r − 95. It is easy to show that

φ(r) ≤ φ
(
1 −

√
3

10

)
< −3 (5.21)
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for all r ∈ (0, 1). Thus, it follows from (5.19)–(5.21) that

f ′′(r) > 2
5 [10 + 6α + 3(1 − α)] > 0 (5.22)

holds for all t ∈ (0, 1
5 ). Therefore, from (5.13), (5.14) and (5.22), we know there exists

a unique ξ1 ∈ (0, 1) such that f (ξ1) = 0.
Subclass 2. t ∈ [ 1

5 , 1]. Equation (5.15) and inequality (5.16) imply that

f ′(r) ≤ g(r) + 1
5 h(r) (5.23)

for all t ∈ [ 1
5 , 1]. By direct computation,

g(r) + 1
5 h(r) = − 1

5 (1 − r)[22(1 + α) + (1 − α)ψ(r)], (5.24)

where ψ(r) = −50r3 + 150r2 − 141r + 47. It is easy to show that

ψ(r) ≥ ψ
(
1 −

√
6

10

)
= 6 −

√
6

2
> 0 (5.25)

for all r ∈ (0, 1). Thus, it follows from (5.23)–(5.25) that

f ′(r) ≤ −
1
5

(1 − r)
[
22(1 + α) + (1 − α)ψ

(
1 −

√
2

10

)]
< 0, (5.26)

for all t ∈ [ 1
5 , 1]. Therefore, from inequalities (5.13), (5.14) and (5.26), we know there

exists a unique ξ2 ∈ (0, 1) such that f (ξ2) = 0.
�

References
[1] O. P. Ahuja, S. Nagpal and V. Ravichandran, ‘Radius constants for functions with the prescribed

coefficient bounds’, Abstr. Appl. Anal. 2014 (2014), article ID 454152, 12 pages.
[2] H. Chen, P. M. Gauthier and W. Hengartner, ‘Bloch constants for planar harmonic mappings’,

Proc. Amer. Math. Soc. 128(11) (2000), 3231–3240.
[3] Sh. Chen, S. Ponnusamy and X. Wang, ‘Bloch constant and Landau’s theorems for planar

p-harmonic mappings’, J. Math. Anal. Appl. 373(2011) 102–110.
[4] M. Chuaqui, P. Duren and B. Osgood, ‘Curvature properties of planar harmonic mappings’,

Comput. Methods Funct. Theory 4(1) (2004), 127–142.
[5] J. Clunie and T. Sheil-Small, ‘Harmonic univalent functions’, Acad. Sci. Fenn. Ser. A I Math. 9

(1984), 3–25.
[6] M. Dorff, ‘Convolutions of planar harmonic convex mappins’, Complex Var. Theory Appl. 45(3)

(2001), 263–271.
[7] M. Dorff and M. Nowak, ‘Landau’s theorem for planar harmonic mappings’, Comput. Methods

Funct. Theory 4(1) (2004), 151–158.
[8] M. R. Goodloe, ‘Hadamard products of convex harmonic mappings’, Complex Var. Theory Appl.

47(2) (2002), 81–92.
[9] J. M. Jahangiri, ‘Coefficient bounds and univalence criteria for harmonic functions with negative

coefficients’, Ann. Univ. Mariae Curie-Skłodowska Sect. A 52(2) (1998), 57–66.
[10] J. M. Jahangiri, ‘Harmonic functions starlike in the unit disk’, J. Math. Anal. Appl. 235(2) (1999),

470–477.
[11] D. Kalaj, S. Ponnusamy and M. Vuorinen, ‘Radius of close-to-convexity of harmonic functions’,

Complex Var. Elliptic Equ. 59(4) (2014), 539–552.

https://doi.org/10.1017/S1446788716000252 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788716000252


[17] Radii of harmonic mappings in the plane 347

[12] H. Lewy, ‘On the non-vanishing of the Jacobian in certain one-to-one mappings’, Bull. Amer.
Math. Soc. 42(10) (1936), 689–692.

[13] M.-Sh. Liu, ‘Estimates on Bloch constants for planar harmonic mappings’, Sci. China Ser. A 52(1)
(2009), 87–93.

[14] T. H. MacGregor, ‘The univalence of a linear combination of convex mappings’, J. Lond. Math.
Soc. 44 (1969), 210–212.

[15] S. Nagpal and V. Ravichandran, ‘Fully starlike and convex harmonic mappings of order α’, Ann.
Polon. Math. 108(1) (2013), 85–107.

[16] S. Ruscheweyh and L. Salinas, ‘On the preservation of direction-convexity and the Goodman–Saff

conjecture’, Ann. Acad. Sci. Fenn. Ser. A. I Math. 14(1989) 63–73.
[17] T. Sheil-Small, ‘Constants for planar harmonic mappings’, J. Lond. Math. Soc. 42(2) (1990),

237–248.
[18] X.-T. Wang, X.-Q. Liang and Y.-L. Zhang, ‘Precise coefficient estimates for close-to-convex

harmonic univalent mappings’, J. Math. Anal. Appl. 263(2) (2001), 501–509.

BO-YONG LONG, School of Mathematical Sciences,
Anhui University, Hefei 230601, China
e-mail: longboyong@ahu.edu.cn

HUA-YING HUANG, School of Mathematical Sciences,
Anhui University, Hefei 230601, China
e-mail: huanghuaying50@163.com

https://doi.org/10.1017/S1446788716000252 Published online by Cambridge University Press

mailto:longboyong@ahu.edu.cn
mailto:huanghuaying50@163.com
https://doi.org/10.1017/S1446788716000252

	Introduction
	Radius of linear convex combination of harmonic mappings
	Radius of convolution of harmonic mappings
	Univalent radius and Bloch constant of convolution of bounded harmonic mappings
	Two lemmas
	References

