
The Journal of Navigation (2023), 76:1 91–102
doi:10.1017/S0373463322000637

RESEARCH ARTICLE

Improving measurement performance via fusion of classical
and quantum accelerometers
Xuezhi Wang,1* Allison Kealy,1 Christopher Gilliam,2 ,5 Simon Haine,3 John Close,3 Bill Moran,4
Kyle Talbot,1 Simon Williams,4 Kyle Hardman,3 Chris Freier,3 Paul Wigley,3 Angela White,3
Stuart Szigeti,3 and Sam Legge3

1 School of Science, RMIT University, Melbourne, Australia
2 School of Engineering, RMIT University, Melbourne, Australia
3 Department of Quantum Science, Research School of Physics, Australia National University, Canberra, Australia
4 School of Engineering, University of Melbourne, Melbourne, Australia
5 School of Engineering, University of Birmingham, Birmingham, UK.
*Corresponding author. E-mail: xuezhi.wang@rmit.edu.au

Received: 11 July 2022; Accepted: 23 November 2022; First published online: 26 January 2023

Keywords: quantum accelerometer; phase unwrapping; maximum likelihood estimation

Abstract
While quantum accelerometers sense with extremely low drift and low bias, their practical sensing capabilities face
at least two limitations compared with classical accelerometers: a lower sample rate due to cold atom interrogation
time; and a reduced dynamic range due to signal phase wrapping. In this paper, we propose a maximum likelihood
probabilistic data fusion method, under which the actual phase of the quantum accelerometer can be unwrapped by
fusing it with the output of a classical accelerometer on the platform. Consequently, the recovered measurement
from the quantum accelerometer is used to estimate bias and drift of the classical accelerometer which is then
removed from the system output. We demonstrate the enhanced error performance achieved by the proposed fusion
method using a simulated 1D accelerometer precision test scenario. We conclude with a discussion on fusion error
and potential solutions.

1. Introduction

Initially demonstrated by Carnal and Mlynek (1991) and Keith et al. (1991), quantum accelerometers
based on cold atom interferometry generate high precision measurements with extremely low drift
over a long time period (Kitching et al., 2011; Degen et al., 2017; Bongs et al., 2019). Laboratory
experiments demonstrate the accuracy of cold atom accelerometers to be fifty times greater than that
of their classical counterparts (Jekeli, 2005; Hardman et al., 2016). More recently, a three-dimensional
quantum accelerometer was implemented by Battelier et al. (2020). This makes cold atom sensors
potentially well suited to inertial navigation systems, where the bias and drift of accelerometers and
gyroscopes has a direct impact on the quality of positioning and attitude.

To deploy quantum sensors for inertial navigation, one has to solve several engineering problems
such as large weight and size, the requirement of sophisticated cryogenic devices to run, etc. In addition,
at least two technical challenges must be resolved (Canciani, 2012). First, the nature of cold atom
interferometry is such that the resulting sample rate is typically below 10 Hz. A lower sample rate
will result in a higher achievable measurement accuracy (Peters et al., 2001; Hardman et al., 2016).
This sample rate is significantly lower than existing classical accelerometers, which can operate at
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frequencies of the order of 800 Hz. Second, the dynamic range of quantum accelerometers is very low,
typically reported below 1 × 10−2 m s−2 (Gillot et al., 2014; Freier et al., 2016). Fundamentally, the
output signal of a quantum accelerometer is sinusoidal, with the body acceleration value proportional
to the signal phase. When the body acceleration value is beyond the dynamic range, the output signal
will be wrapped because of the circular phase of the sinusoidal wave. In this paper, we refer to this
as the phase wrapping problem. Mathematically, this problem is referred to as the integer ambiguity
resolution problem. Depending on actual applications, various approaches are available in the literature,
such as the PPP RTK in GNSS positioning (Kim and Langley, 2000), frequency estimation (McKilliam
et al., 2010) and distance estimation (Li et al., 2013) based on non-coherent radar signals. Similar to
these applications, unwrapping the phase of the quantum accelerometer output signal will enable the
underlying quantum accelerometer to gain an extended dynamic range.

