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CHINBURG'S THIRD INVARIANT 
IN THE FACTORISABILITY DEFECT CLASS GROUP 

D. HOLLAND 

ABSTRACT. Chinburg's third invariant £l(N/K, 3) G C1(Z[T]) of a Galois extension 
N/K of number fields with group F is closely related to the Galois structure of unit 
groups and ideal class groups, and deep unsolved problems such as Stark's conjecture. 

We give a formula for Q(N/K, 3) modulo D(ZT) in the factorisability defect class 
group, reminiscent of analytic class number formulas. Specialising to the case of an 
absolutely abelian, real field N, we give a natural conjecture in terms of Hecke factori­
sations which implies the vanishing of the invariant in the defect class group. 

We prove this conjecture when N has prime-power conductor using Euler systems 
of cyclotomic units, Ramachandra units and Hecke factorisation. This supports a gen­
eral conjecture of Chinburg, which in our situation specialises to the statement that 
Cl(N/K, 3) = 0 for such extensions. 

We also develop a slightly extended version of Euler systems of units for general 
abelian extensions, which will be applied to abelian extensions of imaginary quadratic 
fields elsewhere. 

1. Introduction. In this paper we investigate (the image of) Chinburg's third in­
variant £l(NJK, 3) (defined in [CI]) of a Galois extension N/K of number fields, in a 
certain factorisability defect class group. The results might be regarded as the 'multi­
plicative' analogue of those obtained in [H-W3] (see also [HI]) for the 'additive' invari­
ant £l(NJK, 2). Thus, this paper and [HI, H-W3] together provide a model for applying 
the defect class group to obtain refined information about invariants in class groups of 
integral group rings. 

The results here concerning £l(N/K, 3) only apply in a restricted number of cases (as 
far as explicit computation of the invariant goes), because of their intimate relation to 
Stark's conjecture, and Kolyvagin's Euler systems of units, about which there is little 
general information at the present time. Nonetheless, the method is open to much greater 
(though conjectural) generalisation. 

In the first three §§, a module-theoretic formula for the invariant (for arbitrary N/K) 
is computed. This formula involves a formal (permutation) lattice, the units and the ideal 
class group of TV as modules (plus a Hecke cohomology class (see §2), which is often 
zero, for example if TV is totally real)—each term is independent of the choices made in 
defining Q(N/K, 3). 
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CHINBURG'S THIRD INVARIANT 325 

In §4 we put the formula into a form suitable for relating to 'canonical factorisation' 
and 'Euler systems of units'. Our combination of these methods is the main new tech­
nique of this paper. 

Canonical factorisation (or canonical factor equivalence) now features in different 
forms in many papers: we refer the interested reader to [B2], where it appeared for the 
first time. 

In §5 we give a summary of the (well-known) basic properties of Kolyvagin's Euler 
systems of units: we also extend the Euler systems to intermediate fields, to overcome 
technical problems, and include the prime 2. 

The basic aim is to use Euler systems to put the formula for Cl(N/K, 3) from §3 into a 
computable form. This approach requires a class-number formula involving special units. 
There are other limitations on this method, however: cf. [Ru2], where the connections 
with Stark's conjecture ([St], see also [T], Chapter I, Conjecture 5.1) are explored. 

In §6, the case N totally real and N/Q abelian is considered. We make a natural con­
jecture which implies (in these cases) the vanishing of £l(N/K, 3) in the defect class 
group. We are able to prove the conjecture in the primary case (see §6 for details). Fur­
ther examples verifying the conjecture for non-primary real abelian N/Q will appear 
elsewhere. 

We shall treat totally imaginary abelian extensions of Q and abelian extensions of 
quadratic imaginary fields elsewhere. 

For a different approach, the reader can compare this work with [Bl, Fl], where 
parametrizations of Galois structure are obtained from a character function with values 
which are the quotient of Frôhlich's integral regulator by an L-function value at zero, for 
abelian extensions of Q or a quadratic imaginary field. (Finer results, on local freeness 
of units modulo torsion, for real abelian extensions, were obtained in [F2].) 

The results of [Bl, Fl] are parallel to ours because the character functions they use 
are factorisations of Frôhlich's module defect functions, rather than the functions natu­
rally occurring from factorisability defect relative groups in our approach. This leads to 
different module-theory invariants, even though the classifying groups are isomorphic. 
Another difference is that the integral regulator and L-value at zero appear as the main 
objects of study, rather than Chinburg's invariant: in our approach the L-values appear 
more indirectly via the analytic class number formula of Ramachandra, but are still an 
essential ingredient. 

A. Frohlich tells me that he is preparing an extension of his earlier approach, using the 
module defect for arbitrary finite groups, and monomial representations, in a somewhat 
similar way to the construction of factorisability defect groups of [H-Wl, H-W2], which 
may clarify the connections with our approach. 

ACKNOWLEDGEMENTS. I have benefitted greatly from conversations (sometimes by 
electronic mail) with David Burns, Ted Chinburg, Manfred Kolster, Victor Snaith, David 
Solomon, Larry Washington and Steve Wilson, and it is a pleasure to acknowledge their 
assistance here. Many thanks are due to the referee whose constructive suggestions al­
lowed me to make an opaque first version of this paper (I hope) more transparent. 
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326 D. HOLLAND 

2. Chinburg's third invariant in a defect class group. Suppose that T is a finite 
group and Z[T] its integral group ring. 

We shall use the factorisability defect class group Cl(2)fd) of the category *D of finitely 
generated Z[T]-modules to house our invariants. We briefly recall the details from [H-
Wl] and [H-W2]. Let Vbether-setUAr/A, disjoint union over all subgroups of T, Ay — 
Endz[r](Z[ V]) and FD = Ç^Ay) be the Grothendieck group of finite Ay-modules, taken 
with respect to exact sequences. We define the compensated category ©fd = (D x FD, 
an extensional category in the sense of Heller ([He]): the extensional structure consists 
of exact sequences in *D paired with triples of morphisms in FD: we only allow zero and 
identity morphisms in FD. 

