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Abstract
This paper introduces a novel ray-tracing methodology for various gradient-index materials, particularly plasmas. The
proposed approach utilizes adaptive-step Runge–Kutta integration to compute ray trajectories while incorporating an
innovative rasterization step for ray energy deposition. By removing the requirement for rays to terminate at cell
interfaces – a limitation inherent in earlier cell-confined approaches – the numerical formulation of ray motion becomes
independent of specific domain geometries. This facilitates a unified and concise tracing method compatible with all
commonly used curvilinear coordinate systems in laser–plasma simulations, which were previously unsupported or
prohibitively complex under cell-confined frameworks. Numerical experiments demonstrate the algorithm’s stability
and versatility in capturing diverse ray physics across reduced-dimensional planar, cylindrical and spherical coordinate
systems. We anticipate that the rasterization-based approach will pave the way for the development of a generalized
ray-tracing toolkit applicable to a broad range of fluid simulations and synthetic optical diagnostics.
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1. Introduction

The interaction between high-power lasers and plasmas plays
a crucial role in inertial confinement fusion (ICF), laser
wakefield acceleration and advanced diagnostic techniques.
Tracing rays in laser-generated plasmas[1] is the primary
focus of this paper. Plasma as a medium is characterized
by its spatially varying refractive index, which belongs to
a family termed gradient-index materials. Geometric optics
are often used for gradient-index ray tracing. Although the
theoretical foundations of geometric optics were established
nearly two centuries ago through Hamiltonian optics[2,3],
good-quality applications have only become feasible with
the advent of modern computational power and algorithmic
advancements, which enable us to synthesize images of
black holes[4], study the architecture of biological eyes[5],
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design advanced antennas[6] and lenses[7,8] and optimize
laser energy deposition in fusion plasmas[9–11]. Beyond the
inherently dynamic and inhomogeneous nature of flow
fields, plasmas exhibit unique ray–medium interactions.
Light induces electron oscillations and heats the plasma
through collisions[12]; nonuniformities in the beam energy
distribution give rise to various instabilities[13–15]; and
frequency differences between beams can even facilitate
energy transfer from one beam to another[16,17]. Ray-tracing
algorithms designed to capture these phenomena must
balance physical fidelity with computational efficiency.

When it comes to numerical implementation, if the
medium’s refractive index exhibits certain symmetry and
trajectories are the sole quantities of interest, as in most lens
designs, tracing packages employing Runge–Kutta (RK)[18]

or advanced symplectic-RK methods[19] have demonstrated
remarkable efficiency. In such cases, rays do not reciprocally
alter medium properties. For plasmas, however, the spatial
distribution of electron density determines the trajectory
of incident laser rays. In turn, the energy loss of the laser
becomes the critical physical quantity that corresponds
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Figure 1. (a) Ray trajectories through cells: one follows the cell-AVG curved path, and the other represents the cell-confined RK straight-line path. (b) A
spherical target represented in 2D R − Z cylindrical coordinates and R − θ spherical coordinates. (c) Truncated-wedge cells derived from 2D cylindrical or
spherical grids, lifted into a temporary 3D space for ray tracing.

to the thermal gain of the fluid. The challenge here lies
in the fact that energy deposition and ray trajectories are
defined on two distinct grid systems: deposition is a field
quantity that follows the structured fluid cells, while ray
trajectories are defined by a sequence of discrete nodes,
with varying positions and numbers. Consequently, a tracing
algorithm must determine which fluid cells should receive
the energy loss associated with each small segment of
the ray. In practice, selecting an appropriate tracing logic
to ensure compatibility between the fluid grid and ray
trajectory coordinate systems is the starting point for plasma
ray tracing. In previous treatments, the most commonly
used is the ‘cell-confined’ logic: a ray begins at the entry
point on the cell face, propagates within the cell along a
predefined path and exits at another point on the cell face.
The term ‘confined’ emphasizes that ray nodes are precisely
the intersection points of the ray with the cell faces. Rays are
traced on a cell-by-cell basis and, at each step, the energy
loss of the ray is deposited into the cell it currently traverses.