The phase wrapping problem was addressed by Bonnin et al. (2018), who showed that implementing
the simultaneous atom interferometers with different interrogation times could extend the dynamic
range, whereas operating in phase quadrature improved the sensitivity. This approach increases the
dynamic range of the quantum accelerometer at the cost of a more complicated hardware configuration.
The work by Dutta et al. (2016) used joint interrogation to eliminate the dead times, i.e. the preparation
time between two adjacent cold atom interferometric cycles.

A hybrid cold atom/mechanical accelerometer was considered by Lautier et al. (2014), where the atom
interferometer signal phase is compensated by using the signal of a classical accelerometer. A similar
idea was presented by Cheiney et al. (2018), where a hybrid system combines the outputs of quantum
and mechanical accelerometers in an optimisation framework. An extended Kalman filter is used in the
loop to estimate the bias and drift of a classical sensor as well as the phase of a quantum sensor. This
results in a bandwidth of 400 Hz and a stability of 10 ng after 11 h of integration by the hybrid sensor.
This work is extended to a three-axis implementation by Battelier et al. (2020). The accuracy of the
quantum accelerometer was tested only in the range of 0∼100 𝜇g and simultaneously estimating the
quantum sensor phase and classical sensor bias is nontrivial. Both the above two approaches are related
to our work in the sense of estimating the phase of a quantum accelerometer but differ in the ways
of phase unwrapping and how the classical sensor bias is estimated and removed. More recent work
by Tennstedt and Schön (2020) investigates the possibility of using the measurement of a cold atom
interferometer sensor in Mach–Zehnder configuration in a navigation solution. They combine the cold
atom sensor measurement with classical inertial sensors via a filter solution, observing an improved
navigation performance when the underlying acceleration is small.

As mentioned above, existing efforts to extend the dynamic range of a quantum accelerometer
essentially involves modifying the hardware configuration, which is nontrivial. In this paper, we pro-
pose a maximum likelihood probabilistic data fusion method that uses the accuracy of the quantum
accelerometer – operating at a low sample rate – to re-calibrate a classical accelerometer over its full
dynamic range. Our approach uses standard signal processing techniques and improves the inertial nav-
igation capabilities of classical accelerometers without the need to extend the dynamic range of the
quantum accelerometer. The idea is to unwrap the phase of the quantum accelerometer output signal
by fusing the acceleration measurement of the classical sensor into the quantum sensor model at the
quantum sensor sample rate.

The paper is arranged as follows. The problem statement and fusion idea are described in Section 2.
The approach for quantum sensor signal phase unwrapping using a classical accelerometer via maximum
likelihood estimation is presented in Section 3. The performance of the proposed method is demonstrated
by simulation results in a 1D inertial navigation scenario in Section 4, which is followed by the
conclusions in Section 5.

2. Limitations of quantum accelerometers

A quantum accelerometer operates by transforming a cloud of cold atoms into two spatially separated
clouds in free fall such that the change of their vertical displacement in time mimics the two arms of
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an interferometer. The manipulation of the atom cloud is achieved by using one laser pulse to split the
cloud and then a second to recombine the cloud. When the sensor has been subject to a specific force
(e.g. acceleration and/or gravity), the two clouds of atoms exhibit different phase characteristics that can
be measured. Counting the number of atoms in each cloud yields the relative phase, which in turn yields
the specific force of the platform relative to the inertial frame defined by the freely falling atoms. Such
a sensor has the potential to produce very precise measurements of acceleration or gravity (Freier et al.,
2016; Ménoret et al., 2018). However, the sensor suffers from two key limitations that must be overcome.

The first challenge is that, in general, the quantum sensor has a low sampling rate that is governed by
two features: the time required to produce a cloud of cold atoms; and the time that the atoms spend in
free fall. A larger size of the atom cloud and a longer time these atoms spend in free fall will result in a
better precision of the acceleration measurement. A trade-off therefore exists between the performance
of the sensor and the time between measurements. Some laboratories are exploring this trade-off to
enable sample rates of up to 330 Hz (Butts et al., 2011; McGuinness et al., 2012).

