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1. Introduction

Let S be a compact topological semigroup, and let § be the collection
of all normalized non-negative Borel measures on S. It is well-known that
§, under convolution and the topology induced by the weak-star topology
on the dual of the Banach space C(S) of all complex valued continuous func-
tions on S, forms a compact topological semigroup which is known as the
convolution semigroup of measures (see for instance, Glicksberg [3], Col-
lins [1], Schwarz [5] and the author [4]). Professor A. D. Wallace asked if
the process of forming the convolution semigroup of measures might be
generalized to a more general class of set functions, the so-called ‘“modular
functions.” The purpose of the present note is to settle this question in the
affirmative under a slight restriction. Before we are able to state the Wallace
problem precisely, some preliminaries are necessary.

2. Preliminaries

Let S in this note be always a compact topological semigroup, and let
& be the family of all closed subsets of S. By a modular function m on S is
meant a real-valued set function » defined on & such that

m(A v B)+m(A n B) = m(4)4+m(B),

for any 4 and B in &#. A modular function is said to be normalized if
m(S) = 1 and m([J) = 0, where [] denotes the empty set.

DEFINITION 1. A modular function m on S is regular if and only
if, for any F in &# and any ¢ > 0, there is an open subset V of S containing
F such that 0 < m(E)—m(F) < ¢ for any E in & such that FCECV-,
where — denotes the topological closure operator.

Let us write S# for the family of all normalized regular modular
functions on S. We are now in position to restate Wallace’s problem more
clearly: is it possible to define a ““convolution” and a topology for S# in
such a way that S# becomes a compact topological semigroup?
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We are able to answer this for the ‘“‘isotonic” modular functions.
A modular function is ésofone if and only if, 4 D B in & implies m(4) = m(B).

Let us agree, henceforth, that S# is the collection of all normalized regular
isotonic modular functions on S. An example of such a function is a normalized
regular Borel measure on S restricted to &#. It is rather peculiar that the
modular functions obtained in this way turn out to be all of S#, and further-
more there is a unique extension of an element of S# to an element of S.

We need some additional symbolism. Let & denote the family of all
Borel sets in S, and let ¥~ be the collection of all open sets in S. We write

(1) mo(V) = 1—m(S\V),

for each m in S# and for all V in ¥". We then define a transformation ¢ on
S# by

(2) m!(B) = inf {my(V) : BCV &¥"}

for each m in S# and for all Borel sets B in &.

3. A convolution semigroup of modular functions

THEOREM A. The transformation * takes S# in one-to-one fashion onto §.
Indeed, we have the following relations:

mt|F =m and (u|F)=pu

for every m in S# and for every . in 8.
We divide the proof of this theorem into the following steps.

LemMma L. If U,V are in ¥ and if F is in F such that U CF CV. Then
(3) mo(U) < m(F) < mo(V)
for any m in S#.

Proor: This is straightforward from (1).

LEMMA 2. The set function my is normalized, isotonic, countably additive
on ¥ for each m in S#.

Proor. It is clear that my([J) = 0, m,(S) = 1 and that
U=U'DV' =V

implies m,(U) = my(V). Furthermore, m, is finitely additive; for if U and
V are any disjoint open sets, then

https://doi.org/10.1017/51446788700004821 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700004821

(31 A convolution semigroup of modular functions 253

my(Uu V) = 1—m((S\U)n (S\V))
= 1—[m(S\U)+m(S\V)—m((S\U) u (S\V))]
= [1—-m(S\U)]+[1—m(S\V)]
= mo(U)+my(V);

for, S = (S\U) v (S\V) and m is a normalized modular function.
Now we show that for any sequence {V,: i = 1} of open sets V,

(5) > mo(V,) = mo(U V).

izl (=3

4

For any ¢ > 0, since S\(U;>1V;:) = MNi21(S\V;) € F and by regularity of m,
there is an open set W containing ();5,(S\V;) such that

(6) m( ) (S\V)+e = m(W-).
iz1
Compactness of S, then, yields a positive integer » such that
(7) WD N S\
nzi=1

It follows then from (1), (3), (4), (6), and (7) that
2 my(Vi)+e=my(UV))

nzizl iz1
and hence
2mp(V)+e=my(UV,).
iz1 i=1

Since ¢ was arbitrary, (5) is thus proved.
Finally, with an additional assumption that {V/,:¢ = 1} is disjoint,
we have to show that

(8) 2 me(V,) = mo(U V).

=1 121

From (3) and (4), we have

2 m(V)=m( U V) =me(UV))

nzizl nzixl izl

for every positive integer #. Therefore (8) holds, and hence the lemma is
proved.

LEMMA 3. If meS# then m' is a countably additive measure on &.

Proor. From (2) we have m!([]) = 0. Let {B;:7 = 1} be a sequence
of Borel sets such that {J{B;:7 = 1} is also a Borel set. Then for any ¢ > 0
and for each positive integer 7, there is an open set ¥V; D B, such that

my(V,) < mH(B,) + .
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Therefore, from (4) and (5), we have

mi (U B,) =my(UV,) <3 m(V,) =3 mi(B)+e,
iz1 i21 iz1 i1
and thus,

(9) m'(U B,) = Z m'(B,).

izl izl

These together with the isotony of m! show that m* is an outer measure
on the g-algebra 4.

Since m is regular, by some standard computations, all sets in # are
m'-sets (= outer measurable sets). Now a celebrated theorem of Carathéodo-
1y (see for instance {2, p. 134]), tells us that all Borel sets are m’-sets upon
which m?’ is countably additive.

LeMMA 4. If m e S# then m' is regular.
Proor. This follows from the fact that
mt(F) = inf {m,(V) : FCV e ¥}
=inf{m'(V): FCV e}
LEMMA 5. If m € S# then m!|F = m.

Proor. Since m is regular, for any Fin & and any & > 0 there is
an open set V such that

FCV and m(V~-) < m(F)+e.
Using (2) and (3) several times we arrive at
m(F) S mi(F) = my(V) < m(V-) = m(F)+e
and see m(F) = m!(F) for all F in &.
LemMA 6. If pue8 then (u|F)t = p.

Proor. It is fairly clear that u|# belongs to S#. Let us denote
(u|F)t by ». Then by Lemma 5,

»(F) = u(F)

for every closed set F, and hence
W(V) = (V)

for each open set V. We have then, by the regularity of x and by (2),
»(B) = u(B)

for every Borel set B.

The proof of Theorem A is now clear from Lemmas 1-6. We are now
ready to state our main theorem.
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THEOREM B. Let S be a compact semigroup. Then the set S# of all
normalized regular isotonic modular functions may be introduced a convolu-
tion and a topology in such a way that S# is topologically isomorphic to S.

Proor. We define, by virtue of Theorem 4, the convolution % on S#
naturally by
mEn = (m'-nt)|F

for all m, # in S#. Where - in the right hand side means the convolution of
measures in the usual sense. Topologize S# in such a way that a subset ¥
is open if and only if 3*= {s*: 0 €Y} is open in 8. Then the mapping
h: S# — 8 defined by A(m) = m* for all m in S# is an isomorphism as
well as a homeomorphism.

The author is grateful to Professor A. D. Wallace for this problem.
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