Many commonly used radiation-hydrodynamics (RHD)
codes adopt cell-confined logic in their laser modules.
MULTI-2D[20] assumes straight-line ray paths within each
cell, ignoring refraction; FLASH[21,22] and RHDLPP[23]

incorporate curved trajectories to account for refraction;
while proprietary codes such as xRAGE[24] and DRACO[25]

use the Mazinisin tracing module[26], which supports curved
trajectories and energy transfer between rays. FLASH,
RHDLPP and Mazinisin tracing can all be traced back to
the ‘cell-AVG’ algorithm proposed by Kaiser[27]. Building
on cell-confined methods, cell-AVG further assumes a
linear variation of electron density within each cell.

In coordinate systems with globally parallel cell faces
(e.g., Cartesian grids), cell-AVG ray trajectories can be
analytically expressed as quadratic functions. As a result,
the ray entry and exit points on cell faces (as shown in
Figure 1(a)) can be efficiently determined with minimal
computational cost.

Despite its success and widespread adoption, cell-confined
tracing faces notable challenges in certain applications, for
example, tracing rays in cylindrical and spherical coordinate
systems. When plasmas exhibit symmetry, curved coordi-
nate systems are often employed to reduce dimensionality,
as illustrated in Figure 1(b) with a two-dimensional (2D)
cylindrical or spherical coordinate system for an ICF layered
target. In these cases, fluid cell faces are curved, and the
size and orientation of cells are not globally uniform. Ray
trajectories must therefore be constructed in the local refer-
ence frame of the individual fluid cells, and the entry and
exit points of rays cannot be expressed analytically. Instead,
iterative methods are required to approximate these intersec-
tion points (see Ref. [22], Section 18.4.9), which reduces
computational performance and introduces significant par-
allelization overhead. Similarly, in ‘reduced-dimensional’
simulations, where lasers interact with one-dimensional (1D)
or 2D fluid domains at oblique angles, the fluid cells must
be temporarily extruded into truncated-wedge cells (TW-
cells) and stacked up to approximate the three-dimensional
(3D) structure, as shown in Figures 1(b) and 1(c), where
ray calculations are performed at the entry and exit points
on the surfaces of each wedge. The formation of TW-cells
requires different tracing codes for every laser–fluid geom-
etry combination, making implementation highly complex
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and significantly increasing the difficulty of incorporating
user-defined ray physics.

It is worth noting that, in addition to the cell-AVG method,
the FLASH code provides an alternative RK-based tracing
approach called ‘CIRK’ (see Section 18.4.4.3 of Ref. [22]).
This method allows ray trajectories to be recorded in a 3D
Cartesian coordinate system [x,y,z], while fluid fields are
recorded in a 2D cylindrical coordinate system [r,z], with
their interactions bridged through Jacobian transformations.
This avoids the complexity of describing ray trajectory
splines in curvilinear coordinates. However, its adoption is
far less widespread than cell-AVG in plasma simulations
due to inherent limitations. Firstly, CIRK relies on high-
order interpolation of fluid fields to propagate rays, but such
interpolated fields are susceptible to oscillations, potentially
resulting in incorrect ray refraction. Secondly, CIRK still
requires ray nodes to align with cell faces, achieved through
iterative adjustments of the RK step size. Consequently,
this method does not fundamentally resolve the coordination
challenges between ray trajectories and fluid grids.

The limitations of these cell-confined methods have con-
strained the implementation of curved coordinate systems in
mainstream RHD programs. For instance, MULTI-2D does
not include refraction modeling in spherical coordinates,
and FLASH lacks support for spherical ray tracing entirely.
Considering the prevalent use of curved coordinate systems
and the substantial computational burden associated with ray
tracing in laser–plasma simulations, there remains a pressing
need for further innovation in ray-tracing methodologies.

This paper proposes a novel ray-tracing approach based on
rasterization, aimed at achieving high-performance plasma
ray tracing in curved coordinate systems and reduced-
dimensional simulations. The key feature of this method
is the decoupling of ray trajectory calculation from energy
deposition. In the trajectory-solving phase, ray propagation
is performed using adaptive step-size RK–Fehlberg (RKF)
integration[28], where the step size is determined physically
by the gradient of the background medium rather than being
constrained to terminate at cell boundaries. This eliminates
the need for iterative searches for cell entry and exit points
or the construction of TW-cells. In the deposition-solving
phase, rasterization techniques are employed to segment the
ray’s energy loss based on its intersection with the fluid grid
and redistribute it to the corresponding fluid cells, and the
energy deposition field is accumulated accordingly.

