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Abstract

Consider an infinite-source marked Poisson process to model end user inputs to a data
network. At Poisson times, connections are initated. The connection is characterized
by a triple (F, L, R) denoting the total quantity of transmitted data in a connection,
the length or duration of the connection, and the transmission rate; the three quantities
are related by F = LR. How critical is the dependence structure of the mark for
network characteristics such as burstiness, distribution tails of cumulative input, and long-
range dependence properties of traffic measured in consecutive time slots? In a previous
publication (D’Auria and Resnick (2006)) we assumed that F and R were independent.
Here we assume that L and R are independent. The change in dependence assumptions
means that the model properties change dramatically: tails of cumulative input per time
slot are dramatically heavier, traffic cannot be approximated by a Gaussian distribution,
and the decay of dependence cannot be measured in the traditional way using correlation
functions. Different network applications are likely to have different mark dependence
structure. We argue that the present independence assumption on L and R is likely to be
appropriate for network applications such as streaming media or peer-to-peer networks.
Our conclusion is that it is desirable to separate network traffic by application and to
model each application with its own appropriate dependence structure.

Keywords: Bursty traffic; M/G/∞ input model; infinite-source Poisson model; network
modeling; limit distribution; Lévy process; Gaussian limit
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1. Introduction

Measurements on data networks exhibit features surprising by the standards of classical
queueing and telephone network models. Data studies starting from the 1990s often consisted
of analyzing bit counts or packet counts in finely resolved adjacent time windows. The time
resolution was at the millisecond or even the microsecond level. Influential studies included
Crovella and Bestavros (1996), (1997); Duffy et al. (1993); Leland et al. (1993); and Willinger
et al. (1995), (1997).

Data studies have shown that the network traffic typically has important features termed
invariants or stylized facts. These striking features include the following.

• Heavy tails abound (Leland et al. (1994); Willinger and Paxson (1998); Willinger et al.
(1998); Willinger (1998)) for such things as file sizes (Arlitt and Williamson (1996);
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Dependence and network models 61

Resnick and Rootzén (2000)), transmission rates, transmission durations (Maulik et al.
(2002); Resnick (2003)), or connection durations.

• The number of bits or packets per time slot exhibits long-range dependence across the
time slots (see, for example, Leland et al. (1993) and Willinger et al. (1995)). There is
also a perception of self-similarity as the width of the time slot varies across a range of
time scales exceeding a typical round trip time.

• Network traffic is bursty with rare but influential periods of very high transmission rates
punctuating typical periods of modest activity. See, for example, Sarvotham et al. (2005).

Many models have been proposed to explain empirically observed characteristics in collected
network data, although these tended to concentrate on large time scales and cumulative traffic
distributional approximations over large time intervals. See, for example, Heath et al. (1998);
Kaj and Taqqu (2004); Konstantopoulos and Lin (1998); Levy and Taqqu (2000); Maulik and
Resnick (2003); Milosch et al. (2002); and Taqqu et al. (1997). Some of these models attempted
to reproduce the physical dynamics behind the measured data while others just tryed to match
statistical characteristics. Some of the models assumed constant rate user inputs. For these
large time scale cumulative input models, it is difficult to find agreement with existing data sets
(Guerin et al. (2003)).

Since, historically, data collection was over finely resolved time intervals, it is sensible to
model cumulative user inputs over adjacent, small time slots. D’Auria and Resnick (2006) began
an attempt to explain invariant data features using an infinite-source marked Poisson model in
which it was assumed that input traffic consisted of connections initiated at Poisson times and
that each connection had an associated random rate and file size which were independent. Our
current paper complements the analysis in D’Auria and Resnick (2006) by examining this model
with a different assumption on the distributional structure of the sessions. If the dependence
structure of the mark is changed so that we assume that the connection duration and the input
rate are independent heavy-tailed random variables, how different are the model predictions?
The answer is that the model properties change markedly. Tails of cumulative input per time
slot become much heavier, cumulative traffic per time slot is no longer Gaussian distributed,
and long-range dependence properties can no longer be described in the classical way with
correlations.

There are valid statistical reasons for considering the alternative assumption that the duration
and rate are independent. See Section 2 and Resnick (2007, Chapter 7). We also suggest in
Section 2 that certain Internet applications such as streaming media and peer-to-peer networks
may produce data with these dependence properties. One conclusion, explained at greater length
in Section 7, is that heterogeneous traffic comprising different types of applications will behave
differently to more homogeneous traffic. Applications which require the modeling assumption
that the session length and rate are independent will tend to look more bursty, less Gaussian,
and have cumulative traffic which is heavier tailed. Applications allowing the assumption that
the file size and rate are independent will look more Gaussian, lighter tailed, and less bursty.
This suggests that empirical studies of network traffic in the wild should decompose traffic into
classes of fairly homogeneous applications and that each class should be studied separately.
We can then seek statistical differences in characteristics and compare different applications.

The model we review in Section 2 studies small-scale asymptotic behavior, which means
that we measure the amount of data content that arrives in consecutive time slots of length δ. We
feel that this approach is more faithful to actual data experiments than the approach of studying
large time scaling models that have received the majority attention so far. We study the limit
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62 B. D’AURIA AND S. I. RESNICK

distribution of content per slot as δ tends to 0 after a centering and scaling. Letting δ tend to 0
allows us to clarify the distributional structure of the stochastic process of cumulative inputs
in successive time slots. Our results indicate that, for network traffic satisfying the condition
that the connection duration and rate are independent and heavy tailed, cumulative input in
successive time slots will be highly dependent and that each time slot has content distributed
approximately as a heavy-tailed stable distribution.

Section 2 contains more details on the description of the model as well as a fuller discussion
of scenarios where our independence assumption is appropriate. It also presents analysis of
the heavy-tail weight for cumulative content per slot and gives a symbol and concept summary
list which may be referenced when reading the rest of the paper. In Section 3 we derive the
approximating stable distribution of cumulative input per time slot, while in Sections 4 and 5
we describe the dependence structure across time intervals. We provide detailed comparisons in
Section 6 between the present model and the one in D’Auria and Resnick (2006), and highlight
and review the impact that differing dependence assumptions can have on tail heaviness. In
Section 7 we conclude the paper with some final thoughts including the suggestion that it
is necessary to statistically characterize different network applications and understand their
statistical differences.

2. Model description

The model for data traffic generation is a modification of the M/G/∞ input or infinite-source
Poisson model, where the transmission rates are assumed to be random as well. We assume that
a homogeneous Poisson process on R with points {�k} activates data transmission connections
or sessions. The parameter or rate of the Poisson process is λ = λ(δ), and to each transmission
activation time �k is associated a mark consisting of a triple (Rk, Lk, Fk). These three quantities
have the following physical interpretations:

• R denotes the rate of the transmission assuming a constant rate across the connection
interval;

• L denotes the duration of the transmission or length of the connection;

• F denotes the size of the transmitted file or quantity of transmitted data in a connection.

These three quantities are related by the relation F = RL.
We assume that the marks {(Rk, Lk, Fk),−∞ < k < ∞} are independent and identically

distributed (i.i.d.) and independent of {�k}, and that Rk and Lk are independent for each k.
The univariate marginal distributions of the triple are

G(x) = P[F1 ≤ x], FR(x) = P[R1 ≤ x], FL(x) = P[L1 ≤ x].
We suppose that all three distributions are heavy tailed:

Ḡ(x) = x−αF �F (x), F̄R(x) = x−αR�R(x), F̄L(x) = x−αL�L(x),

where �F , �R , and �L are all slowly varying, and we assume that all three tail parameters satisfy

1 < αF , αR, αL < 2.

There is empirical and engineering evidence justifying these assumptions and, consequently,
we have given priority to models with parameters in this range. See Azzouna et al. (2004);
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Guerin et al. (2003); Heffernan and Resnick (2005); Hernández-Campos et al. (2005); Leland
et al. (1994); Maulik et al. (2002); Park and Willinger (2000); Resnick (2003), (2004a); Reidi
and Willinger (2000); Sarvotham et al. (2005); and Willinger et al. (1995).

With these assumptions, the counting function of the points {(�k, Rk, Lk, Fk)},
N =

∑
k

ε(�k,Rk,Lk,Fk)

on R× [0,∞)3, is a Poisson random measure with mean measure

λ ds P[(R1, L1, F1) ∈ (dr, dl, du)] =: µ#(ds, dr, dl, du).

See, for example, Kallenberg (1983); Neveu (1977); and Resnick (2007, p. 122), (1987,
Section 3.3.2), (1992). The joint distribution of (R1, L1, F1) is computed using the assumption
that R1 and L1 are independent and that F1 = R1L1.

For a time window of length δ, we will consider weak limits of the process

A(δ) := {A(kδ, (k + 1)δ],−∞ < k <∞} as δ ↓ 0. (1)

Here A(kδ, (k+ 1)δ] represents the total amount of work inputted to the system in the kth time
slot (kδ, (k + 1)δ]. We will define this precisely for k = 0, and the definitions for the other
values of k will be obvious by analogy.

Distinguish four disjoint regions in R× [0,∞)3 by a decomposition on the arrival time of
a session and its duration:

{> 0, 1} = {(s, r, l, u) : 0 < s ≤ δ, 0 < s + l ≤ δ},
{> 0, 2} = {(s, r, l, u) : 0 < s ≤ δ, s + l > δ},
{< 0, 1} = {(s, r, l, u) : s < 0, 0 < s + l ≤ δ},
{< 0, 2} = {(s, r, l, u) : s < 0, s + l > δ}.

Region {> 0, 1} corresponds to sessions starting and ending in (0, δ], while region {> 0, 2}
describes sessions starting in (0, δ] but ending subsequent to δ. Region {< 0, 1} has sessions
starting prior to time 0 and ending in (0, δ], while region {< 0, 2} has sessions initiated prior
to 0 and ending subsequent to δ. See Figure 1, where the horizontal axis is the initiation time
of a session and the vertical axis is session duration.