Let %(2)fd) be the Grothendieck group of the extensional category 2)td. We write 
[M] + [a] for the class in %(2)fd) of the object (M, a) G ©fd. We may use the relation in 
%(2)fd) implied by a short exact sequence E — (0 -^ A —* B -^ C —> 0) in 2) provided 
we compensate by adding its factorisability defect fd(£) <E FD. That is, we have the 
equality 

(2.1) [A] + [C] - [B] = [fd(£)] G %(2*d), 

where fd(£) will be defined below. For this reason we use the following "diagram con­
vention": we refer to a diagram 

0 — > A — > B - ^ C — > 0 [fd(£)l 

consisting of a short exact sequence on the left and its factoring defect class (in %(©fd), 
not FD) on the right, as a relation. When we refer to the diagram, the reader is to under­
stand this as a mnemonic for the relation 2.1 in %(2)fd). 

Denote by //£(—) the homology of the derived functors of 

- (g) Homz(Z[V], Z) and HomZ[n(Z[Vr], - ) . 

Note that, just as with Tate cohomology groups, we allow n to run over all of Z. These 
Hecke cohomology groups are the groups denoted Extztrj(Z[V], —) defined in [H2], 2.1. 
We have 

(2.2) fd(£) = coker(a£: H$(B) -> H^(C)). 

An endomorphism of Z[V] induces an endomorphism of a projective resolution, 
where maps are determined up to homotopy, and so induces endomorphisms of the Hecke 
cohomology groups in the standard way. By homological algebra, this gives a natural 
Ay-module action on the Hecke cohomology groups. 

If we project onto Ar/A-modules, we recover the ordinary Tate cohomology groups 
(over a subgroup A of F) as Ar/A-modules. 

Since it is easier to work in 

(2.3) FDS(0 = e A ^ ( A r / A ) 
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in practise, where the sum is over all subgroups A of T, I give a few remarks on the 
relations between these groups. 

Let fds be the corresponding defect map. Then fd is equivalent to fds (in the sense of 
[H-Wl] §1). 

FD has the formal advantage of induction (and restriction and inflation) being well-
defined FD(A) —> FD(F) in such a way as to extend ordinary induction on Z[A]-modules: 
formally, these change of group maps on the defect groups FD turn the corresponding 
functors into defect preserving functors ([H-W2], 1.10). For example, if E is a short exact 
sequence of Z[A]-modules, we have the equation 

(2.4) fdr(indS(£)) = indJ[(fdA(£)). 

Unfortunately these results do not immediately extend to the group FDS. However, 
using the idempotent of Ay corresponding to projection onto Ar /A, we obtain an injective 
homomorphism 

FD(H -> FDS(r) 

([H-W2] 1.8(i, ii), see also 1.3). So we might for instance replace FD(r) by its image 
in FDS(r), to ensure that induction is well-defined, and yet we only have to consider 
one subgroup at a time, that is Ar/A-modules. We take this approach occasionally for the 
purposes of calculation. 

Finally, Cl(2)fd) is the kernel of the localisation (completion) map from %(©fd) to 
Up %(2)fd ). Here, and in the rest of the paper, subscript p denotes /?-adic completion. 
Let C1(Z[T]) be the locally free class group of Z[V]. From [H-W2], 2.3, there is a natural 
surjectionCl(Z[ri) —• Cl(£>fd) (by [X]-[Y] i-> [X\-[Y], withX, F locally free of equal 
rank) with kernel D(Z[T]), the kernel group. Let us apply this to obtain a preliminary 
formula for Chinburg's third invariant in Cl(2)fd). First we introduce some notation to be 
used in the rest of this paper. 

Let NIK be a normal extension of number fields with Galois group T. Let S — S(N) 
be a finite, T-stable set of places of N including the infinite places SOQ(N) and the ramified 
places in N/K, and such that the S(F)-class number (where S(F) consists of the places 
of F below those in S(N)) of intermediate fields F between N and K is 1. Let Z[S] be the 
free abelian group on the set S and let Xs be the kernel of the Z[r]-map from Z[S] to Z 
which sends each place in S to 1. Let Us be the Z[T] -module of S-units in N. 

Also let <jr be the trace element of Z[T] and Jr — {or ~ |r|)Z|T], a two-sided ideal 
contained in the augmentation ideal Ir of Z|T]. The defining exact sequence for Chin­
burg's third invariant Q(N/K, 3) ([CI], Lemma 3.1 or [T], 1.5.1) is 

(2.5) 0 — Us —>A3 ^B3^XS —>0. 

This sequence has extension class induced from that of the fundamental class for N/K 
(in the sense of class field theory), as described in [T], 1.5.1. In formula 2.5 A3 and #3 are 
finitely generated cohomologically trivial Z[T]-modules. As such they determine classes 
in %)(Z[T]) by resolution by projectives. By the Dirichlet S-unit theorem, A3 0 Q and 
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B3 0 Q are isomorphic, so that [A3] — [#3] lies in C1(Z[T1). So we define, following 
Chinburg ([C3], Définition 3.1) 

(2.6) Cl(N/K, 3) = [A3] - [B3] e C1(Z[H). 

Tensor with Xs the exact sequences of Z[T]-modules (of the opposite hand) / r —> 
Z[T] —» Z to obtain the relation 

(2.7) 0 — + x 5 < 8 > / r — + X s ® Z [ r ] ^ X s — > 0 [H°r(Xs)} 

because H^(Z[T]) = 0. One can find an exact sequence 2.5 with the required extension 
class in which #3 = Xs 0 Z[T]. This choice gives the relation 

(2.8) 0 — > U S — > A 3 — > X s ® I r — > 0 zero 

because [H{
r(Us)] = 0 as in [T], II.6.8. Here we have used formula 2.2 as a working 

definition of fd, combined with the Hecke cohomology long exact sequence. 
Thus we obtain (using the projection C1(Z[G]) —-> Cl(2)fd)) 

n(N/K93)=[A3]-[Xs®Z[r]] 

(2- 9) M [us] + [XS 0 / r] - [XS 0 Z[H] 

= [us] - [xs] + [f#(xs)] e ci(»fd). 

Recall that Cl(£>fd) ^ Cl(Z[r])/D(Z[r]), and that £>(Z[r]) lies in the kernel of the 
Cartan map h: %(Z|T]) -> QQ{Z[Y]\ SO formula 2.9 sharpens 8.2 of [CI]: 

£l(N/K,3) = [Us] - [Xs] G Çb(Z[H). 

In a similar way, an "amusing formula" of Chinburg, which he interprets as an analogue 
for Galois structure of analytic class number formulae, provides the motivation for the 
work of the next section—see in particular the discussion after formula 3.15. 