The key innovation of the rasterization-based method lies
in the development of a unified and significantly simpli-
fied tracing framework, capable of handling various curved
coordinate systems and reduced-dimensional simulations –
an achievement unattainable with previous cell-confined
approaches. Furthermore, rasterization-based tracing pro-
vides a practical advantage: ray trajectories are recorded
globally in a Cartesian coordinate system rather than being
constrained by the curved coordinates of the fluid. This

greatly simplifies the incorporation of additional ray physics,
making the process intuitive and user-friendly. Although
designed primarily for plasma media, this rasterization-
based approach is also applicable to a broader range of
gradient-index materials.

The remainder of this paper is organized as follows.
Section 2 outlines the physical foundations of ray motion
and energy deposition. Section 3 details the complete
workflow for constructing a rasterized ray-tracing program.
Section 4 presents test cases demonstrating the program’s
capabilities in planar, spherical and cylindrical coordinates,
including comparisons of ray trajectories, energy deposition
and frequency shift physics with analytical results. Finally,
Section 5 concludes the paper and discusses future
perspectives.

2. Physics of ray motion and deposition in plasma

2.1. Ray motion equation

The ray motion equation can be derived from either the
Hamiltonian geometric optics framework[19] or directly from
wave equations. In this paper, we adopt the Helmholtz
equation as the starting point. For a monochromatic wave
E (�r,t) = Ea (�r)e−iωt, the electric field amplitude Ea satisfies
the scalar equation:

∇2Ea (�r)+ k2
0ε (ω,�r)Ea (�r) = 0, (1)

where c is the speed of light in vacuum, k0 = ω/c is the
vacuum wave number and ε (ω,�r) = ε′ (ω,�r) + iε′′ (ω,�r)
represents the medium’s complex dielectric function. We
assume the electric field can be expressed as a combination
of a slowly varying envelope and a rapidly oscillating
phase Ea (�r) = A(�r)eik0S(�r), where S (�r) is referred to as the
‘eikonal’. Substituting this trial solution into Equation (1),
the imaginary and real parts respectively yield the
following:

2(∇A) · (∇S)+A∇2S + k0ε
′′A = 0, (2)

(∇S)2 = ε′2 = N2, (3)

where N is defined the medium refractive index. Equation (2)
is the transport equation, which can be rewritten as
∇ · (A2c∇S

) = −ck0ε
′′A2. If we draw an analogy between

the scalar field S and a velocity potential, its gradient ∇S
represents an irrotational steady flow field with a group
velocity of c∇S. The flowing particles possess an energy
density A2, with an absorption rate per unit time given by
−ck0ε

′′A2. Equation (3), known as the eikonal equation,
belongs to the Hamilton–Jacobi family. The eikonal equation
allows us to transition to a ‘ray particle’ perspective: let
�r(s) denote the position vector as a function of the arc
length s, where ds2 = d�r ·d�r. In this perspective, ray motion is
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everywhere perpendicular to the surfaces of constant phase,
with the motion vector given by d�r/ds = ∇S/N.

Since solving directly for the eikonal S is often challeng-
ing, we take an additional derivative with respect to the arc
length:

d
ds

(
N

d�r
ds

)
= d

ds
(∇S) =

(∇S
N

·∇
)

∇S,

where the differential along the arc is transformed into a
directional derivative along the velocity unit vector. Taking
the gradient of the eikonal equation ∇N2 = ∇(∇S)2 =
∇ (∇S ·∇S) = 2(∇S ·∇)∇S, and substituting it into the
right-hand side of the equation above, we obtain a ray motion
equation that does not explicitly rely on the eikonal equation
and is well-suited for numerical discretization:

d
ds

(
N

d�r
ds

)
= ∇N. (4)

2.2. Plasma ray trajectory and energy deposition

The plasma dielectric function is expressed as

ε = 1− ne

nc

ω

ω+ iνei
, (5)

where ne is the electron density, critical density nc =
ω2me/

(
4πe2

)
, me is the electron mass, e is the electron

charge and νei is the electron collision frequency (refer to
Ref. [1], equation 10.133):

νei = 4
3

(
2π

me

)1/2 neZe4ln�

(kBTe)
3/2 , (6)

ln� = ln

[
3

2Ze3

(
k3

BT3
e

πne

)1/2
]

, (7)

where Z is the effective charge, kBTe represents the electron
energy and ln� is the Coulomb logarithm. When the electron
collision frequency is much smaller than the wave frequency
(a condition satisfied in most plasma corona absorption; for
complete field reconstruction and proper absorption treat-
ment, see Ref. [29]), the dielectric function simplifies to
ε ≈ 1−ne/nc (1− iνei/ω).