Corresponding to this decomposition of regions, if we restrict the Poisson random measure
to the four regions, we obtain four independent Poisson processes:

N(· ∩ {> 0, 1}), N(· ∩ {> 0, 2}), N(· ∩ {< 0, 1}), N(· ∩ {< 0, 2}), (2)

and we use these to express A(0, δ) =: A(δ) as the sum of four independent contributions:

A(δ) = A>0,1(δ)+ A>0,2(δ)+ A<0,1(δ)+ A<0,2(δ), (3)

where

A>0,1(δ) =
∑

k

RkLk 1[(�k,Rk,Lk,Fk)∈{>0,1})],

A>0,2(δ) =
∑

k

Rk(δ − �k) 1[(�k,Rk,Lk,Fk)∈{>0,2})],
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Figure 1: Four regions.

A<0,1(δ) =
∑

k

Rk(Lk + �k) 1[(�k,Rk,Lk,Fk)∈{<0,1})],

A<0,2(δ) =
∑

k

Rkδ 1[(�k,Rk,Lk,Fk)∈{<0,2})] .

As a further notational device, we will adopt the convention that, for a region R of the (s, r, l, u)-
space, AR(t1, t2] will denote the cumulative work inputted to the system in times (t1, t2] from
points (�k, Rk, Lk, Fk) in region R.

We can represent the restrictions of N to each of the four regions given in (2) as empirical
measures of a Poisson number of i.i.d. points whose joint distributions are the mean measure
µ# restricted to that region and normalized to be a probability measure. (See, for instance,
Resnick (1992, p. 341)). For example,

N(· ∩ {> 0, 1}) =
P >0,1(δ)∑

k=1

ε
(�

>0,1
k ,R

>0,1
k ,L

>0,1
k ,F

>0,1
k )

,

where P >0,1(δ) is Poisson with parameter

µ#({> 0, 1}) =
∫
{>0,1}

λ ds P[(R1, L1, F1) ∈ (dr, dl, du)]

=
∫ δ

0
λ ds P[L1 + s < δ]

=
∫ δ

0
λFL(δ − s) ds

= δF̂L(δ)

(where F̂L(x) = ∫ x

0 FL(y) dy), and {(�>0,1
k , R

>0,1
k , L

>0,1
k , F

>0,1
k )} are i.i.d. with joint distri-

bution
µ#(· ∩ {> 0, 1})

µ#({> 0, 1}) .

In what follows we sometimes use the convention that P R(δ) is Poisson distributed with
parameter equal to µ#(R), the mean measure of the region R.
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2.1. Specifying the dependence structure for (R, L, F)

We emphasize that one of the points of this paper is that different dependence structures
for the triple (R, L, F ) induce noticeably different behavior for A(δ) in (1). In D’Auria and
Resnick (2006) we studied the RF case, where the random variables R and F were independent
(cf. also Hernández-Campos et al. (2005)). In this paper we focus on what we call the RL
model, where the random variables R and L are independent (cf. also Maulik et al. (2002)).

Modern network traffic is the superposition of heterogeneous applications. The assumption
of independence of the transmission rates from the transmission durations is natural for some
applications. Here we describe two possible situations.

The first scenario considers the transmission of streaming flows such as media streams
(e.g. video-on-demand). Usually this kind of data is transmitted in real time. This means that
the transmission durations approximately coincide with the time length of the data content. For
example, if we consider the transmission of a music song, such as by an Internet radio broadcast,
the transmission will last as long as the song duration. In some cases, like watching a movie
on the Internet from a video-on-demand service, the transmission duration does not exactly
coincide with the actual duration of the movie, owing to buffering in the receiver necessitated
by the need to prevent bad quality play owing to high jitter in the transmission. Generally, since
the required data for the movie greatly exceeds the buffer size, we can neglect the influence
of the latter on the duration of the transmission. Therefore, if we consider the rate at which
these transmissions take place, they depend on the sampling quality of the media stream and,
hence, not on its duration. Returning to the Internet radio example, the user can usually choose
a download quality depending on the bandwidth of the Internet access. This choice affects
the quality of the content, since it affects the total amount of data that will be transmitted, but
it will not alter the duration of the transmission, which as previously noted, will depend on
the duration of the content and/or the time the user wants to be connected to listen or watch.
In the literature these kinds of transmissions where the rate of the transmission depends on
the sampling rate of the content, as well as on the compression scheme, are known as VBR
transmissions (Heyman and Lakshman (1996); Park and Willinger (2000)). VBR stands for
variable bit rate since usually the compression scheme implies nonconstant transmission rates.
By neglecting this feature and assuming for simplicity that the transmission rate stays constant
over all the data transmission, we can consider the RL model to be a reasonable model for
streaming-flow transmissions.

The second scenario is peer-to-peer (P2P) networks (see Pandurangan et al. (2001) and
Tanenbaum (1996)). A typical P2P network is composed of a collection of users that are simul-
taneously online and sharing resources. Usually users dynamically connect to and disconnect
from the P2P network so that the size and type of data the network holds change continuously
in time. Viewed from the point of view of one particular user, the network contains content
that is always changing, and files the user wishes to download are alternatively present and
absent. Often it is the case that P2P users open two different communication channels, one for
uploading and one for downloading, and for each channel they specify the maximum allowed
transmission bandwidth. Usually this specification is done only once at the beginning of the
connection and is never modified. Therefore, since the choice of the maximum bandwidth
does not depend on the subsequent transferred data, it seems a natural assumption to consider
the chosen maximum allowed rates to be independent of the content and duration of the data
transmissions. In addition, owing to the large size and high fluctuations of the population
comprising the P2P network, it often happens that the upload channel is always fully utilized
while the utilization of the download channel is always fluctuating depending on the state

https://doi.org/10.1239/aap/1208358887 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1208358887


66 B. D’AURIA AND S. I. RESNICK

of the network and, therefore, the availability of the desired content. This means that the
download rates are fluctuating while the upload rates are constant and equal to the maximum
allowed upload rates. Now assuming that the users connect to the P2P network according to a
Poisson process, we can associate them with the sources of our infinite-source Poisson model.
According to this association, we can consider a source transmission as the total data transfer
that one user has transmitted by the upload channel. Therefore, the transmission durations L

will be given by the lifetime of a user on the P2P network, while the transmission rates R will
be given by the maximum upload bandwidth. In this setting it seems natural to assume that R

and L are independent, so that the RL model is appropriate.
Undoubtedly, in practice, it may not be true that R and L are actually independent but

rather satisfy some form of asymptotic independence (see, for example, Maulik et al. (2002)).
However, assuming asymptotic independence rather than full independence would lead to
unacceptable complications in the analysis and proofs without changing conclusions and, thus,
at this stage, choosing full independence of L and R seems an appropriate modeling assumption.

2.2. The RL model

We assume that the rates of transmissions are independent of the transmission durations. The
file sizes are computed by the relation F = LR. From Breiman’s theorem (Breiman (1965)),
this means that the distribution tail of the random variable F is given by

Ḡ(u) ∼
{

E(RαL)F̄L(u) if αR > αL,

E(LαR )F̄R(u) if αR < αL.

The case in which αR = αL is of somewhat less interest in applied probability. This case
could be handled by a refinement of Breiman’s theorem which proceeds under the condition
that P[R > x] = o(P[L > x]) (or vice versa); this result is given in Embrechts and Goldie
(1980). A product result in Cline (1983), quoted in Davis and Resnick (1986, p. 542), of a
slightly different character describes the case in which R

d= L (where ‘ d=’ denotes equality in
distribution), R and L are independent, P[R > x] is regularly varying with index −α, and
E(Rα) = ∞.

By using the property that the random variables R and L are heavy tailed, we derive the tail
behavior of the random variables AR(δ) with R ∈ {{< 0, 1}; {< 0, 2}; {> 0, 1}; {> 0, 2}};
that is, R is one of the four regions shown in Figure 1. For a fixed δ > 0, the tails satisfy, as
x →∞,

P[AR(δ) > x]
F̄R(x)

∼

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λ

∫ δ

s=0

∫ s

l=0
lαRFL(dl) ds, R = {> 0, 1},

λ

∫ δ

0
sαR F̄L(s) ds, R = {> 0, 2} or {< 0, 1},

λ E(L)F̄
(0)
L (δ)δαR , R = {< 0, 2}.

The tails of all the regions are regularly varying with index−αR . In particular, for fixed δ > 0,
as x →∞,

P[A(0, δ] > x] ∼ (constant)F̄R(x). (4)

We give a sample calculation which explains how to obtain the last relation about the tails
of AR for the case in which R = {> 0, 1}. The methodology is similar to the one used in
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Section 3. We have

P[A>0,1(δ) > x]
F̄R(x)

∼ E(P >0,1(δ)) P[F>0,1
0 > x]

F̄R(x)

= 1

F̄R(x)

∫
0<s<δ

∫
l<δ−s

∫
rl>x

λ dsFR(dr)FL(dl)

= λ

∫ δ

s=0

∫ δ−s

l=0

F̄R(l−1x)

F̄R(x)
FL(dl) ds

→ λ

∫ δ

s=0

∫ s

l=0
lαRFL(dl) ds as x →∞.

Since our limiting procedure will shrink the observation window (0, δ], there is no hope of
obtaining a weak limit in (1) unless we increase the arrival rate λ = λ(δ) of the sessions. We
adopt a heavy-traffic limit theorem philosophy and imagine moving through a family of models
indexed by δ as δ ↓ 0. A convenient and effective choice of λ is

λ(δ) = 1

δF̄R(δ−1)
. (5)

Using assumption (5), the behavior of the random variables A(·)(δ) is as follows.

• A<0,1(δ), suitably centered, converges weakly to a stable random variable X<0,1
αR

with
infinite second moment and index αR ∈ (1, 2).

• A<0,2(δ) does not converge weakly without scaling; with centering and scaling it con-
verges to a stable random variable X<0,2

αR
with index αR . We also note that if we suitably

decompose region {< 0, 2} into two subregions, according to whether the transmission
rate is small or large, we can have convergence to a Gaussian random variable in the
region where the rate is small, but the required scaling is of smaller order compared with
the scaling yielding X<0,2

αR
.