The second challenge the sensor faces is a low dynamic range. Let 𝑇 be half the total interrogation
time of the sensor, which is equivalent to half the time of flight for the atoms. For a constant acceleration
𝑎, the phase shift between the two atom clouds is (Peters et al., 2001)

�𝜙 = 𝑘eff𝑎𝑇
2, (2.1)

where the effective wavenumber is 𝑘eff ≈ 4𝜋/𝜆 and 𝜆 is the wavelength of the laser. This phase shift is
measured by the cold atom accelerometer as

𝑆 = 𝑁 sin(𝑘eff𝑎𝑇
2 + 𝜙0), (2.2)

where 𝑁 is the number of atoms in the atomic cloud and 𝜙0 is the initial phase. Given 𝑆, an acceleration
measurement is thus obtained by inverting Equation (2.2). However, although a single acceleration 𝑎
uniquely determines 𝑆, the reverse is not true; a given 𝑆 can be obtained from distinct accelerations 𝑎.
Figure 1 illustrates the relationship in Equation (2.2) with 𝑁 = 1,000 atoms, 𝜆 = 780 nm, 𝑇 = 1 ms and
a laser pulse width of 𝜏 = 1 𝜇s.1 We see that once the acceleration exceeds ±0·05 m s−1, an ambiguity
occurs, and multiple accelerations map to the same 𝑆/𝑁 value indicated by the black dashed line.

In this work, we are interested in unwrapping the phase of the accelerometer output 𝑆 to identify
the underlying acceleration 𝑎. In Section 3, we introduce an algorithm that performs this unwrapping
by fusing a classical sensor with a quantum sensor. The resulting algorithm overcomes both the low
sampling rate and low dynamic range challenges exhibited by the quantum sensor.

3. Phase unwrapping by data fusion

In this section, we introduce our approach to unwrapping the phase of the quantum accelerometer via
fusion with a classical accelerometer.2 We assume that the classical accelerometer is perfectly aligned
with the quantum accelerometer. Based on Equation (2.2), we can write a complete noise-free quantum
accelerometer measurement model as follows (Bonnin et al., 2018):

𝑎 = 𝑓 (𝑆, 𝑠, 𝑛)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝑠

𝑘eff𝑇2

[
arcsin

(
𝑆

𝑁

)
+ 2𝑛𝜋 + 𝜙0

]
, 𝑠 = 1;

𝑠

𝑘eff𝑇2

[
arcsin

(
𝑆

𝑁

)
− (2𝑛 + 1)𝜋 − 𝜙0

]
, 𝑠 = −1,

(3.1)

1𝜏 is the pulse width of the beam splitter in the Mach–Zehnder interferometer. Ideally, Equation (2.1) holds if 𝜏 � 𝑇 .
2This assumption may never hold for a real system. Nevertheless, the misalignment angles can be estimated and used to correct the system via

Kalman filters.
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Figure 1. Normalised output signal (𝑆/𝑁) of the quantum accelerometer as a function of input 𝑎. An
output signal (black dashed line) corresponds with multiple acceleration values as indicated by blue
circles and dark green boxes, which may be the underlying acceleration measured.

where 𝑠 = ±1 is the sign function and 𝑛 ∈ Z is an integer. In the presence of shot noise, to a good
approximation, this gives a signal model of the form (Close et al., 2019)

𝑎𝑞 = 𝑓 (𝑆, 𝑠, 𝑛) + 𝜈𝑞 , (3.2)

where 𝜈𝑞 ∼ N(0, 𝜎2
𝑞), N(𝑎, 𝑏) stands for a Gaussian distribution with mean 𝑎, variance 𝑏 and 𝜎𝑞 = 1/

(𝑘eff𝑇
2√𝑁) signifies the measurement noise dominated by shot noise which is consistent with the

experimental result reported by Cheinet et al. (2008). Note that the two solution sets to Equation (3.1)
are indicated by the green and blue circles in Figure 1. Accordingly, to obtain the unwrapped acceleration,
we need to determine which equation to use and estimate the integer 𝑛.