Note that we use the same symbol for the image of Ç1(N/K, 3) in different classifying 
groups, for simplicity of notation: as we specify which group, this won't cause confusion. 

3. Switching from 5-units to units. We continue the analysis by switching from 
5-units to ordinary units. 

We write U and X for Us and Xs where S contains only the infinite places, Sf for the 
finite places in S, Isf for the fractional ideals of TV supported on the places in Sf and &Sf 

for the principal ideals in I$f. 
Thus we have relations 

(3.1) 0 - ^ U —+ Us -^ TSf —> 0, [Hl
r(U)] 

because H^(Us) = 0, and 

(3.2) 0-^x—^Xs—>Z[Sf]—>0 [Hl
r(X)]-[Hl

r(Xs)] 
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because the Hecke cohomology group //p(Z[S/]) vanishes, and (by the choice of S), if 
C\N is the ideal class group of N, 

(3.3) 0 - ^¥sf ~^Isf — > C 1 W -^ 0 [// r(%)] 

because ISf = Z[S/]). 
Then 

(3.4) 
[Us]- [Xs] = [U] --ix\- - [CW] --[fd(3.1)]-+ [fd(3.2)] + [fd(3.3)] 

= [U]--[X]- - [C\N] --[Hl
r(U)] + • [« rWl " •[Hl

r(Xs)] + [HlCPsf)]-

Let us denote by Tv the group Mapr( V, T) for a T-set 7. This is naturally isomorphic 
to HomZ[r](Z[V], T), hence a Ay-module. Then Nv is (as a ring) isomoiphic to the direct 
sum of fields NA for each subgroup A of T. Let 0Nv be the maximal order in Av, and 
define C\(NV) to be the locally free class group of 0Nv. By the idèlic description of class 
groups, if J(NV) denotes the idèles and 11(0^) the unit idèles of Nv, 

a(^)~ KNV) 

(Nvru(oNv) 

Because these isomorphisms are natural, C\(NV) becomes a Ay-module in a natural way. 
We can also define INv as the invertible ideal group of 0Nv, namely 

j KNV) KN)V 

NV u(oNV) ~ u(oNy 
Hence INv is a Av/-submodule of 

and 

N~(U(0N)) 

Cl(Nv)^ INv/Œ>Nv 

where TNv is the group of principal invertible ideals of 0Nv, a Ay-submodule of 'P^. The 
same holds if we restrict to ideals supported in Sf(N). Each of these objects gives, under 
the forgetful functor, modules over ®&Ari&, where each summand is the Ar^A-module 
given by replacing V by A: thus Cl(Nv) maps to (B& C\(N*). 

It follows that we have the following equalities in FD(0: 

[/4(%w)] = [(C\N)V] - t(/s /W)7(%m)v] 

= [(CW)V] - [(/S/W) W 1 ) ] 
( 3 '5 > - [ V ^ / ^ W + [(%W)72V)] 

[(Ch)v] - [(/S/W)7 V " ) ] - [ CV1 + [ffr(^)] 
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where the last equality comes from the analogues of formulas 3.1 and 3.3 with TV replaced 

byNA. 

Let w G Sf(NA) and let x\w be a place of N. Let Ax be its decomposition group in 

N/NA of order dw. As the decomposition groups are conjugate for different choice of x, 

dw only depends on w. Also let trA(w) = T,x\wx G Z[Sf\. 

From the element H^(Z[Sf]) of FD(r) we obtain A r/A-modules by the forgetful func­

tor: 

(3.6) [H°(A,Z[Sf])]=\ © (Z/dwZ)tvA(w) 

Let e(N/NA, w) be the ramification index of w in the extension N/NA). If we identify 

w with e(N/NA,w)trA(w) (to obtain the natural inclusion ISf(N
D) C /S>(AO)> t n e n w e c a n 

define a A r/A-module 

(3.7) e(N)(A) = (ISfiN)f/Isfm- © (Z/e(N/NA,w)Z)tvA(w) 
wesf(N*) 

which does not depend on the choice of 5y, since Sf contains the ramified primes. We 

denote by e^ the corresponding element of FD(F), which does exist from the above re­

marks. 

Letf(N/NA, w) be the residue class degree of w in N/NA. We get a A r ^-module/s , (A) 

by replacing e(N/NA, w) by f(N/NA, w) in the RHS of formula 3.6. From the equation 

dw = e(N/NA,w)f(N/NA,w) it follows that [H°(A,Z[Sf])] = [e(N)(A)] + [/*5/(A)] G 

^ ( A F / A ) . 

We can therefore define/5/ = [H°(Z[Sf])] - e(N) G FD(r) . 

Next we shall show that [/$ ] = 0 in %(©fd). For this we need to do some preparatory 

work. There is a standard relation 

(3.8) 0 — Z > Z [ H — > Z [ T ] / a r — > 0 zero 

where the first map is multiplication by <rr. Next consider the relation 

(3.9) 0 —>I r — • Z [ H —> Z —> 0 [H°(Z)l 

If T is cyclic, then / r = Z [ r ] / a r , and so by formula 3.8 

(3.10) [#r(Z)] = 0 G Cl(Ctd) if r is cyclic. 

Choose v G Sf(K), x\v in Sf(N). Let Tx be the quotient of Tx (the decomposition group 

of x in N/AT or, what is the same, the T-stabiliser of x) by the inertia subgroup lx of x. 

Put Tx in place of T in formula 3.8. By standard theory, Tx is cyclic. So we replace V 

by Tx in formula 3.9 to obtain a relation in the appropriate defect Grothendieck group. 

Next we inflate to Tx and induce up to T, and take the direct sum over v G Sj(K). These 

operations being well-defined on defect groups (with defect map fd!) by [H-W2], 1.10, 
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we obtain a relation (with zero defect class since we started off with a sequence whose 
defect had zero class) 

(3.11) 0 —> ®v ind^ / ^ —> ®v ind^ Z [ f j —> ®v indfx Z —> 0 zero. 

It will be enough to show (because of the injection FD(F) —-> FDS(r)) that the se­
quence in formula 3.11 has A-component of defect/sy(A). It suffices to check the direct 
summand indexed by v. 