• A>0,1(δ) is negligible in the limit under suitable conditions.

• A>0,2(δ) is equal in distribution to A<0,1(δ).

2.3. Symbol finder

For convenience and reference, we list some symbols and concepts frequently used.

FR, FL, G The distributions of rate, duration, and file size, respectively.

F̄ For a distribution function F(x), F̄ = 1− F is the distribution tail.

F (0) For a distribution F with finite mean µ, F (0)(x) = ∫ x

0 µ−1F̄ (s) ds.

RV−α The class of regularly varying functions with index −α.

l(x) A slowly varying function: limt→∞ l(tx)/ l(t) = 1 for x > 0.

εx(·) The point probability measure putting all mass at the point x.

RL The model where R ‖ L; that is, R and L are independent.
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RF The model where R ‖ F ; that is, R and F are independent.

δ The time slot width.

λ The Poisson rate of connection arrivals λ = λ(δ).

µ#(ds, dr, dl, du) λ ds P[(R1, L1, F1) ∈ (dr, dl, du)].
P R(δ) A Poisson random variable with mean µ#(R).

AR(I ) Cumulative work inputted into the system in time interval I by points
with characteristics in R.

µδ(dr) FR(δ−1 dr)/F̄R(δ−1).

3. Limits for the cumulative input A(δ)

Here we analyze the cumulative input in [0, δ] by analyzing the four pieces separately in the
decomposition (3).

3.1. Region {> 0, 2}
Recall that this is the region contributing input in (0, δ] from sessions initiated in (0, δ] but

terminating after δ.

3.1.1. Characteristic function. For θ ∈ R, we compute

E(exp(iθA>0,2(δ)))

= E exp

(
iθ

P >0,2(δ)∑
j=1

R
>0,2
j (δ − �

>0,2
j )

)

= exp(E(P >0,2(δ)) E(exp(iθR
>0,2
1 (δ − �

>0,2
1 ))− 1))

= exp

(∫
0<s<δ

∫
s+l>δ

∫
r>0

(eiθr(δ−s) − 1)λ dsFR(dr)FL(dl)

)

= exp

(∫
0<s<δ

∫
l>s

∫
r>0

(eiθrs − 1)λ dsFR(dr)FL(dl)

)

= exp

(∫ δ

s=0

∫ ∞
r=0

(eiθrs − 1)F̄L(s)FR(dr)λ ds

)

= exp

(∫ ∞
r=0

∫ rδ

s=0
(eiθs − 1)F̄L(r−1s)λr−1 dsFR(dr)

)

= exp

(∫ ∞
s=0

∫ ∞
r=δ−1s

(eiθs − 1)F̄L(r−1s)λr−1FR(dr) ds

)

= exp

(
λδF̄R(δ−1)

∫ ∞
s=0

(eiθs − 1)

∫ ∞
r=s

F̄L(δr−1s)r−1 FR(δ−1 dr)

F̄R(δ−1)
ds

)
,

and, finally, using λ = 1/δF̄R(δ−1), we obtain

E(exp(iθA>0,2(δ))) = exp

(∫ ∞
s=0

(eiθs − 1)

∫ ∞
r=s

F̄L(δr−1s)r−1µδ(dr) ds

)
.
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Writing

ν
>0,2
δ (ds) = (ν

>0,2
δ )′(s) ds =

∫ ∞
r=s

F̄L(δr−1s)r−1µδ(dr) ds,

we obtain

E(exp(iθA>0,2(δ))) = exp

(∫ ∞
s=0

(eiθs − 1)ν
>0,2
δ (ds)

)
. (6)

3.1.2. Properties of ν
>0,2
δ .

Proposition 1. As δ→ 0,

ν
>0,2
δ

v−→ ν
>0,2
0

on (0,∞]; that is, we have vague convergence to the limit measure ν
>0,2
0 , which is a Lévy

measure with density
αR

1+ αR

x−αR−1.

Proof. The proof is similar to Proposition 1 of D’Auria and Resnick (2006). Observe that,
for s ≥ 0,

(ν
>0,2
δ )′(s) =

∫ ∞
r=s

r−1F̄L(δr−1s)µδ(dr) ≤ s−1µδ(s,∞],

and by Potter’s bounds (Bingham et al. (1987, p. 25); De Haan (1970); Resnick (1987, p. 23);
Seneta (1976)), for some small η, all s ≥ 1, some c > 0, and for all sufficiently small δ, we
have an upper bound

(ν
>0,2
δ )′(s) ≤ cs−(αR−η)−1,

which is integrable with respect to the Lebesgue measure on any neighborhood of∞. Hence,
by dominated convergence, for x > 0,

ν
>0,2
δ (x,∞] =

∫ ∞
x

(ν
>0,2
δ )′(s) ds

→
∫ ∞

x

∫ ∞
s

r−1αRr−αR−1 dr ds

= ν
>0,2
0 (x,∞]

= αR

1+ αR

∫ ∞
x

s−αR−1 ds

= x−αR

1+ αR

. (7)

To check that ν
>0,2
0 is a Lévy measure, note that

∫ 1

0
s2ν

>0,2
0 (ds) = αR

1+ αR

∫ 1

0
s2s−αR−1 ds <∞,

since 1 < αR < 2.
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3.1.3. Weak limit for A>0,2(δ). Now we use (6) and write

E exp

(
iθ

(
A>0,2(δ)−

∫ 1

0
sν

>0,2
δ (ds)

))

= exp

(∫ ∞
1

(eiθs − 1)ν
>0,2
δ (ds)+

∫ 1

0
(eiθs − 1− iθs)ν

>0,2
δ (ds)

)
. (8)

Each of the two integrals on the right-hand side of (8) converge when δ tends to 0.

Proposition 2. As δ→ 0,∫ ∞
1

(eiθs − 1)ν
>0,2
δ (ds)→

∫ ∞
1

(eiθs − 1)ν
>0,2
0 (ds), (9)

∫ 1

0
(eiθs − 1− iθs)ν

>0,2
δ (ds)→

∫ 1

0
(eiθs − 1− iθs)ν

>0,2
0 (ds). (10)

Therefore, as δ→ 0,

A>0,2(δ)−
∫ 1

0
sν

>0,2
δ (ds)⇒ X>0,2

αR
,

where the limit random variable is spectrally positive stable with index αR , Lévy measure ν
>0,2
0

given in (7), and characteristic function given by the right-hand side of (8) with ν
>0,2
δ replaced

by ν
>0,2
0 . Here ‘⇒’ denotes weak convergence or convergence in distribution

Proof. The convergence in (9) follows from standard weak convergence since the integrand
is bounded and continuous and

ν
>0,2
δ (·)

ν
>0,2
δ (1,∞] ⇒

ν
>0,2
0 (·)

ν
>0,2
0 (1,∞]

weakly as probability measures on (1,∞].
For the proof of (10), observe that

|eiθs − 1− iθs|(ν>0,2
δ )′(s) ≤ θ2s2

2
s−1µδ(s,∞] ≤ cs

F̄R(δ−1s)

F̄R(δ−1)
= c

V (δ−1s)

V (δ−1)
,

where V (s) = sF̄R(s) is regularly varying with index −αR + 1. Now, as δ→ 0,

|eiθs − 1− iθs|(ν>0,2
δ )′(s)→ |eiθs − 1− iθs|(ν>0,2

0 )′(s),

and
V (δ−1s)

V (δ−1)
→ s−αR+1.

Furthermore, by Karamata’s theorem,∫ 1

0

V (δ−1s)

V (δ−1)
ds →

∫ 1

0
s−αR+1 ds = 1

2− αR

.

The desired result now follows from Pratt’s lemma (see Pratt (1960) or Resnick (1999, p. 164)),
since Pratt’s lemma may be applied to both the real and imaginary parts of

(eiθs − 1− iθs)(ν
>0,2
δ )′(s),

to obtain convergence to the limit after integrating over [0, 1].
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3.2. Region {< 0, 1}
In this region the contribution to A(0, δ] is given by the sessions initiated before 0 and

terminating in (0, δ]. In D’Auria and Resnick (2006, Proposition 6) it was proved that this
contribution is identical in distribution to the one of region {> 0, 2}. So we have the following
result.

Proposition 3. We have

A<0,1(δ)
d= A>0,2(δ),

and, therefore, as δ→ 0,

A<0,1(δ)−
∫ 1

0
sν

<0,1
δ (ds)⇒ X<0,1

αR
,

where ν
<0,1
δ = ν

>0,2
δ and X<0,1

αR

d= X>0,2
αR

, with the quantities indexed by ‘>0,2’ defined as in
Proposition 2.

3.3. Region {> 0, 1}
The region {> 0, 1} is a small region decreasing in size with δ and should not make a

contribution to the overall traffic. Reasonable conditions which assure this include regular
variation of FL(x) at 0. This includes distributions FL(x) satisfying

FL(x) ∼ xβ, x ↓ 0, β > 0,

and, hence, distributions FL with densities F ′L(x) satisfying

F ′L(x) ∼ cxβ−1, x ↓ 0, β > 0.

Densities which look like gamma densities near 0 are appropriate. In particular, our assumptions
allow β = 1, as is the case for the standard exponential density.

We start analysis of this region by observing that, without loss of generality, we can
assume that FL(0) = 0. Indeed if FL(0) = a with 0 < a < 1, we can define F #

L(x) =
(FL(x)− a)/(1− a) and decompose the Poisson arrival process into two processes: the first
with arrival rate (1 − a)λ and the second with arrival rate aλ. The first arrival process has
associated sessions whose lengths are always different from 0, and the second arrival process
has sessions whose lengths are always null. The contribution of the second arrival process to
cumulative loads is always 0, so the original arrival process will contribute to the process A(δ)

as the first component with the modified arrival rate.
Assuming that FL(x) is regularly varying at 0 is equivalent to supposing that W := L−1 has

a distribution tail which is regularly varying at∞ with index −αW < 0. To roughly estimate
the traffic contribution of the region {> 0, 1}, we compute the mean of A>0,1(δ). We have

E(A>0,1(δ)) = E(P >0,1(δ)) E(R>0,1L>0,1)

=
∫

0<s<δ

∫
r>0

∫
l≤δ−s

rlλ dsFR(dr)FL(dl)

= E(R)λ

∫ δ

s=0

∫ s

l=0
lFL(dl) ds
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= E(R)λ

∫ δ

s=0
E(L 1[L≤s]) ds

= E(R)λ

∫ ∞
s=δ−1

E(L 1[L−1≥s]) ds

s2 .

