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Abstract In this paper we study the spaces of operator-Lipschitz functions and the spaces of functions
closed to them: commutator bounded. Apart from the standard operator norm on B(H), we consider
a rich variety of symmetric operator norms and spaces of operator-Lipschitz functions with respect to
these norms. Our approach is aimed at the investigation of the interrelation and hierarchy of these spaces
and of the intrinsic properties of operator-Lipschitz functions.
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1. Introduction

This paper studies the spaces of operator-Lipschitz functions and some functional spaces
close to them.

Let (B(H), ‖ · ‖) be the algebra of all bounded operators on a Hilbert space H. Any
bounded, Borel function g on a set α ⊆ R defines, via the Spectral theorem, a map
A → g(A) from the set of all self-adjoint operators with spectrum in α into B(H). Various
smoothness conditions when imposed on this map characterize interesting and important
classes of operator-smooth functions. For example, the condition that the map A → g(A)
is Gateaux differentiable defines the class of Gateaux operator-differentiable functions;
the condition that the map is Lipschitzian defines the class of operator-Lipschitz func-
tions. If, apart from the standard norm on B(H), one considers other unitarily invariant
operator norms and the classes of operator-differentiable and operator-Lipschitz func-
tions with respect to these norms, then a rich variety of functional spaces arises. New
interesting features of the theory also arise if functions are considered on subsets α of C
and applied to normal operators with spectrum in α. Thus the operator theory suggests
its own scale of smoothness of functions and defines naturally new functional spaces.
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Much work has been done to relate the ‘operator’ smoothness of functions to the tra-
ditional ‘scalar’ smoothness conditions. Following the paper of Daletskii and Krein [6],
there have been significant articles by Birman and Solomyak [2, 3], Davies [7], Far-
forovskaya [8,9] and others in which the authors investigated the smoothness of operator-
differentiable and operator-Lipschitz functions. This work culminated in the result of
Peller [20] which placed the class of operator-differentiable functions on [a, b] between
two Besov spaces B1

∞1(a, b) and B1
11(a, b). Later Arazy et al . [1] constructed another func-

tional space, wider than B1
∞1(a, b), contained in the class of all operator-differentiable

functions.
Substantial and intriguing similarities between various properties of Gateaux operator-

differentiable functions, of operator-Lipschitz functions and of the functions acting
on differentiable operator algebras (on the domains of unbounded derivations of C∗-
algebras first of all) point to a close and deep link between these classes of functions
(see [1,4,5,12,15,18,19]). In the course of trying to understand these similarities, we
have come to realize the necessity for a more systematic investigation of various spaces of
‘operator’ smooth functions, not only in the sense of their relation to the classical func-
tion spaces (in this respect the results of [1] and [20] could hardly be improved upon)
but in the sense of their intrinsic properties, interrelation and hierarchy. In [15] we
investigated properties of operator-differentiable functions and their link with operator-
Lipschitz functions. In this paper we study operator-Lipschitz functions and functions
close to them: commutator bounded. In [16] we continue to study various properties of
operator-Lipschitz and commutator-bounded functions and consider also another class
of operator-smooth functions: operator-stable functions.

We proceed now with a description of the results of the paper. Let C(H) be the ideal
of all compact operators and let F be the ideal of all finite-rank operators in B(H). A
two-sided ideal J of B(H) is symmetrically normed (see [10]) if it is a Banach space with
respect to a norm ‖ · ‖J ,

‖AXB‖J � ‖A‖‖X‖J‖B‖ for A, B ∈ B(H) and X ∈ J, (1.1)

and ‖X‖J = ‖X‖ for rank-one operators. It is a ∗-ideal and, by the Calkin theorem,
F ⊆ J ⊆ C(H). If X ∈ J and U is an isometry (U∗U = 1), then (see [10])

‖X‖ � ‖X‖J = ‖X∗‖J and ‖UX‖J = ‖XU∗‖J = ‖X‖J . (1.2)

We denote B(H) by Sb.
Throughout the paper we denote by α a compact set in C and by Jnor(α) the set of

all normal operators in J with spectrum in α:

Jnor(α) = {A ∈ J : A is normal, Sp(A) ⊆ α}.

A continuous function g on α acts on an symmetric norming (s.n.) ideal J if

g(A) ∈ J for all A ∈ Jnor(α). (1.3)
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Definition 1.1. Let J be an s.n. ideal or Sb. A continuous function g on α is operator
J-Lipschitzian on α if the map A → g(A) is Lipschitzian on Jnor(α): there is D > 0 such
that, for all A, B ∈ Jnor(α),

g(A) − g(B) ∈ J and ‖g(A) − g(B)‖J � D‖A − B‖J . (1.4)

We denote by J- Lip(α) the space of all J-Lipschitz functions on α.

More briefly, we will call such functions J-Lipschitzian and write operator Lipschitzian
instead of Sb-Lipschitzian.

The following notion of commutator J-bounded functions has no ‘scalar’ analogues; its
relation to the notion of J-Lipschitz functions is one of the central topics of this paper.

Definition 1.2. A continuous function g is called commutator J-bounded on α if
there is D > 0 such that, for A ∈ Jnor(α) and X ∈ B(H),

g(A)X − Xg(A) ∈ J and ‖g(A)X − Xg(A)‖J � D‖AX − XA‖J . (1.5)

We denote by J- CB(α) the space of all commutator J-bounded functions on α.

In Theorem 3.5 we establish that, for separable ideals and for their duals, a function
is J-Lipschitzian if (1.4) holds for all finite-rank operators. Theorem 3.5 also shows that
the space J- Lip(α) always contains the space J- CB(α). For some sets α (we call them
J-Fuglede) these spaces coincide. For example, all compact sets in R are J-Fuglede for all
ideals J (for Schatten ideals this was observed earlier by Davies in [7]). The possibility
of reducing the study of J-Lipschitz functions to the study of commutator J-bounded
functions is very important, since it enables us to use the powerful techniques of the
interpolation theory to compare the spaces J- Lip(α) for different ideals.

Johnson and Williams [11] proved that commutator Sb-bounded functions are dif-
ferentiable. Farforovskaya established in [8] that the continuous differentiability is not
sufficient for a function to be commutator Sb-bounded. Williams in [24] asked whether
commutator Sb-bounded functions are always continuously differentiable. The authors
gave a negative answer to this question in [14] and constructed a commutator Sb-bounded
function on the unit disc of C whose derivative is discontinuous at z = 1. In Theorem 3.8
below we show that on each segment [−a, b], a, b > 0, in R there are commutator Sb-
bounded functions with discontinuous derivative at t = 0. This, in particular, implies
that the space of operator-differentiable functions on [−a, b] (which are all continuously
differentiable) is distinct from the space of operator-Lipschitz functions. For separable
ideals J , however, the spaces of operator J-Lipschitz and of Gateaux J-differentiable
functions do coincide [15].

In § 4 we study J-Fuglede sets. It appears that α is J-Fuglede if and only if the function
h(z) = z̄ is commutator bounded, that is, if there is D > 0 such that,

‖[A∗, X]‖J � D‖[A, X]‖J for all A ∈ Jnor(α) and X ∈ S
b.

We show that an Sb-Fuglede set in C has empty interior. Moreover, it is ‘smooth’: it
must have a ‘tangent’ at each non-isolated point. As a sufficient condition we obtain that
compact subsets of twice-differentiable curves are J-Fuglede for all J .
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In § 5 we use Hadamard multipliers to compare the spaces J- CB(α) for various ideals
J . We prove that the spaces S1- CB(α), S∞- CB(α) and Sb- CB(α) coincide and that
the space S2- CB(α) consists of all functions on α that are Lipschitz in the usual sense.
We use these results in [16] to establish that Sp- CB(α) ⊆ Sq- CB(α), for

min
(

p,
p

p − 1

)
� q � max

(
p,

p

p − 1

)
,

and to extend inequalities (1.4) and (1.5) to all normal A, B ∈ B(H), thereby generalizing
the result of Kittaneh [17], who considered the case J = S2.