Well, Z[F/TX]A = (&cQ2b bcTx)Z, where c runs over coset representatives for 
A \ T/Tx and b runs over a set B of coset representatives for A/ACJC, and similarly 

indf̂  Z [ f j A = Oc(zb b(c <g> Z[fj))A Let a = £ , b(c <g> rbAJ G ( £ , b(c <g> Z[fj))A . 
Let cx = cxc~l. Thus Acx = CAX. For each S G A we have èb = bè

 cgè for some g$ G A* 
and bè G B. A short calculation shows that 

(3.12) r ^ ^ = gsrbAcx. 

If e is the augmentation Z [ r j —> Z, then the image of a under ind{^ e is e(rAcx) £/, bcTx, 
because e(ghrbAJ = e(rbAJ. But, if cg G Acx, g e j \ , then cgc ® rAcj = c (8) g r ^ , thus 
from formula 3.12 (with b = 1) r̂ Arx = rAnï G ZJTJ^ . This is the same thing as saying 
that \Acx\ divides e(rbAcx). But f(N/NA, cx) — \ACX\, and there is a bijection between 
the double cosets A \ T/Tx and the places w\v in NA, if we identify w as before with 
e(N/NA, w) trA(cx). This shows (cf. formula 3.7 and following remarks) that the required 
defect is indeed/^(A). (We have gone through Mackey induction and Schapiro's lemma 
explicitly so as to retain the Ar/A-module structure: if we just quoted these theorems we 
would only have an isomorphism of groups). Thus \fsf] = 0 G % ( % ) • 

So from formulas 3.6 and 3.7 it follows that 

(3. 13) [H°r(Z[Sf])} = [eN] + \fSf] = [eN] G %(2*d). 

Next, we note from formula 3.2, and the analogue with S replaced by S^, 

(3.14) [H°r(Xs)] - [H{
r(Xs)] = [//?(*)] - [#f(*)l + [#r(Z[S,]]. 

Thus we have 

Q(tf/tf, 3) = [t/5] - [Xs] + [#?(**)] 

= [t/] - m - [CW] - [//f(U)] + [//'(X)] + [#f (%)] 

- [Hl
r(Xs)] + [#?(**)] 

x = [tf] - m - [CW] - [Hl
r(U)] + [//[(%)] 

+ [/^(X)] + [/^(Z[5/]] 

= [U] ~m- [CW] + [/*?(*)] + [H°r(Z[Sf]} 

+ [(CW)V] - [CWv] - [(ISf(N))Vl ISf(NV)] 

= [U] - [X] - [CW] + [(CW)V] - [CWv] + [H°r(X)] 
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which finally gives a formula explicitly independent of S. 
In the same way as discussed in the paragraph following formula 2.9, 3.15 sharpens 

Proposition 3.4 of [CI]: 

h(Sl(N/K,3J) = [U] - [X] - [CW] G Ço(Z[T]). 

This formula motivated the results of this section. 
What's more, the form of formula 3.15 suggests a relation with Hecke factorisation 

and the analytic class number formula, which will be made precise in §§5, 6. Essentially 
the idea is to introduce a module (perhaps a lattice) of special units *£, and produce 
a cancellation—using Hecke factorisation, Euler systems and an analytic class number 
formula involving special units—of all the terms in this formula, to leave only [X], [£] 
and [H^(X)] as remaining terms. In a classical case, all these terms cancel to give zero, 
as predicted by Chinburg's third conjecture. 

4. Hecke factorisations and the defect class group. In this section we recall some 
more details of defect groups in order to relate Hecke factorisation (defined below) to a 
representative for Q(N/K, 3) in Cl(2)fd). 

We write !%(2)fd, ®Q) for the Heller ([He]) relative group, which is HQ of the fibre 
category of the functor (g)Q from 2)fd to the category of finitely generated Q[r]-modules. 
It is generated by classes [M,/, N] + [a] where a e FD,M,N G £>and/:M®Q-^ Mg)Q. 

Let 7Tfd'. %(Dfd, ®Q) —> %(©fd) be the connecting homomorphism in the appropri­
ate Heller exact sequence for ®Q, defined by [M,/, N] + [a] i—• [N] - [M] + [a] ( [H-W1 ] 
1.3(H)). If/: X® Q -> U ® Q is any Q[r]-isomorphism, define 

(4. la) c\(f) = [X,/, £/] - [0,0, CW1 + [(C\N)V] - [C\Nv] + [H°r(X)] G %(2*d , ®Q). 

Then by formula 3.15 

(4.1/7) Q(N/^,3) = 7rfd(cl(0). 

As in [H-W2], before 1.7, denote by ^ the set of triples (p, A, UJ), where /? is a prime 
number, A is a subgroup of T and uo an idempotent of Ar^Ap. We identify Ç\£LP) with 
the corresponding relative group ÇÇ)(7JP, ®Q) as in [H-W2] 1.1b. Then define F D ^ = 
M a p ( ^ , ÇQ(ZP)). Let Oi = Upfy, disjoint union over prime numbers p, and similarly 
let F D ^ = Qp F D ^ By [H-W2] 1.7 there is a projection homomorphism onto a direct 
summand: 

(4.3) % ( * W ®Q) - ^ F D ^ by 

[Nuh,N2] + M •-> [: (p, A,<J) i-> M V f , / * , ^ ] ] + [a] 

for each p, which induces a projection J'. %(©fd, (g)Q) —-> FD^, since by [H-Wl] 3.1 
there is an isomorphism %(£>fd, <g)Q) = 0 P %(%,/>, ®Q). 
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By [H-W2] 1.1c, there is an isomorphism x y—> \x\ of Ço(Lp, ®Q) with IQP (a gen­
eralised module index). Thus, if [Mj,/,M2] G Çb(Zp,(8)Q), and f(Af,-) and M/ are the 
torsion subgroup of M; and its image in M; (8) Q, respectively, then 

l J ' 2l |KM1)|[f(M1):/(M1)nM2]' 

Let subscript A denote projection FD = ÇQ(AV) —• (7o(ArM). 
Paraphrasing [H-W2] formula 2.4b, we say that [Mi, g, M2] + [a] G %(2^d , ®Q) has 

a 9{-{ox Hecke) factorisation if there is some a G _7(Q[T]) such that 

(4.4) \uj{Mx)^gpMMi^\ \w(ap)L\ = {dtiQp{ap\%[T}eAuj)) V(/?,A,^) G # . 