Now suppose that

P[W > x] = F̄W (x) ∼ x−αW L(x) as x →∞.

Then a variant of Karamata’s theorem (Resnick (2006, Exercise 2.5)) implies that

E(L 1[L−1≥s]) ∼
αW

1+ αW

s−1F̄W (s) as s →∞,

and, by Karamata’s theorem, as δ→ 0,

E(A>0,1(δ)) ∼ E(R)
αW

(1+ αW)(2+ αW)

F̄W (δ−1)

δ−1F̄R(δ−1)
.

Thus, if we assume that FL is regularly varying at 0 or, equivalently, that F̄W is regularly varying
at∞, we find that E(A>0,1(δ))→ 0 as δ→ 0 if and only if

lim
x→∞

F̄W (x)

xF̄R(x)
= 0.

This implies that A>0,1(δ)
L1→ 0 and, hence, region {> 0, 1} gives a negligible contribution to

the cumulative work. A sufficient condition is that

1+ αW > αR. (11)

One reasonable circumstance where (11) holds is the following. Suppose that FL has a
density F ′L(x) which converges to a limit at 0: F ′L(x) → F ′L(0) ∈ (0,∞) as x → 0. The
standard exponential density satisfies this condition. Then, as l→ 0,

FL(l) ∼ lF ′L(0),

and, as x →∞,

F̄W (x) = P[L−1 > x] = P

[
L <

1

x

]
∼ F ′L(0)

1

x
,

and so F̄W (x) ∈ RV−1 and αW = 1. So, owing to the condition 1 < αR < 2, (11) is satisfied.
For the Boston University data set (Resnick (2007)), we were curious to see what the left-tail

behavior of L turned out to be. QQ plots of the empirical quantiles of the log-transformed data
plotted against the theoretical quantiles of the exponential distribution are given in Figure 2 and
show that a reasonable estimate for αW is 4.5.

Henceforth, we assume that A>0,1(δ)
L1→ 0, so that we can neglect the asymptotic contribu-

tion to loading from region {> 0, 1}.

https://doi.org/10.1239/aap/1208358887 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1208358887


Dependence and network models 73

L
og

 s
or

te
d 

da
ta

L
og

 s
or

te
d 

da
ta

2.0

1.5

1.0

2 3 4 5 6 7 8 0 2 4 6 8

2

0

–2

–4

Quantiles of exponential Quantiles of exponential

Figure 2: QQ plots of the 500 largest order statistics of 1/buL (left), the reciprocals of file download
durations, and the corresponding plot for the whole data set (right). The slope estimator applied to the

left plot gives an estimate for αW of 4.5.

3.4. The contribution of region {< 0, 2}
We divide region {< 0, 2} into two regions, {< 0, 2−} and {< 0, 2+}, defined in the following

way:

{< 0, 2−} =
{
(s, r, l, u) ∈ {< 0, 2} : 0 ≤ r <

1

δ

}
, {< 0, 2+} = {< 0, 2} \ {< 0, 2−}.

The reason for this further splitting is due to the fact that we are looking for a region that
asymptotically gives a Gaussian contribution. We show that region {< 0, 2−} is that region. In
addition, we show that region {< 0, 2+} dominates in the limit as δ tends to 0, so that in the
limit the Gaussian component disappears.

3.4.1. Characteristic function of A<0,2−(δ). Since

A<0,2−(δ) =
P <0,2− (δ)∑

i=1

R
<0,2−
i δ,
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the characteristic function of A<0,2−(δ) is computed as follows. For θ ∈ R,

E(exp(iθA<0,2−(δ))) = exp(E(P <0,2−(δ)) E(exp(iθR
<0,2−
1 δ)− 1))

= exp

(∫
s<0

∫
0≤r<1/δ

∫
l>|s|+δ

(eiθrδ − 1)λ dsFL(dl)FR(dr)

)

= exp

(
λ

∫
s>δ

∫
l>s

FL(dl) ds

∫ 1/δ

r=0
(eiθrδ − 1)FR(dr)

)

= exp

(
λ

∫
s>δ

F̄L(s) ds

∫ 1/δ

r=0
(eiθrδ − 1)FR(dr)

)

= exp

(
λF̄R(δ−1) E(L)F̄

(0)
L (δ)

∫ 1

r=0
(eiθr − 1)µδ(dr)

)

= exp

(
λF̄R(δ−1)

∫ 1

0
(eiθr − 1)ν

<0,2−
δ (dr)

)
,

where

ν
<0,2−
δ (dr) = E(L)F̄

(0)
L (δ)µδ(dr).

Finally, using λ = 1/δF̄R(δ−1), we obtain

E(exp(iθA<0,2−(δ))) = exp

(
δ−1

∫ 1

0
(eiθr − 1)ν

<0,2−
δ (dr)

)
. (12)

3.4.2. Gaussian limit for A<0,2−(δ). For fixed δ > 0, the quantity

m(δ) := δ−1
∫ 1

0
rν

<0,2−
δ (dr) (13)

is finite since

m(δ) ≤ E(L)δ−1
∫ 1

0
1µδ(dr) = E(L)δ−1 FR(δ−1)

F̄R(δ−1)
<∞.

Define

a(δ) :=
(

δ−1
∫ 1

0
r2ν

<0,2−
δ (dr)

)1/2

. (14)

Note that, as δ tends to 0, we have a(δ)→∞ since, by Fatou’s lemma,

lim
δ→0

δa2(δ) = lim
δ→0

E(L)F̄
(0)
L (δ)

∫ 1

0
r2µδ(dr)

≥ E(L)

∫ 1

0
r2αRr−αR−1 dr

= E(L)
αR

2− αR

. (15)
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Now we use (12) and write

E exp

(
iθ(A<0,2−(δ)−m(δ))

a(δ)

)

= exp

(∫ 1

0
δ−1(exp(ia−1(δ)θr)− 1)ν

<0,2−
δ (dr)− i

θ

a(δ)

∫ 1

0
δ−1rν

<0,2−
δ (dr)

)

= exp

(∫ 1

0
δ−1

(
exp(ia−1(δ)θr)− 1− i

θ

a(δ)
r

)
ν

<0,2−
δ (dr)

)
,

and the exponent in the last expression converges to −θ2/2 since∣∣∣∣
∫ 1

0
δ−1

(
exp(ia−1(δ)θr)− 1− i

θ

a(δ)
r

)
ν

<0,2−
δ (dr)+ θ2

2

∣∣∣∣
=
∣∣∣∣
∫ 1

0
δ−1

(
exp(ia−1(δ)θr)− 1− i

θ

a(δ)
r − 1

2

(
iθr

a(δ)

)2)
ν

<0,2−
δ (dr)

∣∣∣∣
≤ δ−1

a3(δ)

∫ 1

0

1

3! |θ |
3r3ν

<0,2−
δ (dr)

and
δ−1

a3(δ)

∫ 1

0
r3ν

<0,2−
δ (dr) ≤ δ−1

a3(δ)

∫ 1

0
r2ν

<0,2−
δ (dr) = 1

a(δ)
→ 0.

We summarize the previous result by the following proposition.

Proposition 4. With m(δ) given by (13) and a(δ) given by (14), we have

A<0,2−(δ)−m(δ)

a(δ)
⇒ N<0,2− ∼ N(0, 1) as δ→ 0.

3.4.3. Characteristic function of A<0,2+(δ). We have

A<0,2+(δ) =
P <0,2+ (δ)∑

i=1

R
<0,2+
i δ.

Define
ν

<0,2+
δ (dr) = E(L)F̄

(0)
L (δ)µδ/b(δ)(dr),

where

µδ/b(δ)(dr) := FR(δ−1b(δ) dr)

F̄R(δ−1(δ))
,

with b(δ) satisfying the relation

γ (δ) := F̄R(δ−1b(δ))

δF̄R(δ−1)
→ 1. (16)

In Section 3.4.4, below, we study the function b(δ) and show that

b(δ) =
(

1

δ

)1/αR

�

(
1

δ

)
→∞ as δ ↓ 0 (17)

for a function � which is slowly varying at∞.
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Now define

n(δ) := b(δ)γ (δ)

∫ 1

1/b(δ)

rν
<0,2+
δ (dr).

The characteristic function of (A<0,2+(δ)− n(δ))/b(δ) is computed as follows. For θ ∈ R,

E

(
exp

(
iθ

A<0,2+(δ)− n(δ)

b(δ)

))

= exp

(
E(P <0,2+(δ)) E

(
exp

(
i

θ

b(δ)
R

<0,2+
1 δ

)
− 1

)
− iθ

n(δ)

b(δ)

)

= exp

(∫
s<0

∫
r≥1/δ

∫
l>|s|+δ

(eiθrδ/b(δ) − 1)λ dsFL(dl)FR(dr)− iθ
n(δ)

b(δ)

)

= exp

(
λ

∫
s>δ

∫
l>s

FL(dl) ds

∫ ∞
r=1/δ

(eiθrδ/b(δ) − 1)FR(dr)− iθ
n(δ)

b(δ)

)

= exp

(
λ

∫
s>δ

F̄L(s) ds

∫ ∞
r=1/δ

(eiθrδ/b(δ) − 1)FR(dr)− iθ
n(δ)

b(δ)

)

= exp

(
λF̄R(δ−1b(δ)) E(L)F̄

(0)
L (δ)

∫ ∞
r=1/b(δ)

(eiθr − 1)µδ/b(δ)(dr)− iθ
n(δ)

b(δ)

)

= exp

(
λF̄R(δ−1b(δ))

∫ ∞
r=1/b(δ)

(eiθr − 1)ν
<0,2+
δ (dr)− iθ

n(δ)

b(δ)

)
,

and, using λ = 1/(δF̄R(δ−1)), we have

E

(
exp

(
iθ

A<0,2+(δ)− n(δ)

b(δ)

))

= exp

(
γ (δ)

(∫ 1

1/b(δ)

(eiθr − 1− iθr)ν
<0,2+
δ (dr)+

∫ ∞
1

(eiθr − 1)ν
<0,2+
δ (dr)

))

→ exp

(∫ 1

0
(eiθr − 1− iθr)ν(dr)+

∫ ∞
1

(eiθr − 1)ν(dr)

)
,

where ν := ν
<0,2+
0 is a Lévy measure with density E(L)αRx−αR−1.