2. Preliminaries

We will briefly discuss some properties of s.n. ideals (for full discussion see [10]). Let c0

be the space of all sequences of real numbers converging to 0, let ĉ be the subspace of c0 of
sequences with a finite number of non-zero elements, and let Φ be the set of all symmetric
norming (s.n.) functions on ĉ. Given ξ = {ξi} ∈ c0, set ξ(n) = {ξ1, . . . , ξn, 0, . . . }. Then all
ξ(n) ∈ ĉ. For each φ ∈ Φ, the sequence φ(ξ(n)) does not decrease. Set φ(ξ) = lim φ(ξ(n))
and cφ = {ξ ∈ c0 : φ(ξ) < ∞}.

For A ∈ C(H), let s(A) = {si(A)} be the non-increasing sequence of all eigenvalues of
(A∗A)1/2 repeated according to multiplicity. For φ ∈ Φ, the set J = Jφ = {A ∈ C(H) :
s(A) ∈ cφ} with norm ‖A‖J = φ(s(A)) is an s.n. ideal. The closure Jφ

0 of F in ‖ · ‖J is
a separable s.n. ideal and Jφ

0 ⊆ Jφ. An s.n. ideal is separable if and only if it coincides
with some Jφ

0 .
For many s.n. functions φ, the ideals Jφ and Jφ

0 coincide. An important class of such
functions consists of the functions

φp(ξ) =
( ∑

|ξi|p
)1/p

, for 1 � p < ∞, and φ∞(ξ) = sup |ξi|.

The corresponding ideals Sp with norms ‖ · ‖p are Schatten ideals and S∞ = C(H).
For φ ∈ Φ, there is the adjoint function φ∗ such that the ideal Jφ∗

is isomorphic to the
dual space of Jφ

0 : any bounded functional on Jφ
0 has the form

F (X) = Tr(XT ) = Tr(TX), where T ∈ Jφ∗
and ‖F‖ = ‖T‖Jφ∗ . (2.1)

For p ∈ [1,∞], let p′ be the conjugate exponent:

1
p

+
1
p′ = 1 if 1 < p < ∞; p′ = 1 if p = ∞; p′ = b if p = 1. (2.2)

Then φp′ = (φp)∗, so Sp′
is isometrically isomorphic to the dual space of Sp.

Remark 2.1. Our definitions of J-Lipschitz and commutator J-bounded functions
depend (at least formally) on the choice of the Hilbert space. Let us clarify this depen-
dence.
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(i) Any isometry V between Hilbert spaces H and K establishes a bijection between
s.n. ideals of B(H) and B(K). This bijection does not depend on V , so we may
use the same symbol to denote s.n. ideals in different Hilbert spaces. Since the
sequences s(A) and s(V AV ∗) always coincide, the fact that J is Jφ or Jφ

0 does not
depend on the underlying Hilbert space. We write J(H) if we need to underline
that J is an s.n. ideal of B(H).

Moreover, for an operator T ∈ B(H, K) we write T ∈ J when (T ∗T )1/2 ∈ J .

(ii) For a non-separable Hilbert space H, the map A → g(A) is Lipschitzian if and
only if its restriction to operators acting on any (some) separable subspace of H is
Lipschitzian. Thus we may restrict our study to separable Hilbert spaces.

(iii) For finite-dimensional H, every ideal J coincides with B(H) but has a different
norm, so J(H) denotes the algebra B(H) endowed with ‖ · ‖J . There is φ ∈ Φ such
that the norms ‖ · ‖J and ‖ · ‖Jφ coincide.

(iv) When we say that a certain statement holds for an ideal J we mean that it holds
for all ideals J(K) with the same norm ‖ · ‖J in all infinite-dimensional and finite-
dimensional spaces K (see (i) and (iii)).

If 0 /∈ α and J �= B(H), then the statement ‘g ∈ J- Lip(α)’ means that (1.4) holds
for normal operators acting on finite-dimensional spaces with spectra in α.

(v) Let P be the projection on a subspace L of H. Then JL = {A ∈ J : A = PAP} is
a Banach ∗-subalgebra of J . The map JL � A → A|L is an isometric isomorphism
from JL onto J(L).

(vi) Let K be the sum of n copies of H. Any A ∈ J(K) can be represented as a
block matrix A = (Aij) with all entries from J . If n < ∞, J(K) consists of all such
matrices. If all Aij = 0, apart from some Akm, then ‖A‖J(K) = ‖Akm‖J .

3. Operator Lipschitz functions

Recall that a function g on α ⊂ C is Lipschitzian at s ∈ α if there is D > 0 such that
|g(t) − g(s)| � D|t − s| for t ∈ α; it is Lipschitzian on α if this inequality holds for all
t, s ∈ α.

An operator A is diagonalizable if there is an orthonormal basis {en} in H such that
Aen = λnen for all n. If the basis is understood, we say that A is diagonal and write
A = diag(λ1, . . . , λn, . . . ).

Lemma 3.1. Let g be a continuous function on α ⊂ C. If g(0) = 0 and g is Lipschitzian
at t = 0, then g acts on every s.n. ideal J (see (1.3)).

Proof. If A ∈ Jnor(α), then A = diag(t1, . . . , tn, . . . ), where tn ∈ α, tn → 0. Since g

is Lipschitzian at 0, g(t) = th(t) and h is a bounded function. Hence g(A) = Ah(A) and
h(A) = diag(h(t1), . . . , h(tn), . . . ) ∈ B(H), so g(A) ∈ J . �
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If g is Lipschitzian at t = 0 and g(0) �= 0, the function f(t) = g(t) − g(0) acts on J :

f(A) = g(A) − g(0)1 ∈ J for A ∈ Jnor(α). (3.1)

Every J-Lipschitz function g, where J is an s.n. ideal or Sb, is Lipschitzian in the usual
sense. Indeed, if Q is a rank-one projection, then ‖Q‖J = 1 and, for t, s ∈ α,

|g(t) − g(s)| = ‖(g(t) − g(s))Q‖J = ‖g(tQ) − g(sQ)‖J � D‖tQ − sQ‖J = D|t − s|.

Example 3.2.

(i) Let g be a continuous function on C with Fourier transform ĝ(u). If∫
C

|ĝ(u)u| du < ∞, (3.2)

where u = t + is and du = dt ds, then g is J-Lipschitzian on any compact in C
for every s.n. ideal J and for J = Sb. In particular, if g has continuous third-order
partial derivatives, then g is J-Lipschitzian.

(ii) Let g be a continuous function on R with Fourier transform ĝ. If∫
R

|ĝ(t)t| dt < ∞, (3.3)

then g is J-Lipschitzian on any compact in R for every s.n. ideal J and for J = Sb.
In particular, if g has a continuous second derivative, it is J-Lipschitzian.

Proof. Let A be a normal operator with Sp(A) ⊆ α ⊆ supp(g). Then A = A1 + iA2,
where A1, A2 are self-adjoint, commuting operators and

g(A) =
1

(2π)2

∫
C

ĝ(u)e−i(tA1+sA2) du.

For self-adjoint R, T ∈ B(H) and s ∈ R, we have (see [7]) that

‖eisR − eisT ‖J =
∥∥∥∥

∫ s

0
eiτR(R − T )ei(s−τ)T dτ

∥∥∥∥
J

�
∫ s

0
‖eiτR‖‖R − T‖J‖ei(s−τ)T ‖ dτ

= ‖R − T‖J |s|.