We solve this dual estimation problem through fusion with a classical accelerometer. Our fusion
algorithm is based on the maximum likelihood estimation and comprises two steps. First, using the
classical specific force measurement 𝑎𝑐 and the output of the cold atom sensor 𝑆, a rough estimate of 𝑛
is obtained by inverting Equation (3.1) as follows:

�̂�1 =
𝑘eff𝑇

2

2𝜋
𝑎𝑐 − 1

2𝜋

(
arcsin

(
𝑆

𝑁

)
− 𝜙0

)
, (3.3a)

�̂�2 =
𝑘eff𝑇

2

2𝜋
𝑎𝑐 + 1

2𝜋

(
arcsin

(
𝑆

𝑁

)
− 𝜙0

)
− 1

2
. (3.3b)

Note that �̂�1 and �̂�2 are rounded to the nearest integer. Second, the ambiguity-corrected quantum
acceleration 𝑎𝑞 is obtained by evaluating Equation (3.1) for a finite set of integers centred around �̂�1
and �̂�2, and choosing the specific force value closest to 𝑎𝑐 in the maximum likelihood sense. The initial
phase 𝜙0 is a known constant determined by the hardware configuration. For simplicity, unless stated
otherwise, we shall henceforth assume that 𝜙0 = 0. It is worth mentioning that a poor signal sensitivity
with respect to the underlying acceleration occurs near the peaks of the sinusoid (see Figure 1), which
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may lead large estimation error in Equation (3.3), and we will discuss this more toward the end of
Section 4.

While the phase unwrapping using data from a classical accelerometer provides the fusion output
of quantum grade accuracy, the data are only available at the sampling rate of quantum accelerometer,
which is much lower than that of a high-end classical accelerometer. One way to solve this problem
and obtain quantum grade data at the rate of classical data is to estimate the slow varying bias term
by filtering, which is observable from the fusion output data. In this work, a simple error state Kalman
filter is used for estimating the bias of classical accelerometer data. The fusion process at time 𝑡𝑘 , based
on a maximum likelihood estimation approach, is specifically given by the following steps.

1. Input: 𝑎𝑐 (𝑘) from classical accelerometer; 𝑆𝑘 from quantum accelerometer.
2. Maximum likelihood method for parameter estimation:

(𝑛𝑜𝑘 , 𝑠𝑜𝑘 ) = arg max
𝑛𝑘 ∈Z,𝑠𝑘±1

𝑝(𝑎𝑞 (𝑘) | 𝑆𝑘 , 𝑎𝑐 (𝑘)), (3.4)

where, following Equation (3.3),

𝑛𝑜𝑘 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝑘eff𝑇
2

2𝜋
𝑎𝑐 (𝑘) − 1

2𝜋
arcsin

(
𝑆𝑘
𝑁

)
, 𝑠𝑜𝑘 = 1;

𝑘eff𝑇
2

2𝜋
𝑎𝑐 (𝑘) + 1

2𝜋
arcsin

(
𝑆𝑘
𝑁

)
− 1

2
, 𝑠𝑜𝑘 = −1.

3. Estimate 𝑎 𝑓 (𝑘) using Equation (3.1), the ambiguity-corrected quantum acceleration output as
shown in Figure 2, given 𝑆𝑘 and 𝑛𝑜𝑘 and 𝑠𝑜𝑘 . Its conditional distribution is

𝑎𝑞 (𝑘) | 𝑆𝑘 , 𝑛𝑜𝑘 , 𝑠𝑜𝑘 ∼ N(𝑎𝑞 (𝑘), 𝜎2
𝑞),

where 𝜎𝑞 = 1/(𝑘eff𝑇
2√𝑁).

4. Estimate measurement bias �̂�(𝑘) from 𝑎𝑐 (𝑘). As shown in Figure 2, a simple error state Kalman
filter (Groves, 2008) is adopted to estimate the bias of 𝑎𝑐 (𝑘) based on the ambiguity-corrected
quantum acceleration output 𝑎𝑞 , which serves as the filtering measurement, at the sampling rate of
quantum accelerometer.