We summarize the previous result by the following proposition.

Proposition 5. As δ→ 0,
A<0,2+(δ)− n(δ)

b(δ)
⇒ X<0,2+

αR
,

where the limit random variable is stable with Lévy measure ν whose density is E(L)αRx−αR−1.

3.4.4. On the function b(δ). The definition of b(·) in (16) is related to the concept of conjugate
inverses of regularly varying functions. See Bingham et al. (1987, p. 48). The relationship
in (16) can be rephrased as follows. Define

t = δ−1, V (t) = 1

1− FR(t)
, h

(
1

δ

)
= b(δ),
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and require that
tV (t)

V (th(t))
→ 1 as t →∞

or
V (th(t))

tV (t)
→ 1 as t →∞.

Now define
c(t) = th(t).

We need
V ◦ c(t) ∼ tV (t),

so an obvious solution is
c(t) ∼ V←(tV (t)).

Therefore,

h(t) = c(t)

t
= V←(tV (t))

t
as t →∞.

Observe that

1. tV (t) ∈ RVαR+1;

2. V← ∈ RV1/αR
and, therefore, V←(tV (t)) ∈ RV(1+αR)/αR

= RV1+1/αR
;

3. h(t) = V←(tV (t))/t ∈ RV1/αR+1−1 = RV1/αR
.

Therefore,

b(δ) = h

(
1

δ

)
=
(

1

δ

)1/αR

�

(
1

δ

)
for a function � which is slowly varying at∞.

The connection to conjugate pairs of slowly varying functions (Bingham et al. (1987,
Section 1.5.7)) is as follows. Two slowly varying functions (�, �∗) are conjugate pairs if,
as x →∞,

�(x)�∗(x�(x))→ 1 and �∗(x)�(x�∗(x))→ 1. (18)

Given the functions V and V←, we may write

V (t) ∼ tαR�(tαR ) and V←(t) ∼ t1/αR�
1/αR∗ (t)

for a conjugate pair (�, �∗). This representation is possible (Bingham et al. (1987, Proposi-
tion 1.5.15)) because

V ◦ V←(t) ∼ t and V← ◦ V (t) ∼ t

re-expresses (18). This allows the following expression for h in terms of (�, �∗):

h(t) = 1

t
V←(tV (t))

∼ 1

t
(tV (t))1/αR�

1/αR∗ (tV (t))

= t1/αR [�1/αR (tαR )�
1/αR∗ (t1+αR�(tαR ))].

The expression in square brackets is slowly varying and expressed in terms of (�, �∗).
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3.5. Discussion and summary

We summarize the contributions of the four regions to cumulative traffic in (0, δ).

1. For region {> 0, 2}, we have, as δ→ 0,

X>0,2(δ) := A>0,2(δ)−
∫ 1

0
sν

>0,2
δ (ds)⇒ X>0,2

αR
,

a spectrally positive, stable random variable with index αR and Lévy measure ν
>0,2
0 given

in (7).

2. For region {> 0, 1}, we have, under suitable conditions on FL, A>0,1(δ)
L1→ 0. The

contribution of this region is negligible in the limit.

3. For region {< 0, 2−}, we have

X<0,2−(δ) := A<0,2−(δ)−m(δ)

a(δ)
⇒ N<0,2− ∼ N(0, 1).

4. For region {< 0, 2+}, we have

X<0,2+(δ) := A<0,2+(δ)− n(δ)

b(δ)
⇒ X<0,2+

αR
=: X<0,2

αR
,

a spectrally positive, stable random variable with index αR and Lévy measure ν with
density E(L)αRx−αR−1 on (0,∞].

5. For region {< 0, 1}, we have

A<0,1(δ)
d= A>0,2(δ),

so

X<0,1(δ) := A<0,1(δ)−
∫ 1

0
sν

>0,2
δ (ds)⇒ X<0,1

αR

d= X>0,2
αR

.

Thus, we may write

A(δ) = X>0,2(δ)+
∫ 1

0
sν

>0,2
δ (ds)+ A>0,1(δ)+ a(δ)X<0,2−(δ)

+m(δ)+ b(δ)X<0,2+(δ)+ n(δ)+X<0,1(δ)+
∫ 1

0
sν

>0,2
δ (ds).

We conclude that

A(δ)−m(δ)− n(δ)− 2
∫ 1

0
sν

>0,2
δ (ds)

= X>0,2(δ)+ A>0,1(δ)+ a(δ)X<0,2−(δ)+ b(δ)X<0,2+(δ),

where the summands on the right are independent and

X<0,1(δ)
d= X>0,2(δ)⇒ X>0,2

αR
(spectrally positive, stable random variable with index αR),

A>0,1(δ)
L1→ 0 (negligible),

X<0,2+(δ)⇒ X<0,2+
αR

(spectrally positive, stable random variable with index αR),

X<0,2−(δ)⇒ N<0,2− (normal).
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Also,
A(δ)− d(δ)

b(δ)
⇒ X<0,2

αR
,

which is stable with index αR , where

d(δ) := m(δ)+ n(δ)+ 2
∫ 1

0
sν

>0,2
δ (ds). (19)

Using (15) and (17), we see that

lim
δ→0

b(δ)

a(δ)
≤ (constant) lim

δ→0

δ−1/αR l(1/δ)

1/δ1/2 = (constant) lim
δ→0

δ1/2−1/αR

(
1

δ

)
= 0,

since 1
2 < 1/αR < 1. So our final traffic representation for cumulative traffic on a small interval

for the RL model is

A(0, δ] − d(δ)
d= (X>0,2

αR
+ op(1))+ (X<0,1

αR
+ op(1))+ (X<0,2+

αR
+ op(1))b(δ)

+ (N<0,2−(0, 1)+ op(1))o(b(δ)),

where op(1) is a factor converging in probability to 0.
The RL model predicts that cumulative traffic over a small time interval is approximated

by a stable random variable. We separated region {< 0, 2} into two parts in order to find a
region capable of giving a normal limit. In actual measurements (Sarvotham et al. (2005))
a component termed the β-traffic is observed which seems well approximated by a Gaussian
distribution. At first, this observation seems to discourage the use of the RL model since the
alternate RF model does give a normal approximation. However, as previously mentioned in
Section 2, the RL model seems appropriate for specific Internet applications. This suggests
that, by looking at these specific kinds of data flows, we could expect to find at high aggregation
levels behavior different from Gaussian.

4. Dependence structure: asymptotic distributions

We now analyze the weak limits of the stochastic process

A(δ) := {A(kδ, (k + 1)δ],−∞ < k <∞},
defined in (1). We will see that the R

∞ family indexed by δ converges to a limiting stable
sequence

X∞ = {X∞(k),−∞ < k <∞}
with

P[X∞(0) = X∞(k)] = 1.

The price paid for letting δ tend to 0 is thus a limit sequence with degenerate dependence
structure. The consequence of sampling at too high a frequency (using economic terminology)
is perfect dependence.

Before starting the analysis, we state Lemma 1, below, which will considerably simplify
subsequent computations. Its proof follows by the same computations carried out for Proposi-
tion 5.
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Lemma 1. Let R = R(δ) be a subset of {< 0, 2} of the form R(δ) = {(s, r, l, u) ∈
{< 0, 2} : (s, l) ∈ BR(δ)}, where BR(δ) is a Borel subset of R× R+, and define

AR(δ) =
P R(δ)∑
i=1

RR
i δ.

Then, as δ→ 0,

1

b(δ)

(
AR(δ)− |BR(δ)|

E(L)F̄
(0)
L (δ)

(n(δ)+m(δ))

)
⇒ |B

R(0)|
E(L)

X,

where |BR(δ)| is the measure of the set BR(δ) under the measure ds × FL(dl), |BR(0)| =
limδ→0 |BR(δ)| ≥ 0 is assumed to exist, and the limit random variable is stable with Lévy
measure ν|BR(0)|/E(L) whose density is αRx−αR−1|BR(0)|/E(L).

Corollary 1. Lemma 1 implies that if |BR(δ)| → 0 as δ→ 0 then

AR(δ)− |BR(δ)|
E(L)F̄

(0)
L (δ)

(n(δ)+m(δ)) = op(b(δ)).

4.1. Convergence of finite-dimensional distributions of {A(iδ, (i + 1)δ], i ≥ 1}
In this section we prove the following result.

Proposition 6. For any nonnegative integer k, as δ tends to 0 we have, in R
k+1,

1

b(δ)

⎛
⎜⎜⎜⎝

A(0, δ] − d(δ)

A(δ, 2δ] − d(δ)
...

A(kδ, (k + 1)δ] − d(δ)

⎞
⎟⎟⎟⎠⇒

⎛
⎜⎜⎜⎝

X∞(0)

X∞(1)
...

X∞(k)

⎞
⎟⎟⎟⎠ ,

where

b(δ) =
(

1

δ

)1/αR

�

(
1

δ

)
→∞ as δ ↓ 0,

d(δ) = 2
∫ 1

0
v

∫ ∞
r=v

F̄L(δr−1v)r−1µδ(dr) dv + b(δ)γ (δ) E(L)F̄
(0)
L (δ)

∫ 1

0
rµδb−1(δ)(dr),

(20)

and each X∞(i) for 0 ≤ i ≤ k are stable with Lévy measure ν whose density is E(L)αRx−αR−1.
In addition, P[X∞(i) = X∞(j)] = 1 for 0 ≤ i, j ≤ k.