Therefore, by (1.1), for normal B = B1 + iB2 with Sp(B) ⊆ α and A − B ∈ J ,

‖e−i(tA1+sA2) − e−i(tB1+sB2)‖J

� ‖e−itA1 − e−itB1‖J‖e−isA2‖ + ‖e−itB1‖‖e−isA2 − e−isB2‖J

� ‖A1 − B1‖J |t| + ‖A2 − B2‖J |s|
� 2|u|‖A − B‖J .

https://doi.org/10.1017/S0013091503000178 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091503000178


Classes of operator-smooth functions. I 157

Hence

‖g(A) − g(B)‖J � 1
(2π)2

∫
C

|ĝ(u)|‖e−i(tA1+sA2) − e−i(tB1+sB2)‖J du

� 2
(2π)2

‖A − B‖J

∫
C

|ĝ(u)u| du.

Part (i) is proved. Similarly, one can prove part (ii). �

In fact, we proved a stronger result: if g satisfies (3.2), then condition (1.4) holds for
all normal A, B with spectra in α (not necessarily from Jnor(α)) such that A − B ∈ J .
We will show in [16] that, for a wide class of ideals J , all J-Lipschitz functions have this
property.

We write Xn
sot−−→ X if operators Xn in B(H) converge to X in the strong operator

topology. To proceed further we need two auxiliary results. The first follows from Theo-
rem III.5.1 of [10].

Lemma 3.3. Let J be Jφ or Sb. If B(H) � Xn
sot−−→ 1 and ‖Xn‖ � 1, then, for each

A ∈ J ,
‖A‖J = lim ‖XnAXn‖J = lim ‖AXn‖J = lim ‖XnA‖J .

Recall that F denotes the set of all finite-rank operators. Let

Fnor(α) = {A ∈ F : A is normal and Sp(A) ⊆ α}.

We write [A, B] for the commutator AB − BA.

Proposition 3.4. Let J be an s.n. ideal or Sb and let g be a continuous function on
α. Suppose that there is D > 0 such that, for A ∈ Fnor(α) and X ∈ F ,

‖[g(A), X]‖J � D‖[A, X]‖J . (3.4)

(i) If J is Jφ or Sb, then [g(A), X] ∈ J and (3.4) holds for all X ∈ B(H) and all
diagonalizable A ∈ B(H) with Sp(A) ⊆ α such that [A, X] ∈ J .

(ii) Let J = Jφ
0 . Then [g(A), X] ∈ J and (3.4) holds for all X ∈ B(H) and A ∈ Jnor(α).

(iii) If J is Jφ
0 , or Jφ or Sb, then (3.4) holds for all X ∈ J and all normal A with

Sp(A) ⊆ α.

Proof. Let A be a diagonalizable operator with Sp(A) ⊆ α. Let finite-dimensional
projections {Qn} commute with A and Qn

sot−−→ 1. Then QnA ∈ Fnor(α). For X ∈ B(H),
QnXQn ∈ F and, by (3.4),

‖g(QnA)QnXQn − QnXQng(QnA)‖J � D‖(QnA)QnXQn − QnXQn(QnA)‖J .

The projections Qn commute with g(A) and g(QnA) = Qng(A) + g(0)(1 − Qn). Hence

‖Qn[g(A), X]Qn‖J � D‖Qn[A, X]Qn‖J .
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Let [A, X] ∈ J . By Lemma 3.3, ‖[A, X]‖J = lim ‖Qn[A, X]Qn‖J . Therefore,

lim ‖Qn[g(A), X]Qn‖J � D‖[A, X]‖J . (3.5)

Let J = Jφ �= S∞. The operators Qn[g(A), X]Qn weakly converge to [g(A), X]. Hence
it follows from Theorem III.5.1 of [10] and (3.5) that [g(A), X] ∈ J and

‖[g(A), X]‖J � lim ‖Qn[g(A), X]Qn‖J � D‖[A, X]‖J .

If J is S∞ or Sb, we obtain from (3.5) and Lemma 3.3 that

‖[g(A), X]‖ = lim ‖Qn[g(A), X]Qn‖ � D‖[A, X]‖.

Moreover, if [A, X] ∈ S∞, then [P (A), X] ∈ S∞ for all polynomials P . Therefore,
[g(A), X] ∈ S∞. Part (i) is proved.

Let {en} be a basis in H and let Y be an operator on H such that Y e2 = e1 and
Y en = 0 for n �= 2. For t, s ∈ α, let A(t, s) = diag(t, s, 0, . . . ). By (3.4),

|g(t) − g(s)| = ‖[g(A(t, s)), Y ]‖J � D‖[A(t, s), Y ]‖J = D|t − s|.

Hence g is Lipschitzian on α. Let J = Jφ
0 and A ∈ Jnor(α). By (3.1), [g(A), X] ∈ J for

X ∈ B(H). Part (ii) follows from (i), since

‖[g(A), X]‖J = ‖[g(A), X]‖Jφ � ‖[A, X]‖Jφ = ‖[A, X]‖J .

Let A be normal. There are diagonal operators An commuting with A such that
Sp(An) ⊆ α and ‖A − An‖ → 0, as n → ∞. Let J be Jφ

0 , or Jφ or Sb, and let X ∈ J .
By (i), for all n,

‖[g(An), X]‖J = ‖[g(An), X]‖Jφ � D‖[An, X]‖Jφ = D‖[An, X]‖J .

Since ‖[A, X] − [An, X]‖J � 2‖A − An‖‖X‖J , we have ‖[An, X]‖J → ‖[A, X]‖J . Since g

is continuous, ‖g(A) − g(An)‖ → 0. Hence ‖[g(An), X]‖J → ‖[g(A), X]‖J . Thus

‖[g(A), X]‖J = lim ‖[g(An), X]‖J � D lim ‖[An, X]‖J = D‖[A, X]‖J ,

which completes the proof. �

The theorem below establishes that condition (3.4) can be considered as a linearization
of (1.4) and that a function is Jφ-Lipschitzian if it satisfies (1.4) for finite-rank operators.

Theorem 3.5. Let J be an s.n. ideal or Sb and let g be a continuous function on
α ⊂ C.

(I) The following conditions are equivalent:

(i) g is J-Lipschitzian on α;

(ii) there is D > 0 such that (3.4) holds for all A ∈ Jnor(α) and all X = X∗ ∈
B(H).
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(II) The following conditions are equivalent:

(i) there is D > 0 such that (1.4) holds for all A, B ∈ Fnor(α);

(ii) there is D > 0 such that (3.4) holds for all A ∈ Fnor(α) and all X = X∗ ∈ F .

(III) If J is Jφ
0 or Jφ or Sb, then (I) and (II) are equivalent.

Proof. (I) (i) ⇒ (I) (ii). Let A ∈ Jnor(α). For unitary U , Sp(UAU∗) = Sp(A) ⊆ α.
Since g(UAU∗) = Ug(A)U∗, we obtain from (1.2) and (1.4) that

‖[g(A), U ]‖J = ‖[g(A), U ]U∗‖J = ‖g(A) − Ug(A)U∗‖J

= ‖g(A) − g(UAU∗)‖J � D‖A − UAU∗‖J = D‖[A, U ]U∗‖J = D‖[A, U ]‖J .

Let X be self-adjoint. Then eitX is unitary and therefore

‖g(A)eitX − eitXg(A)‖J = ‖it[g(A), X] + O(t2)‖J

� D‖AeitX − eitXA‖J = D‖it[A, X] + O(t2)‖J ,

as t → 0. Dividing by t, we obtain that ‖[g(A), X]‖J � D‖[A, X]‖J .

(I) (ii) ⇒ (I) (i). Let A, B ∈ Jnor(α). The operator

L =

(
A 0
0 B

)

on H ⊕ H also belongs to Jnor(α) (see Remark 2.1). The operator

X =

(
0 1
1 0

)

on H ⊕ H is self-adjoint and unitary. Hence ‖[g(L), X]‖J � D‖[L, X]‖J . By (1.2),

‖[g(L), X]X‖J = ‖[g(L), X]‖J � D‖[L, X]‖J = D‖[L, X]X‖J .