Let U be a field realising the characters of T and Galois over Q. Let Rr = %)(U[T]) 
be the character ring of T. Let AI be the associated ideal (or content) map J(U) —> /(/ 
and let Det be the well-known generalised determinant map, which factorises through 
reduced norm and so switches from the idèlic- to the Horn-description notation. In the 
above situation we say that A/(Det(a)) G H o m ^ ^ / Q ^ r , Iv) is the 9{-factorisation of 
[Mi,g,M2] + M. 

Let C be the centre of Q|T] and v\ J7(Q[T]) —> ^(Q be the continuous map induced 
by reduced norm. From [H-W2] 2.6(i) and 2.8(i) and (iii) (we take the set S there to be 
all the prime divisors of |T|) and by 4.2, for any choice of/, c\(f) has a ^-factorisation 
A/(Det(a)), and 

(4.5) Q(N/K,3) = cteq)a(H<x)) 

where c l s ^ is the epimorphism J(Q —• C1(Z|T]) —• Cl(£>fd) of [H-W2] 2.3, with 
kernel Cxz/(1Z(Z[T]) n j / , r | OQ>» which gives the idèlic description of Cl(£>fd) (Oc is 
the unique maximal order in C). 

Explicitly, we have, for each (/?, À, u) G .?/", 

(4.6) |o;(Xp)A,/,o;(^)A| \U(C\NL)P\-X\UÎP{±XP)\ = ( d e t g ^ l Q ^ r ] ^ ) ) 

after taking note of a cancellation of two terms. 

5. Euler systems of units. In this section, let F/Ko be a finite abelian extension of 
number fields and let L be an intermediate field (so F D L D Ko) with G — Ga\(F/L) 
and let M > 1 be a large power of the prime number/? (to be specified later). We do not 
assume that p is odd. Let [in denote the group of n-th roots of unity in C for a positive 
integer n. 

As in previous sections, write OF for the ring of integers in F, UF for the group of 
units of 0F and Cl/r for the ideal class group of F. 

Throughout this section, / will denote a finite prime of KQ and À a finite prime of L. 
We write N/ for | OK0/1\ , the absolute norm of /. Write KQ(1) for the ray class field modulo 
/ over KQ. Write HQ for the Hilbert class field of KQ. 
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Let SM(KQ) be the set of finite primes / of Ko which split completely in F/KQ and for 
which M|(N/ — l)/w(/), where w(l) is the order of the image of UK() in (0K{)/l)

x. Also 
denote by S'lf(Ko) the set of squarefree ideals supported in SM(KO). We also allow OK{) 

to lie in Ss
M(Ko). If a ^ 0 is an ideal of 0K{), denote by Ss

M(a,Ko) the subset of SM(KO) 

consisting of ideals prime to a. Let (KQ)M = ^O(MM, (^ ( ))
1/ /M). 

Write SM(L) for the primes of L lying over primes in SM(KQ). Similarly define SS
M(L) 

and 5 ^ 0 , L). 

LEMMA 5.1 ([Ru2] 1.1). If I splits completely in F/KQ then l G SM(KO) if and only 
if M | [KQ(1) : Ho], and this holds if and only if I splits completely in (Ko) M /Ko. • 

Suppose we are given a tower of extensions fields F[X]/F for À G SM(L) satisfying 
the following axioms: 

EF(i) F[A]/Lisabelian, 
EF(ii) F[X]/F is unramified at finite places not dividing A, 
EF(iii) F[X]/F is totally ramified at primes dividing A, 
EF(iv) [F[X]/F] = M . 

Then for p G SS
M(L) we denote by F[p] the composite of the fields F[X] for A|p. 

By an Euler system for (F/L,M) we shall mean, for some ideal a ^ 0 of O ,̂ a set a 
of maps from S^ia, L) to (F)x satisfying the following axioms: 

ES(i) if p G Ss
M(a,L), then a(p) G UF[ph 

ES(ii) if Ape5^(tf,L),then 

^F\Xp]/F\p]^P) = a (p ) F r A _ 1 » 

where Fr^ is the Frobenius of A in Gal(F[p]/L), 
ES(iii) if Xp G Ss

M(a,L), then a(Xp) = a(p) (NA-1)/M modulo all primes dividing 
A. 

We let ESF/LfM denote the set of all Euler systems for (F/L, M). It is closed under mul­
tiplication, inverses and the action of Q.f. Given a G ESF/LM , if a is the corresponding 
ideal we denote also by Ss

M(oc, L) the set Ss
M{a, L) above, which is the domain of a. 

Note that other definitions of Euler systems for units have been given; this one is 
closely related to that in [Ru3]. See also [Rul] and [Ru2]. We have made the definition 
relative to subfields so that one only needs the condition F D Ho rather than F D Hi for 
an Euler system for (F/L, M). 

To exhibit a tower of fields F[l] we choose F[l] to be the unique (cyclic) extension 
of order M in FK0(l)/F, provided F D 7/0- If A G 5A/(L), and A|/ where / G SM(KQ), 

then we simply define F[X] = F[l]. Note that we can identify Fr/ and FrA since / splits 
completely in F /Ko. 

Note that Gal(£0(/)/#o) = (0KJl)x / imUK() by class field theory (cf the well-
known real cyclotomic case with Ko = Q), and, because F D //0, Gal(FAT0(/)/F) identi­
fies with Ga\(Ko(l)/Ho) by restriction. Ramification considerations show that the axioms 
EF are satisfied (indeed, EF(ii) extends to the infinite primes). Also, the fields F[l] are 
linearly disjoint over F. 
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For every p G SS
M(L), we let Gp = Gal(F[p]/F) = Ux\p Gx and let ax be a generator 

of G\ (which is cyclic of order M). Let Nx be the trace element of Z[GX] and define 
Dx = T!f=T$ i°l\ £ Z[GA]. This operator DA is chosen to satisfy 

(5.2) (ax-l)Dx=M~NxeZ[Gx]. 

Also define Dp = Ux\p Dx.We may identify Gx with GsA(F[p] /F[p/ A]), the inertia group 
of A inGp. 

PROPOSITION 5.3 ([Ru3], PROPOSITION 2.2). Foreacha G ESF/LM there is a canon­
ical map 

rZ = rZa:S
s
M(a)^Fx/(Fxf 

such that, for every p G Ss
M(a, L), 

rz(p) = a(pf^mod(F[p]xf). 