Remark 1. The function d(δ) is the same function defined in (19). In (20) we have used the
fact that

m(δ)+ n(δ) = δ−1
∫ b(δ)

0
rν

<0,2−
δ (dr) = b(δ)γ (δ)

∫ 1

0
rν

<0,2+
δ (dr),

which is straightforward to check.
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Proof of Proposition 6. Along with the regions {< 0, 1}, {< 0, 2}, {> 0, 1}, and {> 0, 2}
used to analyze the convergence in distribution of A(0, δ], we need the analogously defined
regions {< kδ, 1}, {< kδ, 2}, {> kδ, 1}, and {> kδ, 2}, where, for example,

{< kδ, 2} = {(s, r, l, u) : s < kδ, s + l > (k + 1)δ},
{> kδ, 2} = {(s, r, l, u) : kδ < s < (k + 1)δ, s + l > (k + 1)δ}.

See Figure 3.
Additionally, for analyzing the dependence between A(0, δ] and A(kδ, (k + 1)δ], we will

need the regions R11, R12, R21, and R22 which contain points (�k, Rk, Lk, Fk) contributing
to both A(0, δ] as well as A(kδ, (k + 1)δ]. (See the left graphic in Figure 4.) In particular,
points in R22 = {< 0, 2} ∩ {< kδ, 2} contribute

AR22 =
∑

k : (�k,Rk,Lk,Fk)∈R22

Rkδ

to both A(0, δ] and A(kδ, (k+1)δ], which shows that a high degree of dependence is expected.
By applying Lemma 1 we have

1

b(δ)

(
AR22 − |BR22(δ)|

E(L)F̄
(0)
L (δ)(n(δ)+m(δ))

)
⇒ XR22

αR
as δ→ 0

with X
R22
αR

stable with Lévy measure ν.
As for the other regions (see the right graphic in Figure 4), set

R<0,(δ,(k+1)δ] = {(s, r, l, u) : s < 0, δ < |s| + l ≤ (k + 1)δ},
and write

A(0, δ] = A>0,1(0, δ] + A>0,2(0, δ] + A<0,1(0, δ] + A<0,2(0, δ]
= A>0,1(0, δ] + A>0,2(0, δ] + A<0,1(0, δ] + AR<0,(δ,(k+1)δ]

(0, δ] + AR22(0, δ].

kδ

{< kδ,2}

{< kδ,1}

I

t

{> kδ,2}

{> kδ,1}

(k + 1)δ

Figure 3: Four regions for analyzing contributions in the kth slot.
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0 kδ (k + 1)δ

I

0

I

tt

R22

(k + 1)δkδδδ

1

2
3

4 5

1 2 3 4 5R21 R12 R11 R<0, (δ,(k+1)δ]

Figure 4: Regions for dependence analysis.

To analyze region R<0,(δ,(k+1)δ], observe that we have

|BR<0,(δ,(k+1)δ]
(δ)| = E(L)(F̄

(0)
L (δ)− F̄

(0)
L ((k + 1)δ))→ 0.

Hence, by applying Corollary 1 we have

AR<0,(δ,(k+1)δ]
(0, δ] −

(
1− |BR22 |

E(L)F̄
(0)
L (δ)

)
(m(δ)+ n(δ)) = op(b(δ)).

Therefore, we conclude that

A(0, δ] − d(δ) = AR22(0, δ] − d(δ)+ op(b(δ)).

Likewise, we consider A(iδ, (i + 1)δ] for 1 ≤ i ≤ k. We set

R<0,((i+1)δ,(k+1)δ] = {(s, r, l, u) : s < 0, (i + 1)δ < s + l < (k + 1)δ},
R(0,iδ],((i+1)δ,∞] = {(s, r, l, u) : 0 < s ≤ iδ, s + l > (i + 1)δ}

(see Figure 5), and write

A(iδ, (i + 1)δ] = AR>iδ,1
(iδ, (i + 1)δ] + AR>iδ,2

(iδ, (i + 1)δ] + AR<iδ,1
(iδ, (i + 1)δ]

+ (AR<0,((i+1)δ,(k+1)δ]
(iδ, (i + 1)δ] + AR22(iδ, (i + 1)δ]

+ AR(0,iδ],((i+1)δ,∞]
(iδ, (i + 1)δ]).

Again, by Corollary 1 we have

AR<0,((i+1)δ,(k+1)δ]
(iδ, (i + 1)δ] − (m(δ)+ n(δ))

|BR<0,((i+1)δ,(k+1)δ]
(δ)|

E(L)F̄
(0)
L (δ)

= op(b(δ)),

AR(0,iδ],((i+1)δ,∞]
(iδ, (i + 1)δ] − (m(δ)+ n(δ))

|BR(0,iδ],((i+1)δ,∞]
(δ)|

E(L)F̄
(0)
L (δ)

= op(b(δ)).

https://doi.org/10.1239/aap/1208358887 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1208358887


Dependence and network models 83

0 iδ (i + 1)δ

I

t

R22

δ

1

2

2

11 3

3

4

4

5

5

R<iδ,1

kδ (k + 1)δ

R>iδ,16

6

R<0, ((i+1)δ,(k+1)δ] R(0,iδ],((i+1)δ,∞]

R>iδ,2

Figure 5: Regions for dependence analysis.

Therefore, keeping in mind that

AR22(kδ, (k + 1)δ] = AR22(iδ, (i + 1)δ] = AR22(0, δ]
and that

|BR(0,iδ],((i+1)δ,∞]
(δ)| + |BR<0,((i+1)δ,(k+1)δ]

(δ)| + |BR22(δ)| = E(L)F̄
(0)
L (δ),

we have
A(iδ, (i + 1)δ] − d(δ) = AR22(0, δ] − d(δ)+ op(b(δ)).

Thus, we have⎛
⎜⎜⎜⎝

A(0, δ] − d(δ)

A(δ, 2δ] − d(δ)
...

A(kδ, (k + 1)δ] − d(δ)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

AR22(0, δ] − d(δ)

AR22(0, δ] − d(δ)
...

AR22(0, δ] − d(δ)

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

op(b(δ))

op(b(δ))
...

op(b(δ))

⎞
⎟⎟⎟⎠ ,

and the conclusion of Proposition 6 follows.

4.2. Asymptotic distribution over intervals a fixed distance apart

The previous section discusses dependence over successive slots of length δ. The asymptotic
statement in Proposition 6 leads to a degenerate limit because δ ↓ 0 shrinks the distance between
A(0, δ] and A(kδ, (k + 1)δ]. Here we investigate (A(0, δ], A(t, t + δ]) for t > δ with t fixed
and find that, as δ ↓ 0, this vector is asypmtotically stable with a nondegenerate dependence
structure.
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Proposition 7. Suppose that t > 0 is fixed. As δ ↓ 0,

1

b(δ)

(
A(0, δ] − d(δ)

A(t, t + δ] − d(δ)

)
⇒
(

X1 +Xt

X2 +Xt

)
, (21)

where d(δ) is given by (20) in Proposition 6, X1, X2, and Xt are independent, stable random
variables with respective Lévy measures

ν1(dx) = ν2(dx) = E(L)F
(0)
L (t)αRx−αR−1 dx,

νt (dx) = E(L)F̄
(0)
L (t)αRx−αR−1 dx.

Proof. As in the proof of Proposition 6, we decompose

A(0, δ] = A<0,(δ,t+δ](δ)+ A<0,(t+δ,∞](δ)+ op(b(δ)),

A(t, t + δ] = A(0,t],(t+δ,∞](t, t + δ] + A<0,(t+δ,∞](t, t + δ] + op(b(δ)),

and keep in mind that
A<0,(t+δ,∞](δ) = A<0,(t+δ,∞](t, t + δ]

and
A<0,(δ,t+δ](δ) d= A(0,t],(t+δ,∞](t, t + δ].

Then we apply Lemma 1 by noting that

|B<0,(δ,t+δ](0)| = E(L)F
(0)
L (t)

and
|B<0,(t+δ,∞](0)| = E(L)F̄

(0)
L (t).

5. Dependence structure: long-range dependence analysis

Correlations are not defined for either the pair (A(0, δ], A(kδ, (k + 1)δ]) or for the limits
(X1 + Xt, X2 + Xt) in Proposition 7. This precludes a conventional discussion of the long-
range dependence of variables lagged by k or t . In such circumstances the following alternative
methods for defining and identifying long-range dependence have been proposed and used.

• General sample moment based methods proposed and discussed in Heyde and Yang
(1997) using the sample Allen variance.

• Methods geared to analyzing the rate of decay of dependence in heavy-tailed processes
such as the extremal dependence measure (Hernández-Campos et al. (2005); Resnick
(2004b)).

• Methods specific to stable processes such as covariation or codimension (Samorodnitsky
and Taqqu (1994)).

• Methods based on phase change ideas as promoted in Samorodnitsky (2002).

We will consider the first two methods here. The methods in the second two bullets often
provide decay rates which look similar to long-range dependence discussions in finite-variance
contexts using correlations. We emphasize that in non-Gaussian contexts, such as considered
here, correlation or its surrogates contain only limited information about dependence.
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5.1. Dependence structure: long-range dependence measured by sample Allen variance

One way to consider the dependence structure of the process A(δ) defined in (1) is by
examining whether long-range dependence is present as measured by the sample Allen variance
(see Heyde and Yang (1997)). A stationary, centered process {Xk, k ∈ Z} (which is not
necessarily assumed to have finite-marginal second moments) is long-range dependent by
sample Allen variance if

(∑m
j=1 Xj

)2∑m
j=1 X2

k

p−→∞ as m→∞, (22)

where ‘
p−→’ denotes convergence in probability.