Since

g(L) =

(
g(A) 0

0 g(B)

)
,

we have

[g(L), X]X =

(
g(A) − g(B) 0

0 g(B) − g(A)

)
and [L, X]X =

(
A − B 0

0 B − A

)
.

Therefore, it follows from Remark 2.1 that

‖g(A) − g(B)‖J � ‖[g(L), X]X‖J � D‖[L, X]X‖J � 2D‖A − B‖J .

The equivalence of (II) (i) and (II) (ii) can be proved similarly. Clearly, (I) implies (II).
If J is Jφ

0 , or Jφ or Sb, then, repeating the proof of parts (i) and (ii) of Proposition 3.6
for self-adjoint operators, we obtain that (II) implies (I). �
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Corollary 3.6. Let J be an s.n. ideal or Sb. Then

(i) J- CB(α) ⊆ J- Lip(α) for each α ⊂ C;

(ii) J- CB(α) = J- Lip(α) for each α ⊂ R.

Proof. Part (i) follows from Theorem 3.5 (I).
Let g ∈ J- Lip(α). By Theorem 3.5, there exists D > 0 such that ‖[g(A), X]‖J �

D‖[A, X]‖J for A ∈ Jnor(α) and X = X∗ ∈ B(H).
Let X = Y + iZ ∈ B(H), where Y = 1

2 (X + X∗), Z = − 1
2 i(X − X∗) are self-adjoint.

Then

‖[g(A), X]‖J � ‖[g(A), Y ]‖J + ‖[g(A), Z]‖J

� D(‖[A, Y ]‖J + ‖[A, Z]‖J)

� D(‖[A, X]‖J + ‖[A, X∗]‖J). (3.6)

Since α ⊂ R, A is self-adjoint, so ‖[A, X∗]‖J = ‖ − [A, X]∗‖
J

= ‖[A, X]‖J . Hence

‖[g(A), X]‖J � 2D‖[A, X]‖J .

Hence g ∈ J- CB(α), so J- CB(α) = J- Lip(α). �

For J = Sp, 1 < p < ∞, the above result was noticed by Davies in [7]. He also proved
that the spaces of Sp-Lipschitz functions on R contain non-differentiable functions, for
example, g(t) = |t|.

Johnson and Williams [11] showed that the functions on α ⊆ C, satisfying condi-
tion (3.4) for J = Sb, all A ∈ Sb

nor(α) and X ∈ B(H), are differentiable on α. Combining
this with Corollary 3.6 yields the following corollary.

Corollary 3.7. Any Sb-Lipschitz function on α ⊂ R is differentiable on α.

We will now show that there are Sb-Lipschitz functions on compacts in R with dis-
continuous derivative.

Theorem 3.8. On each infinite compact subset of R there are Sb-Lipschitz functions
which are not continuously differentiable.

Proof. To prove the theorem it suffices to show that the function

ϕ(0) = 0 and ϕ(t) = t2 sin
(

1
t

)
, for t �= 0,

is Sb-Lipschitzian on all segments [−n, n] and, hence, on all infinite compacts in R.
Let A = A∗. First assume that Sp(A) ⊆ [−n, −ε]∪[ε, n] for some ε > 0. Then ‖A‖ � n,

‖sin(A−1)‖ � 1 and ϕ(A) = A sin(A−1)A. For X ∈ B(H),

‖[ϕ(A), X]‖ = ‖[A, X] sin(A−1)A + A[sin(A−1), X]A + A sin(A−1)[A, X]‖
� ‖[A, X]‖‖sin(A−1)‖‖A‖ + ‖A[sin(A−1), X]A‖ + ‖A‖‖sin(A−1)‖‖[A, X]‖
� 2n‖[A, X]‖ + ‖A[sin(A−1), X]A‖.
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Since sin(A−1) = (1/2i)(exp(iA−1) − exp(−iA−1)),

‖A[sin(A−1), X]A‖ � 1
2‖A[exp(iA−1), X]A‖ + 1

2‖A[exp(−iA−1), X]A‖.

It follows from Lemma 2 of [21] that, for each B ∈ B(H),

[exp(B), X] =
∫ 1

0
exp(tB)[B, X] exp((1 − t)B) dt.

Therefore, since exp(tiA) and exp((1 − t)iA) are unitary operators, we have

‖A[exp(iA−1), X]A‖ =
∥∥∥∥

∫ 1

0
exp(itA−1)A[iA−1, X]A exp(i(1 − t)A−1) dt

∥∥∥∥
�

∫ 1

0
‖ exp(itA−1)‖‖A[iA−1, X]A‖‖ exp(i(1 − t)A−1)‖ dt

= ‖A[A−1, X]A‖ = ‖[A, X]‖.

Similarly, ‖A[exp(−iA−1), X]A‖ = ‖[A, X]‖, so that

‖[ϕ(A), X]‖ � (2n + 1)‖[A, X]‖. (3.7)

To consider self-adjoint A with 0 ∈ Sp(A) we need the following lemma.

Lemma 3.9. Let g be a continuous function on α in R and let λ be a non-isolated
point in α. Assume that for all self-adjoint A with Sp(A) ⊆ α and Ker(A − λ1) = {0},

‖[g(A), X]‖ � D‖[A, X]‖ for X ∈ B(H). (3.8)

Then (3.8) also holds for all self-adjoint A with Sp(A) ⊆ α.

Proof. Let P be the projection on M = Ker(A − λ1) �= 0. Set B = A|H�M and
Tn = B ⊕ λnP , where λn �= λ belong to α and converge to λ. Then Ker(Tn − λ1) = {0}
and Sp(Tn) ⊆ α. Therefore, ‖[g(Tn), X]‖ � D‖[Tn, X]‖. Since Tn → A and g(Tn) =
g(B) ⊕ g(λn)P → g(A), we have ‖[g(A), X]‖ � D‖[A, X]‖. �

Now continue the proof of Theorem 3.8. By Lemma 3.9, in order to show that the
function ϕ is Sb-Lipschitzian, it suffices to prove (3.8) for the case when Sp(A) ⊆ [−n, n]
and Ker(A) = {0}. Let E(λ) be the spectral function of A. Set P (ε) = 1−(E(ε)
E(−ε))
for ε > 0. Since Ker(A) = {0}, we have E(ε) sot−−→ E(0), as ε → 0. Therefore, P (ε) sot−−→ 1.
Hence, by Lemma 3.3,

‖[ϕ(A), X]‖ = lim
ε→0

‖P (ε)[ϕ(A), X]P (ε)‖. (3.9)

Since the projections P (ε) commute with A, they commute with ϕ(A) and

ϕ(P (ε)A) = P (ε)ϕ(A) + ϕ(0)(1 − P (ε)) = P (ε)ϕ(A).

Set Aε = P (ε)A. Then Sp(Aε) ⊆ [−n, −ε] ∪ [ε, n] and we have, from (3.7),

‖P (ε)[ϕ(A), X]P (ε)‖ = ‖[ϕ(Aε), P (ε)XP (ε)]‖ � (2n + 1)‖[Aε, P (ε)XP (ε)]‖
= (2n + 1)‖P (ε)[A, X]P (ε)‖ � (2n + 1)‖[A, X]‖.

By (3.9), ‖[ϕ(A), X]‖ � (2n+1)‖[A, X]‖. Applying Corollary 3.6, we complete the proof.
�
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4. Commutator-bounded functions: Fuglede sets

It follows from Proposition 3.4 that, if J is Jφ
0 , Jφ or Sb, then commutator J-bounded

functions could have been equivalently defined as those for which inequality (1.5) holds
for all A ∈ Jnor(α) and X ∈ J , or even for all A ∈ Fnor(α) and X ∈ F .