To calculate inverse-bremsstrahlung absorption, we define
a virtual time dt = ds/| �v | where �v = c∇S = cNv̂ is the group
velocity of the electromagnetic wave in plasma. Substituting
the imaginary part of the dielectric function into the trans-
port equation, and integrating over the trajectory parameter
t (rather than s, since absorption depends on the time the
wave packet resides in the absorbing medium), we obtain the
evolution of the ray energy P ∝ A2:

P(t1) = P(t0)+
∫ t1

t0

− ne(t)
nc

νei(t)P(t)dt. (8)

Using the virtual time t in place of ds in Equation (4),
and incorporating the plasma refractive index, Equation (4)
can be reformulated as two first-order ordinary differential
equations:

d�r
dt

= �v, (9)

d�v
dt

= −c2∇ne (�r)
2nc

. (10)

Given the initial ray position and speed, Equations (9)
and (10) delineate a trajectory. A large ensemble of rays
collectively models the refraction and reflection of the entire
laser beam. In numerical solutions, ray trajectories are repre-
sented as a sequence of discrete spatial nodes connected by
small line segments, whose shapes are determined by locally
interpolated plasma fields and their gradients.

2.3. Rasterization ray-trace concept

Ray trajectory nodes are inherently unstructured in space;
forcing them to conform to the structured fluid cells is
the primary source of complexity in cell-confined algo-
rithms. This raises an important question: can the constraints
imposed by fluid cells on rays be removed?

A similar problem arises in computer graphics, where
3D unstructured models are projected onto structured 2D
observation grids. For example, capturing an image of a 3D
luminous object with a virtual camera involves determining
the model’s vertices, surface emissivity and ray transport
trajectories through the medium, followed by a rasterization
step (see Ref. [30], Chapter 7, and Ref. [31], Section 15.6) to
accumulate signals received by camera pixels. This concept
can be directly applied to ray tracing in plasma: the refractive
medium and the camera correspond to the fluid domain,
while pixel counts are analogous to cell-accumulated quan-
tities such as deposited energy, light intensity, polarization
and frequency shifts.

The core idea of rasterization is that ray stepping is uncon-
strained, and deposition is computed by accumulating contri-
butions within the fluid grid. This approach introduces sev-
eral key differences from traditional methods: the decoupling
of ray trajectories from the fluid geometry, with rays always
described in global Cartesian coordinates; the interpolation
of a continuous fluid background field to maintain domain-
wide continuity, enabling unconstrained RK advancement;
the flexibility to freely position ray nodes in space, connected
by straight-line segments; and the need to determine the
intersection relationships between rays and grid cells during
deposition.
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3. Full implementation of rasterized ray tracing

This section outlines the logical sequence for implement-
ing the rasterized ray-tracing algorithm. The tracing code
consists of four modules: the lens system, field interpola-
tion, adaptive ray stepping and rasterized deposition. These
modules work together to execute the tracing algorithm in
curvilinear coordinates.

3.1. Lens system

The lens system serves two primary functions: initializing
ray directions and power, and placing rays at their intersec-
tion with the domain boundary while properly initializing
their velocities. Two circular planes represent the focusing
lens and focal spot, divided into subregions, each carrying a
fraction of the spot energy:

Pi = SiIi

�SiIi
Pb, (11)

where Pi is ray power, Pb is beam power, Si is subregion
area and Ii is intensity at the grid center. Subregion division
methods include rectangular grids, polar coordinate grids
and finite element grids. Figure 2(a) shows a rectangular
division template for a super-Gaussian spot, with the red
circle indicating the lens boundary. The lens and focal plane
circles share the same division template, scaled according to
their radii.