Applying this to our stationary process A(δ), we find, for fixed δ, that the ratio in (22) reduces
to (∑m−1

j=0 Ã(jδ, (j + 1)δ])2∑m−1
j=0 (Ã(jδ, (j + 1)δ])2

, (23)

where the tilde on a quantity like Ã(jδ, (j + 1)δ] indicates that the variable has been centered.
The numerator of (23) is equal to (Ã(0, mδ])2, that is the centered contribution of the sources

in the interval (0, mδ]. A modification of Theorem 5.1 of Maulik et al. (2002) to the stationary
case shows that

Ã(0, mδ]
bF (m)

⇒ XαF
as m→∞

for fixed δ, where XαF
is a stable random variable with index αF and as usual

bF (m) := inf

{
z : P[F > z] < 1

m

}
= Ḡ←

(
1

m

)
.

Note that αF = αR ∧ αF and

(Ã(0, mδ])2 = Op(b2
F (m)),

where bF (m) is regularly varying with index 1/αF . Therefore, (23) holds if

∑m−1
j=0 (Ã(jδ, (j + 1)δ])2

b2
F (m)

p−→ 0.

As pointed out in Heyde and Yang (1997), the stability theorem of Loève (1978, Theorem E,
p. 53) is relevant. Equation (4) implies that E(A(0, δ]p) < ∞ for p < αR , and from Loève
(1978),

m−1∑
j=0

(Ã(jδ, (j + 1)δ])2

m2/p
→ 0 as m→∞. (24)

When αF = αL < αR , we obtain (24), since bF is regularly varying with index 1/αF . We
have not been able to resolve this when αF = αR < αL.
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5.2. Dependence structure: long-range dependence measured by the extremal depen-
dence measure

The extremal dependence measure (EDM) is defined for two nonnegative random variables
whose joint distribution is multivariate regularly varying on the cone [0,∞)2 with limit mea-
sure ν and angular probability measure S. (This terminology is reviewed in Resnick (2007,
Chapter 6).)

For a random vector Z = (Z(1), Z(2)), this means that there must exist a normalizing
sequence bn→∞ and a Radon measure ν on [0,∞]2 \ {0} such that

n P

[
Z

bn

∈ ·
]

v−→ ν(·), (25)

where ‘
v−→’ denotes vague convergence on [0,∞]2 \ {0}. The limit measure ν has the property

that the polar coordinate transformation converts ν into a product measure,

ν{x ∈ [0,∞]2 \ {0} : r(x) > r0, θ(x) ∈ ·} = cr−α
0 S(·)

for some c > 0, some index α > 0, and S a probability measure on [0, π/2]. Here (r(x), θ(x))

are the usual polar coordinates of x, and S is called the angular measure.

5.2.1. Definition and a useful property. The EDM of the two random variables (Z(1), Z(2)) is

EDM(Z(1), Z(2)) := 1−
∫ π/2

0 (θ − π/4)2S(dθ)

(π/4)2 = 1

(π/4)2

∫ π/2

0
θ

(
π

2
− θ

)
S(dθ). (26)

The EDM has some of the desirable properties possessed by correlation (Resnick (2004b)).
The EDM is 0 if (Z(1), Z(2)) are independent or asymptotically independent, and the EDM is 1
if (Z(1), Z(2)) are comonotone, P[Z(1) = Z(2)] = 1, or if asymptotic full dependence holds.
Another useful property which we need is summarized next.

Proposition 8. Suppose that Z1 and Z2 are two independent random vectors of dimension 2
satisfying (25) with the same scaling sequence {bn}. Then, with obvious notation regarding
subscripting, we have the EDM of Z1 + Z2 satisfies

EDM(Z
(1)
1 + Z

(1)
2 , Z

(2)
1 + Z

(2)
2 ) =

(
ν1{x : ‖x‖ > 1}

ν1{x : ‖x‖ > 1} + ν2{x : ‖x‖ > 1}
)

EDM(Z
(1)
1 , Z

(2)
1 )

+
(

ν2{x : ‖x‖ > 1}
ν1{x : ‖x‖ > 1} + ν2{x : ‖x‖ > 1}

)
EDM(Z

(1)
2 , Z

(2)
2 ).

(27)

Proof. The limit measure for Z1+Z2 is ν1+ν2 (Resnick (2007, Proposition 7.4, Section 7.3))
and, therefore, the angular measure of ν1 + ν2 can be written as

(ν1 + ν2)({x : r(x) > 1, θ(x) ∈ ·})
(ν1 + ν2)({x : r(x) > 1}) .

The rest follows from algebra.

Remark 2. One practical implication of Proposition 8 is that if we can decompose a bivariate
vector into an independent sum then any summand which possesses independent or asymptot-
ically independent components will not contribute to the EDM and can be neglected.
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5.2.2. The EDM of (X1 +Xt, X2 +Xt). To see how an EDM calculation works, consider the
stable vector

(X1 +Xt, X2 +Xt) = (X1, X2)+ (Xt , Xt ).

Its two-dimensional Lévy measure is ν1 + ν2, where ν1 is the Lévy measure of (X1, X2) and
ν2 is the Lévy measure of (Xt , Xt ). Since (X1, X2) has independent components, its two-
dimensional Lévy measure concentrates on the axes and will contribute 0 to the overall EDM
of the sum. The measure ν2 concentrates on the diagonal {(x, x) : x > 0} and puts mass
E(L)F̄

(0)
L (t)ναR

(dx) along the diagonal. The angular measure S corresponding to ν1 + ν2 has
the form

S(dθ) = c′ε0(dθ)+ c′επ/2(dθ)+ ct επ/4(dθ),

where to make S a probability measure we require that

2c′ + ct = 1.

Proposition 8 implies that the constant ct is given by

ct := ν2{x : ‖x‖ ≥ 1} = (constant)F̄ (0)
L (t).

Therefore, the EDM of (X1 +Xt, X2 +Xt), denoted EDM(t), is

EDM(t) = 1−
∫ π/2

0 (θ − π/4)2S(dθ)

(π/4)2

= 1− 2c′(π/4)2

(π/4)2

= 1− 2c′

= ct

= (constant)F̄ (0)
L (t).

Thus, EDM(t) decays as ct−(αL−1)�L(t) for some c > 0.

5.2.3. The EDM of (A(0, δ], A(kδ, (k + 1)δ]) as a function of k. In this section we fix δ and
compute an asymptotic form for the EDM of the bivariate random vector (A(0, δ], A(kδ, (k +
1)δ]) and show a power law decay as k tends to∞.

We first decompose the components of (A(0, δ], A(kδ, (k+1)δ]) in the following terms that
refer to the various regions depicted in Figure 6:

A(0, δ] = A
RI0
0 + A

R11
0 + A

R12
0 + A

R21
0 + A

R22
0 ,

A(kδ, (k + 1)δ] = A
RIk

k + A
R11
k + A

R12
k + A

R21
k + A

R22
k ,
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RIk

ν12

ν21

ν22

νI0Ik

0 kδ (k + 1)δ tδ [0,δ]
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R21

R12

R11RI0

ν11

[kδ,(k+1)δ)

Figure 6: Regions and Lévy measures.

where

A
R11
0 =

P R11∑
i=1

R
R11
i (δ − �

R11
i ), A

R11
k =

P R11∑
i=1

R
R11
i (L

R11
i + �

R11
i − kδ),

A
R12
0 =

P R12∑
i=1

R
R12
i (δ − �

R12
i ), A

R12
k =

P R12∑
i=1

R
R12
i δ,

A
R21
0 =

P R21∑
i=1

R
R21
i δ, A

R21
k =

P R21∑
i=1

R
R21
i (L

R21
i + �

R21
i − kδ),

A
R22
0 =

P R22∑
i=1

R
R22
i δ, A

R22
k =

P R22∑
i=1

R
R22
i δ.

This allows us to decompose the bivariate random vector in the following way:

(A(0, δ], A(kδ, (k + 1)δ]) = (A
RI0
0 , A

RIk

k )+ (A
R11
0 , A

R11
k )+ (A

R12
0 , A

R12
k )

+ (A
R21
0 , A

R21
k )+ (A

R22
0 , A

R22
k ),

where all the random vectors on the right-hand side are compound Poisson and independent
of each other. Furthermore, using the same argument as the one used to prove equality
in distribution of the random variables A>0,2(δ) and A<0,1(δ), we have A

RI0
0

d= A
RIk

k and
(A

R12
0 , A

R12
k )

d= (A
R21
k , A

R21
0 ).

We claim the following.

1. The dominant contribution to the EDM is from (A
R22
0 , A

R22
k ), which, as a function of k,

decays as a constant times F̄
(0)
L (k).

2. The contribution of (A
RI0
0 , A

RIk

k ) to the EDM can be neglected because the random
vector consists of independent components.

3. The contribution of (A
R21
0 , A

R21
k ) to the EDM is of lower order when k tends to∞. This

is also true for (A
R12
0 , A

R12
k ) because of the distributional identities.
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5.2.4. The contribution of (A
R22
0 , A

R22
k ) to the EDM. This is a relatively easy calculation since

A
R22
0 = A

R22
k =

P R22∑
i=1

R
R22
1 δ,

and, therefore, using (27), the contribution to the EDM from (A
R22
0 , A

R22
k ) is proportional to

ν22{x : ‖x‖ ≥ 1}, where ν22 is the limit measure of (A
R22
0 , A

R22
k ). For some constant c > 0

(not necessarily the same with each use) and bn satisfying nF̄R(bn)→ 1, we have

ν22{x : ‖x‖ ≥ 1} = lim
n→∞ n P

[‖(AR22
0 , A

R22
k )‖

bn

≥ 1

]

= lim
n→∞ cn P

[P R22∑
i=1

R
R22
i δ > bn

]

= lim
n→∞ c E(P R22)n P[RR22

1 δ > bn]

= lim
n→∞

c E(P R22) P[RR22
1 δ > bn]

F̄R(bn)

= c

∫
rδ>bn

∫
s<0

∫
s+l>(k+1)δ

λ ds
FR(dr)

F̄R(bn)
FL(dl)

= cλ
F̄R(x/δ)

F̄R(bn)

∫
s<0

∫
l>(k+1)δ−s

FL(dl) ds

= cF̄
(0)
L ((k + 1)δ).