By Theorem 3.5, a function is J-Lipschitzian if and only if (1.5) holds for all self-
adjoint X. Therefore, each commutator J-bounded function is J-Lipschitzian. If α ⊂ R,
then, by Corollary 3.6, the converse is true. In particular, all functions satisfying (3.3)
are commutator J-bounded for all s.n. ideals J on each compact α in R.

For α � R, the situation changes. To see this, note that, by Corollary 4.3 of [11], there
are operators Xn ∈ B(H) and a diagonal operator A such that

‖AXn − XnA‖ → 0 and ‖A∗Xn − XnA∗‖ � 1 for all n ∈ N. (4.1)

Thus, although the function h(z) = z̄ is J-Lipschitzian for all s.n. ideals J and for J = Sb,
it is not commutator Sb-bounded.

The following result clarifies the relation between J-Lipschitz and commutator J-
bounded functions.

Proposition 4.1. Let J be an s.n. ideal or Sb and let g be a continuous function on
α ⊂ C. The following conditions are equivalent.

(i) g is commutator J-bounded on α.

(ii) There exists D > 0 such that for all A, B ∈ Jnor(α) and X ∈ B(H),

‖g(A)X − Xg(B)‖J � D‖AX − XB‖J . (4.2)

If J is Jφ
0 or Jφ or Sb, then (i) and (ii) are also equivalent to condition (iii) that follows.

(iii) g satisfies (4.2) for all A, B ∈ Fnor(α) and all X in F .

Proof. (i) ⇒ (ii). Let A, B ∈ Jnor(α) and X ∈ B(H). Set

L =

(
A 0
0 B

)
, X̃ =

(
0 X

0 0

)
and U =

(
0 1
1 0

)
.

The operator L on H ⊕ H also belongs to Jnor(α),

g(L) =

(
g(A) 0

0 g(B)

)

and

[g(L), X̃]U =

(
g(A)X − Xg(B) 0

0 0

)
, [L, X̃]U =

(
AX − XB 0

0 0

)
.

If g is commutator J-bounded, it follows from (1.2) and Remark 2.1 that

‖g(A)X − Xg(B)‖J = ‖[g(L), X̃]U‖J = ‖[g(L), X̃]‖J

� D‖[L, X̃]‖J = D‖[L, X̃]U‖J = D‖AX − XB‖J .

(ii) ⇒ (i). Set B = A.
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(ii) ⇒ (iii). This is evident.

(iii) ⇒ (i). Set B = A in (4.2). Using Proposition 3.4, we obtain that g is commutator
J-bounded. �

We will now consider some sufficient conditions for a function to be commutator
J-bounded.

Example 4.2. Let a function g be analytic in a neighbourhood Ω of α. Then there
is D > 0 such that, for any s.n. ideal J , for any normal A with Sp(A) ⊆ α and any X in
B(H), the condition [A, X] ∈ J implies [g(A), X] ∈ J and (1.5) holds. In particular, g is
commutator J-bounded on α.

Indeed, let γ be a contour in Ω surrounding α and let R(A, λ) = (λ1 − A)−1. Then
ρ = inf{|s − λ| : λ ∈ γ, s ∈ α} > 0 and, for each normal A with Sp(A) ⊆ α,

g(A) =
1

2πi

∮
γ

R(A, λ)g(λ) dλ.

We have

‖R(A, λ)‖ �
(

inf
s∈α

|s − λ|
)−1

� ρ−1 < ∞

if λ ∈ γ. If [A, X] ∈ J , then

[R(A, λ), X] = R(A, λ)[X, A]R(A, λ) ∈ J and ‖[R(A, λ), X]‖J � ρ−2‖[A, X]‖J .

Hence

[g(A), X] =
1

2πi

∮
γ

[R(A, λ), X]g(λ) dλ ∈ J

and

‖[g(A), X]‖J � ρ−2

2π
‖[A, X]‖J

∮
γ

|g(λ)| dλ = D‖[A, X]‖J .

�
We will now consider a much wider class of commutator J-bounded functions. For

compact subsets α, β of C, the Varopoulos algebra V (α, β) = C(α) ⊗̂C(β) (the projective
tensor product of the algebras of continuous functions) consists of all functions

ϕ(z, u) =
∞∑

n=1

an(z)bn(u) ∈ C(α × β),

where an ∈ C(α), bn ∈ C(β), such that,

‖ϕ‖ = inf
{ ∞∑

n=1

‖an‖‖bn‖ : ϕ(z, u) =
∞∑

n=1

an(z)bn(u)
}

< ∞.
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Set V (α) = V (α, α) and let A be a normal operator with Sp(A) ⊆ α. If J is an s.n. ideal
or Sb, the operators LA, RA of left and right multiplication by A on J (LA(X) = AX,
RA(X) = XA) commute and ‖LA‖ = ‖RA‖ = ‖A‖. For ϕ ∈ V (α), set

ϕ(LA, RA) =
∞∑

n=1

Lan(A)Rbn(A).

Using the properties of the projective tensor product, we have that the map θ : ϕ →
ϕ(LA, RA) is a contractive homomorphism from V (α) to the algebra of all bounded
operators on J .

Proposition 4.3. Suppose that a function g on α satisfies the condition

g(z) − g(u) = ϕ(z, u)(z − u) for z, u ∈ α, (4.3)

with ϕ ∈ V (α). Then, for each s.n. ideal J and for J = Sb, g is commutator J-bounded
on α.

Proof. The function f(z) = g(z) − g(0) is Lipschitzian at 0 and f(0) = 0. By
Lemma 3.1, it acts on any ideal J . If A ∈ Jnor(α), then [g(A), X] = [f(A), X] ∈ J

for X ∈ B(H). Applying the homomorphism θ to both parts of (4.3), we have

Lg(A) − Rg(A) = ϕ(LA, RA)(LA − RA).

Hence

‖[g(A), X]‖J = ‖(Lg(A) − Rg(A))X‖J = ‖ϕ(LA, RA)(LA − RA)X‖J

� ‖ϕ(LA, RA)‖‖[A, X]‖J � ‖ϕ‖V (α)‖[A, X]‖J .

Thus g is J-Lipschitzian. �

Condition (4.3) and its integral analogues have been extensively studied and used by
Arazy et al . [1], Birman and Solomyak [3], Peller [20] and others. In particular, Peller’s
proof of the inclusion of the Besov class of functions B1

∞1(a, b) in the class of all Sb-
Lipschitz functions on [a, b] in R is based on the proof of (4.3) for all g ∈ B1

∞1(a, b). We
denote the space of functions on α satisfying (4.3) with ϕ ∈ V (α) by BSP(α) (i.e. the
Birman–Solomyak–Peller space).

Remark 4.4.

(i) If g ∈ BSP(α) and β ⊆ α, then g|β belongs to BSP(β).

(ii) Let α = [a, b], β = [c, d] and let ϕ(t, s) be a Lipschitz function on α×β. Varopoulos
proved (see [23, Theorem 7.1.1]) that ϕ ∈ V (α, β).

(iii) Peller proved in [20] that B1
∞1(a, b) ⊆ BSP(a, b). Hence any function with contin-

uous second derivative belongs to BSP(a, b).
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In the rest of this section we investigate the following question: for which sets α are
properties (1.4) and (1.5) equivalent. In the discussion before Proposition 4.1 it was
shown that the function h(z) = z̄ is not commutator Sb-bounded for some α � R. The
following result shows that this function plays a crucial role in the theory of commutator
J-bounded and J-Lipschitz functions on complex domains.

Proposition 4.5. Let h(z) = z̄ be commutator J-bounded on α ⊂ C. Then
J- Lip(α) = J- CB(α).