Let Ix denote the subgroup of IF consisting of ideals supported over A, written ad-
ditively. If y G Fx, let [y]x denote the projection into IX/MIX of the principal ideal 
generated by y. Note that [y]x is also well-defined for y G Fx / (FX)M. 

PROPOSITION 5.4 ([Ru3], PROPOSITION 2.3). Let A G SM(L). There is a unique 
Z[G]-isomorphism 

(QF/XOF)x Ix 

^'((0Fl\0F)x)M^Mh 

which makes the following diagram commute: 

F[\r 

(oF/\oFr jx j±_ 
«oF/\oFr)M MIX 

where x]~Gx is the reduction ofxl~ax (which is a unit at each prime A'| A ofF[X]) in 

®0FlX]/\
f~0F/\0F 

y\x 

andd=(N\-l)/M. m 

Note that the theory of ramification in tame, local Galois extensions is here being used 
(in the well-definedness of the left hand diagonal map) and that <j>\ may be considered 
as a logarithm modulo A. 

We shall also write <j>\ for the induced homomorphism 

</>A: {y e Fx/(Fxf : [y]x = 0} - IX/MIX. 

To see that this extension makes sense, note that \y]x = 0 means that we can choose a 
representative for y which is a unit at primes dividing A. 
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PROPOSITION 5.5 ([K], THEOREM 5, cf. [Ru3], PROPOSITION 2.4). Suppose a e 
ESFjL M, K is the map defined in formula 5.3, p E Ss

M(oc,L), and X is a finite prime ofL. 
(i) IfX / p then [*(p)]A - 0, 

(ii) If\\p then [n(p)]x = fafap/X))- • 

Note that we can dispense with the condition "p ^ OC in [Ru3], because K(OL) = 
OL{OL) is a unit. Even with the slightly different axiom system of [Ru3], where oc{Oi) 
is not assumed to be a unit, nevertheless it is a unit at primes dividing À (by ES(iii)), if 
A e SM(L), which is all that is needed. Indeed, p = 0L is used in the applications there 
(Theorem 3.2 of [Ru3]). 

Let m = m(F) be the order of PM(F)- For the rest of this section we shall suppose that 
p / \G\. Let x be an irreducible Qp -character of G = Gal(F/L). Let ex be the idempotent 

*x = \G\-1 £ X(g)g~] 

of ZP[G] corresponding to \ (this makes sense even when \ is not 1-dimensional since 
G is abelian, so the simple QP[G] modules occur with multiplicity 1 in QP[G]). If V is 
any Z[G]-module, write V* for the x-isotypic component of thep-adic completion Vp of 
V, so that V* =ex(Vp). 

LEMMA 5.6. (i) The natural map 

is injective, unless p = 2 and m = 2, m which case the kernel is of order 2. 
(//) /rc an_y case, if\ ^ 1, arcdp / \G\, then the map 

{F* l(F*)M)x -^ F(mf I (F(mYf 
is injective. 

PROOF, (ii) is an obvious consequence of (i) and orthogonality of idempotents, since 
{±1} is G-trivial and x ^ l -

Let F' — F(PM)- The sketch proof of (i) (when/? is odd) in [Ru3], Lemma 2.5, shows 
that the kernel is isomorphic to H1 (Gal(F' /F), PM), which has the same order as 

H°(Ga\(F'/F),pM) = pm/^/F(pM) 
since PM is finite and F'/Fis cyclic. This also applies in the case/? = 2. Thus, (i) is plain 
if m — 1, and we may assume that m > 1. Then Ga\(F'/F) = Gal(Q(/iA/)/Q(/xm)) by 
restriction, because FDQ(ppm) is a proper subfield of Q(ppm) containing Q(pm). Since 
[Q(/Vi) • Q ( A O ! = p, (as m > \)FnQ(ppm) = Q(/im). Therefore FHQ(pM) = Q(pm)-

Thus %7>/F(pM) = %(^)/Q(MlB)(MAf). However, if r > 1, (recall <̂  = exp(2iri/n)) 

P~l 1+a - > 

<3=0 

_ . >p(p-l)/2 
— V _ 1 SP 
_ f Ç-i, if/? odd, 
" I-C2-, ifp = 2. 
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Thus, as —(2r-i has the same order as £2r-i if r > 2, and it is 1 if r = 2, (i) follows. • 

Let A be the /?-part of Cl/r. 

THEOREM 5.7. Suppose thatp / |G|, x is non-trivial on Gal (F/FnL(/iA/))> M > 1 

is a power ofp, f] G ( F X / ( F X ) M ) , A is a 7\G\-quotient ofAx. Let m be the order of $ in 

Fx /(/rx)M) w ^ Z[G]-submodule of ( F x /(FX)M)X generated by (3, H the unramified 

extension of F corresponding to A, and H' — H Pi F(HM, WXIM). Then there is a Z[G]-

generator c' ofGa\(Hf/F) such that for every c G A whose restriction to H' is cf, there 

are infinitely many primes \' of F of degree 1 such that 

(i) the projection of the class of\' into A is c, 

(ii) the prime A ofL below A' lies in SM(L), 

(Hi) [f3}\ = 0 and there exists u G ((Z/MZ)[G]X)X such that <j>\(J5) = u(M/m)\f. 

PROOF. This is very similar to the proof of Theorem 3.1 in [Ru3]. The same idea 

occurs (without details) in [Ru2], proof of Theorem 3.2: we give the details for com­

pleteness. 

Let F' = F(HM) and let U = L(p,f). Since G acts via \ ^ 1 o n Gal( / / /F) but trivially 

on Gal(F'/F) (as Gal(F7/L) is abelian), we have HC\F' = F. By Lemma 5.6(ii), Kummer 

theory gives an isomorphism 

Ga\(Ff(Wl/M)/Ff) ^Hom(W, / i M ) . 

By the definition of m we have W = (Z/mZ)[G] x , so G<i\(F'(Wx IM) / F') is cyclic over 

Z[Gal(F'/L)]. Fix a Z[Gal(F'/L)]-generator r of G<i\{F'(Wx IM) / F') and let c' be the 

restriction of r to H'\ then c' generates Ga l (# ' /F ) ^ Ga\(HfFf/Ff) over Z[G]. Let c G 

A = Gal( / / /F) be any class whose restriction to H' is c'. Fix an automorphism a of 

Gal(//F'( W1 lM, Ujl )jF (this extension being Galois as a composite of H and a splitting 

field over F) satisfying 

O\H = c, (T\F{W\/M) = r and ^\F,{U^M) = 1. 