Our conclusion is that, as k tends to ∞, the contribution to the composite EDM will be
proportional to F̄

(0)
L (k).

5.2.5. The contribution of (A
R21
0 , A

R21
k ) to the EDM is of lower order when k tends to∞. We

start with a marginal calculation analogous to the one just completed. As x →∞,

P[AR21
0 > x] ∼

∫ ∫ ∫
s<0, rδ>x

kδ<s+l≤(k+1)δ

λ dsFR(dr)FL(dl)

= λF̄R

(
x

δ

)∫ 0

s=−∞

∫ (k+1)δ−s

l=kδ−s

FL(dl)λ ds,

and changing variables again, −s �→ s, yields

P[AR21
0 > x] = E(L)F̄R

(
s

δ

)
λ(F̄

(0)
L (kδ)− F̄

(0)
L ((k + 1)δ)).

As k tends to∞, because of the difference, this is asymptotic to a constant times F̄L(k) which
is of lower order than F̄

(0)
L .

For the EDM analysis of (A
R21
0 , A

R21
k ), note that

A
R21
0 ≥ A

R21
k . (28)
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Referring back to (25), let bn be the appropriate scaling constant (which could be the quantile
function of FR). Then, from definition (26) and the ordering (28), we have

EDM(A
R21
0 , A

R21
k ) =

∫ π/2

0
θ

(
π

2
− θ

)
lim

n→∞ n P
[√

(A
R21
0 )2 + (A

R21
k )2 > bn, 
 ∈ dθ

]
≤ (constant)n P[(AR21

0 )2 + (A
R21
k )2 > b2

n]
≤ n P[√2A

R21
0 > bn]

∼ (constant)(F̄ (0)
L (kδ)− F̄

(0)
L ((k + 1)δ)).

Therefore, as k→∞,
EDM(A

R21
0 , A

R21
k ) = o(F̄

(0)
L (k)).

5.2.6. Conclusion. We have the following conclusion. The EDM satisfies, as k→∞,

EDM(A(0, δ], A(kδ, (k + 1)δ]) ∼ (constant)F̄ (0)
L (k) = (constant)k−(αL−1)�L(k).

So αR controls the heaviness of tails of cumulative input and αL controls the dependence decay
for fixed δ as k tends to∞.

6. Comparison of the RL and RF models

In this section we compare the RL and RF models, in order to emphasize their differences.
As noted in Section 2, these two models make different assumptions about the joint distribution
of the mark vector (R, L, F ) even though in both cases F = LR. The RL model assumes
that the components R and L are independent while the RF model chooses R and F to be
independent.

6.1. Asymptotic distribution of A(0, δ)

For each of the two models, Table 1 summarizes the results for the limit distribution of the
random variableA(δ) and its componentsAR(δ) relative to the regionsR ∈ {{> 0, 2}; {> 0, 1};
{< 0, 2}; {< 0, 1}}. For reading Table 1, recall that

P[F ≤ x] = G(x), P[L ≤ x] = FL(x), P[R ≤ x] = FR(x),

and that the tails of the three distributions are regularly varying with parameters αF , αL,
and αR , respectively, all assumed to be strictly between 1 and 2. Furthermore, µδ(dr) :=
FR(δ−1 dr)/F̄R(δ−1) and

Ḡ0(x) := 1

E(F )

∫ ∞
x

Ḡ(u) du, F̄
(0)
L (x) := 1

E(L)

∫ ∞
x

F̄L(u) du.

The following additional notation is used in Table 1.

νδ
RL(ds) :=

(∫ ∞
s

F̄L(δr−1s)r−1µδ(dr)

)
ds, νδ

RF(ds) :=
(

Ḡ(s)

∫ ∞
r=s

r−1µδ(dr)

)
ds,

nRL(δ) := δ−1
∫ ∞

δ

F̄L(l) dl

∫ bRL(δ)

0
rµδ(dr), nRF(δ) := E(F )

∫ 1

0
Ḡ0(r)µδ(dr),

dRL(δ) := nRL(δ)+ 2
∫ 1

0
sνδ

RL(ds), dRF(δ) := nRF(δ)+ 2
∫ 1

0
sνδ

RF(ds),

bRL(δ) :=
(

1

δ

)1/αR

�

(
1

δ

)
, bRF(δ) :=

(
E(F )

∫ 1

0
rḠ0(r)µδ(dr)

)1/2

.
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Table 1: Comparison of the RL and RF models: weak limit of A(δ).

R RL model RF model

{> 0, 1} Negligible (under conditions) A>0,1(δ)⇒ X
>0,1
RF

Infinitely divisible

P[X>0,1
RF > x] ∈ RV−(αR+αF )

{< 0, 2} A<0,2(δ)− nRL(δ)

bRL(δ)
⇒ X

<0,2
RL

A<0,2(δ)− nRF(δ)

bRF(δ)
⇒ N

<0,2
RF ∼ N(0, 1)

Stable(αR)

{> 0, 2} A>0,2(δ)−
∫ 1

0
sνδ

RL(ds)⇒ X
>0,2
RL A>0,2(δ)−

∫ 1

0
sνδ

RF(ds)⇒ X
>0,2
RF

Stable(αR) Infinitely divisible

P[X>0,2
RF > x] ∈ RV−(αR+αF )

{< 0, 1} A<0,1(δ)
d= A>0,2(δ) A<0,1(δ)

d= A>0,2(δ)

All
A(δ)− dRL(δ)

bRL(δ)
⇒ X

<0,2
RL

A(δ)− dRF(δ)

bRF(δ)
⇒ N

<0,2
RF ∼ N(0, 1)

Stable(αR)

Table 1 shows that in both models A(0, δ] converges weakly after centering and scaling. In
the RF model the weak limit is a normal random variable while in the RL model the weak limit
is a heavy-tailed stable random variable with index αR .

For both models, the main component in A(0, δ] comes from region {< 0, 2}. We need to
understand the difference in treatment of this region by the two models. Sources that contribute
in this region are ones whose durations are relatively long, since they start from the past and
continue past δ and their contributions are given by Rδ in each case. In the RF model R and
F are independent and it is therefore unlikely they are both large. The relationship L = F/R

means that a long L may be associated with a small R and large F . To have a contribution of
a long L limits the values of R in such a way that the central limit theorem holds. In the RL
model, on the other hand, the independence of R and L makes it unlikely that R and L are both
large, but a large value of R makes cumulative input in (0, δ] asymptotically stable with index
αR , while a large value of L induces dependence measured by decay governed by αL.

For both models, we have always assumed that

λ(δ) = 1

δF̄R(δ−1)
.

If we compare the normalizing functions bRF(δ) and bRL(δ), we have, as δ→ 0,

bRF(δ) = o(bRL(δ)).

This means that if we construct a combined model that mixes the RF and the RL models, we
would find that its limit behavior coincides with that of the RL model. In order to obtain, in
the limit, a linear combination of a normal distribution and an infinite divisible distribution, the
Poisson intensity functions {λ(δ)} would have to grow at different speeds.
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Table 2: Comparison of the RL and RF models: dependence structure.

RL model RF model

t →∞ EDM(X
<0,2
RL (0), X

<0,2
RL (t)) cov(X

<0,2
RF (0), X

<0,2
RF (t))

∼ ct−(αL−1)�L(t) ∼ ct−(αF−1)�F (t)

k→∞, fixed δ EDM(A(0, δ], A(kδ, (k + 1)δ]) cov(A(0, δ], A(kδ, (k + 1)δ])
∼ ck−(αL−1)�L(k) ∼ ck−(αF−1)�F (k)

6.2. Dependence structure

If we look at the dependence structure, we have, in the limit, the effect of high-frequency
sampling for both models. For any nonnegative integer k and h ∈ {RL, RF }, we have, as
δ→ 0,

1

bh(δ)

⎛
⎜⎜⎜⎝

A(0, δ] − dh(δ)

A(δ, 2δ] − dh(δ)
...

A(kδ, (k + 1)δ] − dh(δ)

⎞
⎟⎟⎟⎠⇒

⎛
⎜⎜⎜⎝

X
<0,2
h (0)

X
<0,2
h (1)

...

X
<0,2
h (k)

⎞
⎟⎟⎟⎠

in R
k+1, with P[X<0,2

h (i) = X
<0,2
h (j)] = 1 for 0 ≤ i, j ≤ k. If h = RF , the limit is Gaussian.

If h = RL, the limit is stable.
The time slots (iδ, (i+1)δ], i = 0, . . . , k, are at a distance from each other which converges

to 0 as δ tends to 0. For time slots (0, δ] and (t, t + δ] at a minimum distance t apart, we have,
for fixed t > 0 and h ∈ {RF, RL}, as δ ↓ 0,

1

bh(δ)

(
A(0, δ] − dh(δ)

A(t, t + δ] − dh(δ)

)
⇒
(

X
<0,2
h (0)

X
<0,2
h (t)

)
. (29)

When h = RL, the limit is the dependent stable vector given in Proposition 7; see (21). When
h = RF , the limit is a dependent Gaussian pair (D’Auria and Resnick (2006)).

Assessing the decay of dependence requires different techniques for the two models. For
the RF model, tails are relatively thin allowing traditional correlation techniques to be used to
claim long-range dependence. For the heavy-tailed RL model, correlations do not exist and
an alternative technique based on the EDM is used to show the slow decay of dependence at
power-law rate. These results are summarized in Table 2, which uses the notation for the limit
in (29).

7. Final thoughts

Heterogeneous traffic comprising different types of applications may behave differently to
more homogeneous traffic. In particular, it looks sensible to decompose traffic into classes of
fairly homogeneous applications and to study each separately, seeking statistical differences
in their characteristics. Our results suggest that the tail behavior, dependence structure, and
approximating distributions may depend on the statistical characteristics of each application
component of the network traffic. This suggests the detailed statistical studies are required to
understand how statistical characteristics of the traffic vary by application.
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