Proof. In the proof of Corollary 3.6 (ii) we used the condition α ⊂ R only once:
to show that ‖[A, X∗]‖J = ‖[A, X]‖J and to substitute this in (3.6). In our case, h is
commutator J-bounded on α and therefore there is C > 0 such that

‖[A, X∗]‖J = ‖[A∗, X]‖J � C‖[A, X]‖J for A ∈ Jnor(α) and X ∈ B(H).

Substituting this in (3.6), we have ‖[g(A), X]‖J � (1 + C)‖[A, X]‖J . �

Taking into account Proposition 4.5, we introduce a special class of compact sets.

Definition 4.6. A compact set α in C is called J-Fuglede if the function h(z) = z̄ is
commutator J-bounded on α, that is, there is C > 0 such that

‖[A∗, X]‖J � C‖[A, X]‖J for all A ∈ Jnor(α) and X ∈ B(H). (4.4)

It follows from Proposition 4.5 that the spaces of J- Lip(α) and J- CB(α) coincide on
J-Fuglede compacts α (and only on them). Clearly, every compact set in R is J-Fuglede
for any ideal J and for J = Sb. To study further properties of J-Fuglede sets, we need
the following extension of Rosenblum’s theorem.

Lemma 4.7. Let α, β be compacts in C and let α∩β = �. There is C = C(α, β) > 0
such that, for all unital C∗-algebras A and B, for all Banach left A- and right B-modules
X, and for all normal A ∈ A and B ∈ B with Sp(A) ⊆ α, Sp(B) ⊆ β,

‖AX − XB‖X � C‖X‖X for all X ∈ X.

Proof. Repeating the proof of Rosenblum’s theorem (see [22]), we obtain that, for
any normal A ∈ A and B ∈ B with Sp(A) ⊆ α, Sp(B) ⊆ β, the operator X → AX −XB

on X is invertible. Hence there is C(A, B) > 0 such that ‖AX − XB‖X � C(A, B)‖X‖X

for all X ∈ X.
Assume that there are C∗-algebras Ai and Bi, Banach modules Xi and normal Ai ∈ Ai,

Bi ∈ Bi such that C(Ai, Bi) → 0. Let X be the Banach space of all bounded sequences
X = (X1, . . . , Xn, . . . ), Xi ∈ Xi, with norm ‖X‖X = sup ‖Xi‖Xi and let A be the
C∗-algebra of all bounded sequences R = (R1, . . . , Rn, . . . ), Ri ∈ Ai, with norm
‖R‖A = sup ‖Ri‖Ai . Similarly, we define the C∗-algebra B. Then X is a Banach left
A- and right B-module.

Set A = (A1, . . . , An, . . . ), B = (B1, . . . , Bn, . . . ). Since all Ai, Bi are normal and
Sp(Ai) ⊆ α, Sp(Bi) ⊆ β, there is K > 0 such that ‖Ai‖Ai � K, ‖Bi‖Bi � K. Thus
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A ∈ A, B ∈ B and Sp(A) ⊆ α, Sp(B) ⊆ β. Hence, as above, there is C > 0 such that
‖AX − XB‖X � C‖X‖X for all X ∈ X. If X̂i = (0, . . . , 0, Xi, 0, . . . ), for Xi ∈ Xi, then

C‖Xi‖Xi
= C‖X̂i‖X � ‖AX̂i − X̂iB‖X = ‖AiXi − XiBi‖Xi

,

which contradicts our assumption. �

Proposition 4.8.

(i) Any compact subset of a J-Fuglede set is J-Fuglede.

(ii) If α1, α2 are disjoint J-Fuglede sets, the set α1 ∪ α2 is also J-Fuglede.

Proof. (i) is evident.

There is K > 0 such that ‖A‖ � K for any normal A with Sp(A) ⊆ α1 ∪ α2. If A ∈ J ,
then H = H1 ⊕ H2 and A = A1 ⊕ A2, where Ai = A|Hi and Sp(Ai) ⊆ αi. Let Pi be the
projections on Hi. Then

‖[A∗, X]‖J �
2∑

i,j=1

‖Pi[A∗, X]Pj‖J =
2∑

i,j=1

‖[(PiA)∗, PiXPj ]‖J . (4.5)

The operators Xij = PiXPj , i, j = 1, 2, act from Hj into Hi. It follows from Remark 2.1
that ‖[PiA, PiXPi]‖J = ‖[Ai, Xii]‖J . Since αi are J-Fuglede, there are ci > 0 such that
‖[A∗

i , Xii]‖J � ci‖[Ai, Xii]‖J . Hence,

‖[(PiA)∗, PiXPi]‖J � ci‖[Ai, Xii]‖J = ci‖Pi[A, X]Pi‖J � ci‖[A, X]‖J . (4.6)

Let J = Sb. Then

‖[(PiA)∗, PiXPj ]‖ � 2‖A‖‖PiXPj‖ � 2K‖Xij‖ for i �= j.

Since the αi are disjoint and Sp(Ai) ⊆ αi, it follows from Lemma 4.7 that

‖Xij‖ � c‖AiXij − XijAi‖ = c‖Pi[A, X]Pj‖ � c‖[A, X]‖,

for some c > 0. Combining this with (4.5) and (4.6), we obtain that there is D > 0 such
that ‖[A∗, X]‖ � D‖[A, X]‖, so α1 ∪ α2 is Sb-Fuglede.

Let J �= Sb. Since α1, α2 are disjoint, only one of them may contain 0. Let 0 /∈ α2. Since
Sp(A2) ⊆ α2 and A2 is compact, H2 is finite dimensional, so X = {P1XP2 : X ∈ B(H)}
consists of finite-rank operators. Hence (X, ‖ · ‖J) is a Banach left B(H1)-module and
right B(H2)-module and

‖[(P1A)∗, P1XP2]‖J � 2‖A‖‖P1XP2‖J � 2K‖P1XP2‖J .

Since the αi are disjoint and Sp(Ai) ⊆ αi, it follows from Lemma 4.7 that

‖P1XP2‖J � c‖A1P1XP2 − P1XP2A2‖J = c‖P1[A, X]P2‖J � c‖[A, X]‖J ,

for some c > 0. Hence ‖[(P1A)∗, P1XP2]‖J � 2cK‖[A, X]‖J .
Similarly, there is d > 0 such that ‖[(P2A)∗, P2XP1]‖J � 2dK‖[A, X]‖J . Combin-

ing this with (4.5) and (4.6), we obtain that there is D > 0 such that ‖[A∗, X]‖J �
D‖[A, X]‖J . Thus α1 ∪ α2 is J-Fuglede. �
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We say that a simple Jordan line in C is 2-smooth if it has a parametrization z = k(t),
t ∈ R, where k is twice continuously differentiable and the derivative k′ does not vanish.

Theorem 4.9. A compact subset α of a 2-smooth line z = k(t) = x(t) + iy(t) is
J-Fuglede for any s.n. ideal J and for J = Sb.

Proof. It follows from Proposition 4.8 (ii) that we only need to prove the theorem in
the case when α is connected. Define a function ϕ on α × α by

ϕ(z, u) =
z − u

z − u
, for z �= u, and ϕ(z, z) =

k′(k−1(z))
k′(k−1(z))

.

Since h(z)−h(u) = ϕ(z, u)(z−u), we have from Proposition 4.3 that to prove the theorem
it is sufficient to show that ϕ ∈ V (α). To do this, it suffices (see [23]) to establish that,
for any (z, u) ∈ α × α, there are compact neighbourhoods β of z and γ of u in α such
that ϕ|β×γ ∈ V (β, γ).