Since G a l ( F / F n L ' ) ^ G<û(F'/L') acts (via x) non-trivially on G<A{F'(Wx IM) / F1) and 

trivially on G a l ( F ' ( ^ M ) / F ' ) , F'(WXIM) H F'(£/^M) = F ' , so the second and third 

conditions are independent. Similarly, Gal(F'/Z/) acts trivially on G a l ( F \ L ^ M ) / F ' ) (as 

G a l ( F ' ( ^ M ) / L ' ) is abelian) and non-trivially (via x) on HF'/F\ so that F ' ( L ^ M ) H 

/ / = F (because HDF' = F). As c and r agree on F'(W x lM)C\H= / / ' , the first condition 

can therefore be achieved simultaneously with the other two. 

Let A' be a prime of F of degree one whose Frobenius in Gal(HF'(Wl/M, llj- ) / F 

is the conjugacy class of <7, and such that the prime À of L below \' is unramified in 

F'(WXIM)/L. (The Cebotarev theorem guarantees the existence of infinitely many such 

A'). The verification that A' satisfies (i), (ii) and (iii) is now the same as in the proof of 

Theorem 3.1 in [Ru3]. • 
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The condition on \ c a n be weakened in the only two cases so far where explicit Euler 
systems of units are known to exist—though Stark's conjecture predicts more exam­
ples (see [Ru2]) and was "empirically verified" in [St] for some extensions with Ko real 
quadratic or cubic. 

COROLLARY 5.8. If UK0 is finite, then Theorem 5.7 holds with the hypothesis "\ 
non-trivial on GalfF/FH L(HM))" weakened to "\ ^ 1 ", provided eitherp > 3, or 
p = 3 and | UK0 | = 2. If p = 2 and | UK0 \ = 2, with the same condition that \ ^ 1 we 
obtain Theorem 5.7 with M replaced by M/2 in Theorem 5.7(H) (provided M is chosen 
larger than 2). 

PROOF. In this case UK0 consists of roots of unity, hence KQ = Q or a quadratic 

imaginary field, and | UK0 | = 2, 4, or 6. Also, F(/XA/» Uf/ )/L is abelian, and the hypoth­

esis that x 7̂  1 is sufficient to show that H D F(jiM, U^ ) = F. If p > 3, or p = 3 and 

| UKQ\ = 2 then F([IM, U^ ) = F([IM), SO the same proof as above now works with the 

weaker restriction on x-

On the other hand, if p = 2 and | UKQ | = 2, if we simply replace the field F(/XM , UK' ) 
with F(LIM) in the proof of Theorem 5.7, we find that A splits completely in F(JIM)/'L, so 
M|(NA - 1), and therefore (as w(A) = 1 or 2) ±M |(NA - l)/w(A), so A G SM/2(L). m 

For the applications to index theorems for /?-adic eigenspaces of Cl/7, we define 

^SF/LM =UFH {a(0L) : a e ESF/LM}. 

Note that TSf/^M only depends on F/Ko, and in the case Ko = Q, it turns out that 
CESF/L,M)P is independent of M provided M is sufficiently large, and/? / [F : Q]. 

THEOREM 5.9. Suppose that p / [F : L] and that \ ^ 1. Suppose that either the 
hypotheses of Theorem 5.8 are satisfied (so that p — 2 or 3 may or may not be excluded) 
or that x is non-trivial on FDL(PM)-

Further suppose that M is divisible by p[U^ : £5£/L M l | Cl£ | (or twice this if p — 

2). In particular we suppose that [£/£ : rFSx
Fil M] is finite. Then | Cl£ | divides [U^ : 

PROOF. The proof is the same as that of Theorem 3.2 in [Ru3], with Theorem 3.1 of 
[Ru3] replaced by our Theorem 5.8. • 

Note that we are assuming that F D HQ: without this assumption one would need 
instead to assume that/? / \Ho\ in addition (cf. [Bl]). 

The careful reader of Theorems 5.8 and 5.9 will find that only the hypotheses p / 
[F : L], x T̂  1 (and M sufficiently large) are needed in Theorem 5.9, when Ko = Q—in 
this case the existence of Galois-stable groups of cyclotomic units of finite index in UF 

shows that [£/£ : <FS%LM] is finite. 
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6. The real abelian case. In this section we apply the results of §§1-5 to the case 
where K = Q and N C Q(Q+ , where (̂  is a primitive rc-th root of unity in C, and we 
suppose that n ^ 2 (mod 4). We let aa (for (a, n) — 1) be the element of Gal(Q((^)/Q) 
which raises rc-th roots of unity to the power a. 

We shall need the lattice of cyclotomic units RaQ(^)+ discovered by Ramachandra 
([Ra]; see also [Wa], 8.3)) generated by the multiplicatively independent units va defined 
as follows. 

Let n = ri/=i qt as a product of distinct prime-powers qt. Let / run over all subsets of 
{ 1 , . . . , s} except { 1 , . . . , s} and let rti — Uiei qt- Let £n>a = 1 — (£. For 1 < a < n/2, 
(a, n) = 1 define 

There is an isomorphism 

(6-2) 7GaKQ(C)+/Q) - RaQ(C)+ by 
1 -{(Ja,°~a}^Va-

A brief calculation shows that this is a Gal(Q(Q+/Q)-isomorphism (assuming the inde­
pendence of the i/a). We can therefore uniquely define Ramachandra units Rayy for each 
real abelian field TV by 

(6. 3) Ra* = (RaQ(^)+)Gal(Q(^)+/A0 = ^ai(Q(C)VAo(RaQ(C)+), 

where n is the conductor of TV, that is, the smallest integer/ with N C Q(</). We obtain 
an explicit free generating set of Ra# as an abelian group in the obvious way, and we 
have: 

THEOREM 6.5. Let N be an arbitrary subfield of"Q(0+- Let \ run over the non-trivial 
characters ofT = Gal (TV/Q) (considered as characters 6>/Gal(Q(^)/QJ by inflation). 
Then 

[UN : Ra^. {±1}] = | CW | I I I I (</>(0 + 1 - X&rj) 

where r runs over the prime divisors of the conductor n ofN not dividing the conductor 
fx of\ and f is the highest power of r dividing n. 