5. The final fusion output 𝑎out (𝑘) is given by

𝑎out (𝑘) = 𝑎𝑐 (𝑘) − �̂�(𝑘). (3.5)

Figure 2 illustrates the above procedure based on the simulation scenario where the classical
accelerometer sampling frequency is 200 Hz and quantum accelerometer sampling frequency is 1 Hz.

We now evaluate the performance of the proposed algorithm via Monte Carlo simulations under
the condition that the dynamic range of ground truth acceleration is well beyond that of the quantum
accelerometer but within that of the classical accelerometer (though this is impossible in practice). At
each run, the data of ground truth acceleration are drawn from a uniform distribution. The following
configuration for the cold atom sensor is used: 𝑁 = 10,000 atoms, 𝑇 = 1 ms half interrogation time,
𝜏 = 1 µs beam splitter pulse width of the laser and a laser wavelength of 𝜆 = 780 nm.

We assume that the output 𝑎𝑐 of the classical accelerometer at 𝑡 can be expressed as (Titterton and
Weston, 2004):

𝑎𝑐 (𝑡) = 𝑎(𝑡) + 𝑏(𝑡) + 𝑤(𝑡), (3.6)

where 𝑎(𝑡) signifies the true specific force, 𝑏(𝑡) represents measurement bias which is the sum of a
constant bias term and a random bias term, the latter is modelled as a first-order Gauss–Markov process
with time constant 𝜏𝑎, and 𝑤(𝑡) represents the random errors associated with the sensor. Note that for
this simulation, 𝑏(𝑡) may also include the accelerometer scale-factor error which has the effect similar
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Figure 2. Fusion of classical accelerometer and quantum accelerometer. Errors of the classical
accelerometer are corrected using low rate quantum accelerometer measurements after ambiguity cor-
rection. The estimated (slow varying) bias term �̂� of the classical accelerometer reading is obtained
using an error state Kalman filter whose measurement is the signal difference 𝑎𝑐 − 𝑎𝑞 .

to that of bias error, except that the error term increases as the input acceleration increases. In the
simulation, both the constant bias and the standard deviation of random bias are set to 1 × 10−3 m s−2,
and the time constant is 𝜏𝑎 = 2,000 s, which is equivalent to the bias of a high-end tactical grade sensor
(Chow, 2011). The random error of the accelerometer is assumed to be a zero-mean Gaussian random
variable (Quinchia et al., 2013), i.e.

𝑤(𝑡) ∼ N (0, 𝜎2
𝑐 ), (3.7)

where 𝜎𝑐 = 1·4 × 10−3 m s−2 is the standard deviation.
The error statistics for this evaluation are shown in Figures 3 and 4, based on 10,000 Monte

Carlo simulations. These histograms show the error between the ambiguity-corrected quantum accel-
eration estimate 𝑎𝑞 and the original classical measurement 𝑎𝑐 for two situations: the cold atom
sensor with shot noise corruption (blue) and without (orange). In Figure 3, the classical accelera-
tion is drawn from U(−10 m s−2, 10 m s−2) whereas in Figure 4, the measurement is drawn from
U(−1,000 m s−2, 1,000 m s−2). We observe that the main contribution to the fusion error spread without
shot noise (orange) is the nonlinear sensitivity of the mapping between the sensor output signal and the
underlying acceleration in the low input dynamical acceleration range. We also observe that the spread
of the fusion errors increases as the input acceleration dynamical range increases, because the maximum
likelihood estimator error increases since the likelihood from Equation (3.4) becomes flat. This error is
discussed further in Section 4.

In the next section, we demonstrate the performance of our fusion approach using simulations of a
one-dimensional inertial navigation scenario.