Since k′ does not vanish, there are δ = [a, b], σ = [c, d] in R and t0 ∈ (a, b), s0 ∈ (c, d)
such that

k(δ), k(σ) ⊂ α, z = k(t0), u = k(s0) and k is injective on δ and σ. (4.7)

The function θ(t, s) = ϕ(k(t), k(s)) belongs to V (δ, σ) if and only ϕ ∈ V (k(δ), k(σ)).
Let z �= u. Choose δ and σ such that, in addition to (4.7), k(δ) ∩ k(σ) = �. Then θ

is twice continuously differentiable on δ × σ, so it is Lipschitzian. By Remark 4.4 (ii), θ

belongs to V (δ, σ). Hence ϕ ∈ V (k(δ), k(σ)).
Let z = u = k(t0). Since k′(t0) �= 0, |x′(t0)| + |y′(t0)| �= 0. Assume that x′(t0) �= 0.

Choose δ = σ so that, in addition to (4.7), x′(t) �= 0 for t ∈ δ. Then

θ(t, s) =
k(t) − k(s)
k(t) − k(s)

=
x̃(t, s) − iỹ(t, s)
x̃(t, s) + iỹ(t, s)

,

where

ỹ(t, s) =
y(t) − y(s)

t − s
, x̃(t, s) =

x(t) − x(s)
t − s

for t �= s,

and
ỹ(t, t) = y′(t), x̃(t, t) = x′(t).

Since x, y are twice continuously differentiable functions, by Remark 4.4 (iii), they belong
to BSP(δ). Hence the functions x̃ and ỹ belong to V (δ). Since x̃ �= 0 on δ×δ, the function
x̃ + iỹ does not vanish on δ × δ. Since δ × δ is the space of maximal ideals of the algebra
V (δ), x̃ + iỹ is invertible in V (δ). Hence θ ∈ V (δ), so ϕ ∈ V (k(δ)). �

We will see now that some smoothness conditions are necessary for a compact α to be
Sb-Fuglede. We say that α is smooth at a non-isolated point w ∈ α if it has a ‘tangent’
at w, that is, there is a straight line L such that w ∈ L and dist(z, L) = o(|z − w|) when
α � z → w.

Proposition 4.10. Sb-Fuglede compacts are smooth at all non-isolated points.
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Proof. For A ∈ B(H), the map δA : X → [A, X] is a derivation on B(H). If α is
Sb-Fuglede, there is D > 0 such that ‖[h(A), X]‖ � D‖[A, X]‖ for all normal A with
Sp(A) ⊆ α and all X ∈ B(H). It follows from Corollary 4.7 of [11] that the range of the
derivation δh(A) on B(H) is included in the range of δA for any such A. By Theorem 4.1
of [11], this implies that h is differentiable relative to α at each non-isolated point, which
is, clearly, equivalent to the smoothness of α. �

The above result shows that the set α = {x + i|x| : −1 � x � 1} and any compact
subset of α with 0 as a cluster point for points with x > 0 and for points with 0 < x are
not Sb-Fuglede. It also shows that the union of two Sb-Fuglede sets can be non-Fuglede
and that the compacts with non-empty interior are not Sb-Fuglede.

5. Hadamard multipliers

To study commutator J-bounded functions further we need to use the notion of the
Hadamard multiplier. Every orthogonal basis E = {ei} in H defines a map ϕE from
B(H) into the set M of all matrices: ϕE : T → (tij), where tij = (Tej , ei). Any matrix
M = (mij) ∈ M acts on M by the formula M ◦ X = (mijxij) for X = (xij) ∈ M. We
identify J and ϕE(J) and write M ◦ T for T ∈ J .

A matrix M is called a Hadamard J-multiplier, if M ◦ T ∈ J for each T ∈ J . Denote
by MJ the set of all Hadamard J-multipliers. If M ∈ MJ , then, by the closed graph
theorem, the map T → M ◦T on J is bounded; its norm we denote by ‖M‖J . If J = Sp,
we write Mp and ‖M‖p. The set ϕE(S2) consists of all matrices X with

∑
i,j |xij |2 < ∞.

Hence M ∈ M2 if and only if

‖M‖2 = sup |mij | < ∞. (5.1)

The next result may well be known, but we could not find a reference.

Lemma 5.1. Let φ ∈ Φ and let φ∗ be its adjoint. Then

MJφ
0

= MJφ = M
Jφ∗
0

= MJφ∗

and the norms coincide. In particular, Mb = M1 = M∞ and Mp = Mp′ (see (2.2)).

Proof. Let {ei} be a basis in H and let V be the anti-linear isometry on H:

V

(∑
i

λiei

)
=

∑
i

λ̄iei.

Let T =
∑

i si(T )(xi ⊗ yi) be a Schmidt decomposition (see [10]) of a compact operator
T , where {xi}, {yi} are orthonormal sets in H, xi⊗yi are rank-one operators: (xi⊗yi)z =
(z, xi)yi, and si(T ) are the eigenvalues of (T ∗T )1/2. The transpose T ′ of T in {ei} has
the form

T ′ = V T ∗V =
∑

i

si(T )(V yi ⊗ V xi).
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Since {V xi}, {V yi} are orthonormal sets, it is a Schmidt decomposition of T ′. Thus, if
J is Jφ, Jφ

0 or Sb, and T ∈ J , then T ′ ∈ J and ‖T‖J = ‖T ′‖J .
Let M ∈ MJ and let M ′ be its transpose. For T ∈ J , we have M ′ ◦ T = (M ◦ T ′)′ ∈ J

and ‖M ′ ◦ T‖J = ‖M ◦ T ′‖J � ‖M‖J‖T‖J . Hence M ′ ∈ MJ and ‖M ′‖J � ‖M‖J . Since
M ′′ = M , we have ‖M ′‖J = ‖M‖J .

Set J = Jφ and J0 = Jφ
0 . Let Pn be the projections on the subspaces spanned by

{ei}n
i=1, n < ∞. If M ∈ MJ and T ∈ J0, then Pn(M ◦ T )Pn = M ◦ (PnTPn) ∈ J0 and

‖M ◦ T − Pn(M ◦ T )Pn‖J = ‖M ◦ (T − PnTPn)‖J � ‖M‖J‖T − PnTPn‖J → 0,

since ‖T − PnTPn‖J → 0 (see [10, Theorem III.6.3]). Hence M ◦ T ∈ J0, so M ∈ MJ0 .
Clearly, ‖M‖J0 � ‖M‖J .

Set I = Jφ∗
. For M ∈ MJ0 and A ∈ I it follows from (2.1) that the functional

FM◦A(T ) = Tr(T (M ◦ A)) = Tr((M ′ ◦ T )A) = FA(M ′ ◦ T )

on J0 is bounded. Hence M ◦ A ∈ I and ‖M ◦ A‖I � ‖M ′‖J0‖A‖I , so M ∈ MI and
‖M‖I � ‖M‖J0 . Thus MJ ⊆ MJ0 ⊆ MI and ‖M‖I � ‖M‖J0 � ‖M‖J , for M ∈ MJ .

Set I0 = Jφ∗

0 . Since (φ∗)∗ = φ, we obtain similarly that MI ⊆ MI0 ⊆ MJ and
‖M‖J � ‖M‖I0 � ‖M‖I , for M ∈ MI . This proves the lemma for J �= Sp, p = 1,∞, b.

Repeating the above argument for J = Sb, J0 = S∞, I = S1, we complete the
proof. �

Let A = diag(λ1, . . . , λn, . . . ) be a diagonal operator with respect to a basis {en}. Let
g be a continuous function on α ⊂ C and let α contain all λn. Set

mij =

⎧⎪⎨
⎪⎩

g(λi) − g(λj)
λi − λj

, if λi �= λj ,

mij = 0, if λi = λj .

(5.2)

Consider the matrix M(A, g) = (mij). The following result generalizes Lemma 3.3 of [11].