PROOF. The case where N = Q(Cz)+ is Theorem 8.3 of [Wa]. The proof in general 
is a straightforward extension (see p. 152 of [Wa]). • 

Let the function h be defined on subgroups A of T by 

(6.6a) h(A) = [UF: (Rayy)A. {±1}]| C1F |_ 1 , F = NA. 

From Theorem 6.5, h is Q-factorisable (in the sense of [F3]), with a factorisation of 
h being given by the function g — gN G HomGal([//Q)(/?r, Iv) defined on absolutely 
irreducible characters \ by 

(6.6/7) g(X)= n ( ^ ) + l - x M . 
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Note that Ra/v does not have Galois descent. For example, suppose that N/Q is real 
cyclic of degree 6 and conductor 35. If ord(</>) = 3 then £#(</>) = (5 — </>(cr5)) 7̂  1-
However, if H has order 2 then </> is inflated from Ga\(NH /Q) and gNH((f)) = 1 since NH 

has conductor 7. From the index formula Theorem 6.5 

[UNH : (Rayv)H{±l}]/V = gN(4>)gN(<t>2) 

and 

[£V : ( R a ^ ) { ± l } ] / V = l 

therefore 

(6.7) [Rav* : (Ra*)"] = gN(<t>)gN(<l>2) ^ 1. 

Let / : X/v (8) Q —+ £/# 0 Q be induced by the composite isomorphism XN =. Ir = 
Râ v, where the first isomorphism holds since SQQ splits completely and the second is 
formula 6.2. Then Q(W/Q, 3) = 7rfd(cl(0) by 4.1. 

From the relation 

0 — > Z - ^ Z — > { ± 1 } — > 0 zero 

it follows that Q(#/Q,3) = ^ ( c h / ) - [Z,.2,Z]). However (if (p,A,<j) G # ) , by 
formula 4.6, 

I J ( c l ( 0 - [Z,.2,Z])(p,A,^)| = [UJ(UF)P : ^(Ra£. { i l ^ l M C ^ 1 

(6.8) 
= (detQ^ap|Qp[T>Au;)) 

for some a G J/(Q|T1). If we compare formula 6.8 with 6.6 we are led to 

CONJECTURE 6.9. The function g of formula 6.6b is the Hecke factorisation ofc\(f) — 
[Z,. 2, Z], where cl(f) is defined in formula 6.6a. 

Since g has principal values and T is abelian, g lies in the denominator of the ideal-
theoretic Horn-description of Cl(Dfd). So Conjecture 6.9 implies the truth of 

CONJECTURE 6.10. IfN is real abelian then Q(N/K9 3) = 0 G Cl(2)fd). 

NOTE. We have apparently only established this in the case K = Q, but by functorial 
properties of Q(3) ([C2]) this suffices for K ^ Q. 

Next we shall apply the results of §5 in the case where F is a real abelian field (so 

*o = Q). 
If the conductor of F is a prime power, we say F is primary. Otherwise we say F is 

split. Recall that F D L, G = Ga\(F/L) and that <ESFiLM was defined at the end of §5. 
Also observe that Ra/7 does have Galois descent when F is primary. 
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THEOREM 6.11. If F is primary, M is as in Theorem 5.9 andp / [F : L] then 

| Cl* | = {U} : %Sx
F/lJI] = [U* : (Raf. {±1})*] 

for each Qp-irreducible character xofG (including \ — 1 )• 

PROOF. In this case Theorem 6.5 shows that |(C1F)P| = [(UF)P : (RaF. {±\})p]. 
If x = 1 then CI* = (C\F)p, and by the genus formula relating (C1/T)G and C1L (cf. 
formula 3.5), since/? / [F : L], 

| ( C 1 ^ | = KCl^l = [(UL)P : (RaL.{±l})p] = [(Urf : (RaF.{±l})£], 

since £/£ = £/L and RaL = Ra£. 
As(Cl/r)p = ©xCl£, and similarly for the other index, and by Theorem 5.9 (for \ ^ 1) 

and the above for \ — 1, the orders of the factors divide (because Ra/r. {±1} c 'ESF/LM' 

see [Ru3], Proposition 1.2 and [Rul], §1), they must be equal by the index formula. • 

Note that this shows (RZF)P = CESF/LM^P f° r F Primarv> if P / [F '• ^L an(i ^ is 
sufficiently large: a kind of local determination of cyclotomic units (first noted by Rubin, 
and true for all real cyclic extensions with Ra^ replaced by a lattice of units introduced 
by Gillard in [Gi]). 

COROLLARY 6.12. Conjecture 6.9 (and so also Conjecture 6.10) is true ifN is pri­
mary. 

PROOF. By the uniqueness property of canonical factorisation (see [HI], 2.11) the 
^-factorisation g' of c\(f) — [Z,. 2, Z] is uniquely determined by the values 
g^(ind£inf£x(x)) where g' is the local component of g' ([HI], 2.15), C = Cp x Cx 

(Cp thep-part of C) is a cyclic subgroup of G and \ an irreducible Q^-value character of 
Cx- So it suffices to apply Theorem 6.11 in the case F/L — NCp /Nc, which shows that 
g' = 8=l. 

REMARKS 6.13. (i) Ted Chinburg and David Burns pointed out to me that an equiv­
alent form of Conjecture 6.10 for [N : Q] a prime power can also be deduced from [Fl]. 

(ii) In [Bu3], Burns obtains the full Chinburg third conjecture for certain real abelian 
extensions of prime-power degree. Similar results will hold in the analogous elliptic 
cases, that is, for certain abelian extensions of quadratic imaginary fields, and will appear 
elsewhere. These examples show very clearly to what degree the module-theory will gen­
erate approximations to the Chinburg conjecture and to what degree the extension class 
data is required to obtain the full conjecture. 

(iii) It is illuminating to consider the work of [R-W] (see also [G-W]) in this light, 
where invariants independent of extension class of certain finite Galois N/K are intro­
duced. 

NOTE ADDED IN PROOF. A proof of Conjecture 6.9 (and hence also Conjecture 6.10) 
has been obtained in [G-H]) 
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