4. Navigation simulation results

In this section, we evaluate the performance of the proposed fusion algorithm in the context of inertial
navigation via Monte Carlo simulations. Practically, there are many error sources including those due
to gravity, rotation of the earth and imperfect inertial sensors which will contribute to the acceleration,
velocity and position errors of an inertial navigation system on a moving vehicle (Braasch, 2015). To
concentrate on the accelerometer performance comparison, we will consider a one-dimensional inertial
navigation case where the vehicle is on a perfectly flat, perfectly straight track and only the accelerometer
is needed. Real examples of this are the rocket sleds which are used for testing equipment and various
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Figure 3. Fusion error statistics (𝑎𝑞 − 𝑎𝑐) from 10,000 Monte Carlo runs for 𝑎 drawn from
U(−10 m s−2, 10 m s−2) in the presence (blue) and absence (orange) of shot noise.

Figure 4. Fusion error statistics (𝑎𝑞 − 𝑎𝑐) via 10,000 Monte Carlo runs for 𝑎 drawn from
U(−1,000 m s−2, 1,000 ms−2) in the presence (blue) and absence (orange) of shot noise. This graph
shows that for high input acceleration magnitude from the classical accelerometer, the fusion error dis-
tribution is dominated by the algorithm nonlinear sensitivity. Compared with Figure 3, the fusion error
spread increases with the input acceleration dynamical range.
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Figure 5. Comparison of specific force values between classical, quantum, fusion and ground truth in
a single run. Apart from the quantum accelerometer output which is indicated in green, the other three
are overlapped in this figure. We highlight the RMS error difference between the classical and fusion in
Figure 6.

sensors. We idealise such a sled that moves in one dimension by assuming that the accelerometer
is mounted in parallel to the track and ignoring sway and vibration, so that velocity is the result of
integrating the specific force once and the distance along the track is obtained from an additional
integration. Note that this is not a realistic scenario as even a nominally horizontal accelerometer will
exhibit some sensitivity to the gravity reaction which we ignored here.

As shown in Figure 2, the system consists of a classical accelerometer and a quantum accelerometer.
The initial position and velocity of the vehicle are set to zero. At each run, the underlying body
specific force is randomly generated (a single realisation is shown in Figure 5), and its spectrum
follows a zero-mean Gaussian distribution 𝑎 ∼ N(0, 𝜎2

𝑎) with standard deviation 𝜎𝑎 = 1 m s−2. For
the classical accelerometer, the standard deviation of measurement noise is 𝜎𝑞 = 1·4 × 10−3 m s−2

and both the constant bias and the standard deviation of random bias in 𝑏(𝑡) are 1 × 10−3 m s−2. For
the quantum accelerometer, we assume that its measurement noise is dominated by shot noise with
distribution 𝑣 𝑓 ∼ N(0, 𝜎2

𝑠 ), where𝜎𝑠 = 1/(𝑘eff𝑇
2
𝑝𝑖

√
𝑁), where the effective wavenumber is 𝑘eff = 4𝜋/𝜆,

𝜆 = 780 nm, the half interrogation time 𝑇 = 1 ms, the duration of the laser beam splitter is assumed to be
𝜏 = 1 × 10−6 s and the average number of atoms per shot is 𝑁 = 10,000. Based on these parameters, we
have 𝜎𝑠 = 3·1× 10−4 m s−2 (note that the noise level is larger than the achievable value of 3× 10−8 m s−2

mentioned by Jekeli, 2005; Cheiney et al., 2019). The sampling rate of the classical accelerometer is
200 Hz, while the quantum accelerometer is set at 1 Hz.

In this special inertial navigation scenario, we examine two cases. In the first, the computed inertial
navigation is driven by the output of the classical accelerometer alone, and in the second, navigation
is driven by the fusion of the classical with the quantum following the proposed fusion procedure, as
illustrated in Figure 2. We compare the inertial navigation performance of the two cases in terms of
root-mean-squared (RMS) errors.