Proposition 5.2.

(i) Let M(A, g) be a Hadamard J-multiplier. Then

‖[g(A), X]‖J � D‖[A, X]‖J for all X ∈ J (5.3)

with D = ‖M(A, g)‖J .

(ii) Let J be Jφ
0 or Jφ or Sb. If (5.3) holds, then M(A, g) is a Hadamard J-multiplier

and ‖M(A, g)‖J � 2D.

Proof. Let X = (xij), [A, X] = (yij), [g(A), X] = (zij). Then yij = (λi − λj)xij and
zij = (g(λi) − g(λj))xij , so zij = mijyij . Therefore,

[g(A), X] = M(A, g) ◦ [A, X]. (5.4)

If M(A, g) is a Hadamard J-multiplier, then (5.3) holds. Part (i) is proved.
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Suppose that J is Jφ
0 , or Jφ or Sb, and that (5.3) holds. Let λi(k) be all distinct

eigenvalues of A and let Qk be the projections on the corresponding eigenspaces. We
have from Theorem III.4.2 of [10] that, for any operator B in J ,

B̂ =
∑

k

QkBQk belongs to J and ‖B̂‖J � ‖B‖J . (5.5)

Denote by Pn the projections on the subspaces of H spanned by {ei}n
i=1. All Pn and

Qk commute. Let Y ∈ F and let Y = PnY Pn for some n. Set Y # = Y − Ŷ = (yij). Then
Y # = PnY #Pn and yij = 0 if λi = λj . Consider X = (xij), where

xij =

⎧⎨
⎩

yij

λi − λj
, if λi �= λj ,

xij = 0, if λi = λj .

Then X = PnXPn, Y # = [A, X] and M(A, g) ◦ Y = M(A, g) ◦ Y # = M(A, g) ◦ [A, X].
By (5.5), ‖[A, X]‖J = ‖Y #‖J � 2‖Y ‖J , so it follows from (5.3) and (5.4) that

‖M(A, g) ◦ Y ‖J = ‖M(A, g) ◦ [A, X]‖J = ‖[g(A), X]‖J � D‖[A, X]‖J � 2D‖Y ‖J . (5.6)

Hence M(A, g) generates a bounded operator S on the subspace Jfin of J of all finite-rank
operators X such that X = PnXPn for some n.

If J = Jφ
0 , it follows from Theorem III.6.3 of [10] that ‖X −PnXPn‖J → 0 for X ∈ J .

Therefore, Jfin is dense in J and S extends to a bounded operator on J , which we also
denote by S. Let X = (xij) ∈ J . For any i, j,

(SXei, ej) = lim
n

(SPnXPnei, ej) = lim
n

((M(A, g) ◦ PnXPn)ei, ej) = mijxij .

Hence SX = M(A, g) ◦ X. Thus M(A, g) is a Hadamard J-multiplier and, by (5.6),

‖M(A, g) ◦ X‖J = lim
n

‖Pn(M(A, g) ◦ X)Pn‖J = lim
n

‖M(A, g) ◦ (PnXPn)‖J

� 2D lim
n

‖PnXPn‖J = 2D‖X‖J ,

so that ‖M(A, g)‖J � 2D.
If J = Jφ is not separable (respectively, if J = Sb), consider the separable ideal

I = Jφ
0 in J (respectively, I = C(H)). By the above argument, M(A, g) is a Hadamard

I-multiplier. It follows from Lemma 5.1 that M(A, g) is also a Hadamard J-multiplier.
�

Making use of Propositions 3.4 and 5.2, we obtain the following corollary.

Corollary 5.3. Let J be Jφ
0 , or Jφ or Sb, and let g be a continuous function on

α ⊂ C. Then the following conditions are equivalent.

(i) g is commutator J-bounded on α.

(ii) There is D > 0 such that, for any A ∈ Jnor(α) (for any diagonal A in Jnor(α) if
J = Sb), the matrix M(A, g) is a Hadamard J-multiplier and ‖M(A, g)‖J � D.
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(iii) There exists D > 0 such that ‖M(A, g)‖J � D, for all A ∈ Fnor(α).

The following result echoes the relations between Hadamard multipliers.

Corollary 5.4.

(i) For an s.n. ideal J , let φ ∈ Φ be such that Jφ
0 ⊆ J ⊆ Jφ (see Proposition 2.1

of [16]), and let φ∗ be the adjoint of φ. Then each commutator J-bounded function
g on α is commutator Jφ

0 -, Jφ-, Jφ∗

0 - and Jφ∗
-bounded on α.

(ii) The following conditions are equivalent:

(1) g is commutator Sb-bounded on α;

(2) g is commutator S∞-bounded on α;

(3) g is commutator S1-bounded on α.

Proof. The function f(t) = g(t) − g(0) (see (3.1)) acts on all s.n. ideals. By Propo-
sition 2.1 of [16], the norms ‖ · ‖J and ‖ · ‖Jφ coincide on Jφ

0 . Hence f is commutator
Jφ

0 -bounded on α. It follows from Lemma 5.1 and Corollary 5.3 that f is Jφ-, Jφ∗

0 - and
Jφ∗

-bounded on α. Hence g is Jφ-, Jφ∗

0 - and Jφ∗
-bounded on α. The proof of (ii) is the

same. �

We now consider the most important case J = Sb and the simplest case J = S2.

Proposition 5.5.

(i) A function g is commutator Sb-bounded on α ⊂ C if and only if there exists
D > 0 such that, for any distinct numbers {λn}k

n=1, k < ∞, in α, the k × k matrix
M({λn}, g) = (mij), 1 � i, j � k, where

mii = 0 and mij =
g(λi) − g(λj)

λi − λj
, if i �= j,

is a Hadamard multiplier on B(Ck) with norm less than or equal to D.

(ii) A function on α is commutator S2-bounded if and only if it is Lipschitzian on α

in the usual sense.

Proof. By Corollary 5.3, g is commutator Sb-bounded if and only if the norms of all
multipliers M(A, g), for A ∈ F(α), are bounded by a mutual constant.

Let A ∈ Fnor, Sp(A) = {λn}k
n=1 ⊆ α and {Hn}k

n=1 be the eigenspaces of A. Then
H =

∑k
n=1 ⊕Hn and any T ∈ B(H) has a block-matrix form (Tij), where Tij are bounded

operators from Hj into Hi. The k × k matrix M({λn}, g) is a Hadamard multiplier on
B(Ck) and also defines a bounded operator M̃ on B(H) by the formula M̃(T ) = (mijTij),
for T ∈ B(H). It is easy to see that M̃(T ) = M(A, g) ◦ T . It was proved in Lemma 4.5
of [13] that ‖M(A, g)‖Sb = ‖M({λn}, g)‖Ck . This completes the proof of (i).

By Corollary 5.3, g is commutator S2-bounded if and only if there is D > 0 such that
‖M(A, g)‖2 � D for A ∈ Fnor(α). Hence (ii) follows from (5.1) and (5.2). �
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If H is finite dimensional, all norms on B(H) are equivalent. Hence, for each ideal
J = J(H), a function on α is commutator J-bounded (respectively, J-Lipschitzian) if
and only if it is commutator S2-bounded (respectively, S2-Lipschitzian).

Corollary 5.6. Let H be a finite-dimensional space and let g be a function on α. The
following conditions are equivalent.

(i) g is Lipschitzian on α in the usual sense.

(ii) g is commutator J-bounded on α for all s.n. ideals J = J(H).

(iii) g is J-Lipschitzian on α for all s.n. ideals J = J(H).

Proof. (i) ⇔ (ii). This follows from Proposition 5.5 (ii) and from the comment before
the corollary.

(ii) ⇒ (iii). This follows from Theorem 3.5.

(iii) ⇒ (i). This was proved at the beginning of § 3. �
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