Figure 5 shows a comparison of the estimated and ground truth acceleration values over 1,000 s.
Although they are largely overlapped, the curves inside the blue and green boxes are enlarged to
highlight their differences. We see from the figure that the measurement of the quantum accelerometer
(green curve) cannot follow the ground truth acceleration caused by the signal with wrapped phases.
However, our proposed fusion process extends the dynamic range of the quantum accelerometer, and the
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Figure 6. RMS errors of specific forces versus time averaged over 1,000 runs. The equivalent standard
deviation of white noise on the quantum accelerometer used in this simulation is 3·1 × 10−4 m s−2, and
on the classical accelerometer is 2 × 10−3 m s−2.

Figure 7. RMS velocity errors versus time in the inertial navigation experiment averaged over 1,000
runs.

output fusion signal (𝑎out) yields a smaller error than that of the classical accelerometer. The RMS error
difference between classical (𝑎𝑐) and fusion (𝑎out) specific force measurements with respect to ground
truth are illustrated in Figure 6, which is computed from 1,000 Monte Carlo runs driven by a random
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Figure 8. RMS position errors versus time in the inertial navigation experiment averaged over 1,000
runs.

acceleration profile. It shows that the proposed fusion process shown in Figure 2 is able to eliminate
the bias and drift of the classical accelerometer by fusing ambiguity-corrected quantum accelerometer
output.

The statistical results on the RMS velocity and position errors are shown in Figures 7 and 8,
respectively. These results demonstrate a substantial improvement in velocity and position error perfor-
mances in the inertial navigation scenario through the proposed fusion process over using the classical
accelerometer alone.

Nevertheless, our experiments show that the fused acceleration error exists, and it increases with the
scale of the underlying body specific force (see Figures 3 and 4). One major contribution to the fusion
errors is from the mapping between the output signal 𝑆 of the quantum accelerometer and the ambiguity-
corrected quantum acceleration 𝑎𝑞 , which presents different sensitivities due to the nonlinear nature of
the sine function. Reading 𝑎𝑞 from the linear part of the sine function in 𝑆 can address the problem.
This was shown by Bonnin et al. (2018), who used two orthogonal phased quantum accelerometers to
remove the nonlinear sensitivity problem of the quantum accelerometer.

As shown in Figure 9 – a normalised plot for the expected output signal versus the value of acceleration
– we assume that two ‘exactly orthogonal phased’ quantum accelerometers are available for the fusion
process. At this stage, we assume that the output switching between the two quantum sensors is
determined by selecting the normalised signal output which satisfies 𝑆 < 𝑁

√
2/2, and that there is

no switching error in the simulation. Enhanced error performances are observed from the simulation
results similar to those shown in Figures 6 and 8 for the two orthogonal phased quantum accelerometer
configurations. In addition, it is observed that the fusion error spread shown in Figure 3 is reduced by
half with an orthogonal phased quantum accelerometer configuration.

It is worth mentioning that the errors of an inertial navigation system depend on many factors, and
improving the performance of the accelerometers simply leads to other error sources dominating the
inertial navigation performance, including gyro errors (Groves, 2008), gravity-modelling errors (Jekeli,
2012), sensor misalignment, bandwidth limitations and positive feedback of height errors through the
gravity model (Titterton and Weston, 2004).
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Figure 9. Illustration of the normalised output signals of two orthogonal phased quantum accelerom-
eters versus acceleration. The bold curve highlights the parts of linear sensitivity from the two sensors
across the acceleration range, with 𝜙1 = 0 (red) and 𝜙2 = 𝜋/2 (blue).

As ongoing research, we will continue our investigation along these lines for handling phase noise
between the two orthogonal-phased quantum accelerometers, and simulating an adaptive phase-locked
loop implementation for inertial navigation systems of predictable accelerations.

5. Conclusions

This paper proposes a fusion method that extends the dynamic range of a quantum accelerometer
by unwrapping the signal phase of the quantum accelerometer output from the reading of a classical
accelerometer using a maximum likelihood estimator. Consequently, the accumulative drift of the
classical accelerometer is estimated using the output of the fusion process and is removed from the
system output. The fusion algorithm enables the classical sensor to gain a substantially reduced drift
over a dead reckoning navigation process. Promising performance is observed in the simulation results
presented.
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