Rays spawn at subregion centers, initially distributed in the
Z = 0 plane with a normal direction along Z+. Rotation and
translation are applied to position the rays on the user-defined
3D lens and focal planes. For a given polar angle θB and
azimuthal angle φB of the line connecting the lens and focal
plane centers, a corresponding 3D rotation is constructed:

Figure 2. (a) Power partitioning of the laser focal spot. Intersection points (marked with ‘+’) of rays with (b) rectangular, (c) cylindrical and (d) spherical
computational domains between the lens and focal planes.
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Figure 3. (a) Intersection of the connecting line with a cylindrical surface, where �T and �L are projected onto the solution plane followed by a Z-rotation.
(b) Intersection of the connecting line with a spherical surface, where �T and �L are mapped to the solution plane through a Z-rotation followed by a Y-rotation.
(c) In solution plane, the line connecting T ′′, L′′ and i′′ is parallel to the X-axis, enabling straightforward calculation of the intersection point i′′ coordinates.

RB =
⎡⎣cos(π + θB) −sin(π + θB) 0

sin(π + θB) cos(π + θB) 0
0 0 1

⎤⎦
×

⎡⎣ cos (π/2+φB) 0 sin(π/2+φB)

0 1 0
− sin(π/2+φB) 0 cos (π/2+φB)

⎤⎦ .

In RB, the second matrix performs a rotation around the
Y-axis to adjust the inclination, followed by the first matrix
rotating around the Z-axis to adjust the azimuth. The rotated
points are then translated to position the rays on the lens and
focal planes in 3D space.

Ray intersections with the computational domain mark
the starting points for ray tracing, as illustrated in Figures
2(b)–2(d) with ‘+’ signs. In Cartesian coordinates, deter-
mining the starting points �i is straightforward, as discussed
in the cell-AVG introduction. However, this process becomes
more complex in curvilinear coordinates. Given two points
�T (inside) and �L (outside) relative to a surface of radius r,
the aiming vector from the lens to the focal plane is �a =
�T − �L. Here, vector components are denoted by subscripts
(e.g., �a = (

ax,ay,az
)
), uppercase letters X,Y,Z represent

coordinate axes and ‖�a‖ denotes the vector magnitude. The
intersection-finding procedure preserves the curved geome-
try of radial cell faces, distinguishing it from methods used
for co-planar TW-cell faces.

(I) For the cylindrical domain shown in Figure 3(a),
construct the projection and rotation matrices:

P =
[

1 0 0
0 1 0

]
; R =

[
ax −ay

ay ax

]
/

√
a2

x +a2
y, (12)

where P represents a projection onto the X–Y plane, yielding
�T ′ = P �T , �L′ = P �L. Here, R is a rotation in the X–Y
plane aligning the unit vector (1,0) to the direction

(
ax,ay

)
,

while R−1 rotates any
(
ax,ay

)
back to (1,0). This produces

�T ′′ = R−1 �T ′ and �L′′ = R−1�L′. The points T ′′,L′′,i′′ are thus
mapped onto the ‘solution plane’ shown in Figure 3(c),
where the line connecting these points is guaranteed to be

parallel to the local X′′-axis, allowing the intersection point
coordinates i′′ to be directly determined:

�i′′ =
[

sgn
(
L′′

x

)√
r2 −L′′2

y

L′′
y

]
. (13)

Rotating i′′ back and scaling along the aiming vector �a
gives the intersection point in the fluid reference frame:

�i = �L+
∥∥∥R�i′′ − �L′

∥∥∥∥∥∥�L′ − �T ′
∥∥∥ �a. (14)

For cylindrical domains, additional considerations are
necessary. Firstly, rays may intersect the flat faces of the
cylinder. The scaling factors to the top and bottom faces are
| (Lz −Zmax)/(Tz −Lz) | and | (Tz −Zmin)/(Tz −Lz) |,
respectively. The minimum of these three factors, including
the one for the curved surface, should be chosen to scale �a,
as the true intersection is the closest to the lens. Secondly,
when laser incidence aligns with the cylindrical axis
(
√

a2
x +a2

y = 0), the rotation matrix R must be set to the
identity matrix I to avoid singularity.

(II) For the spherical domain shown in Figure 3(b), two
rotation matrices are constructed:

RY =
⎡⎢⎣

√
a2

x +a2
y/‖�a‖ 0 −az/‖�a‖

0 1 0
az/‖�a‖ 0 0

⎤⎥⎦ ;

RZ =

⎡⎢⎢⎣
ax/

√
a2

x +a2
y −ay/

√
a2

x +a2
y 0

ay/
√

a2
x +a2

y ax/
√

a2
x +a2

y 0

0 0 1

⎤⎥⎥⎦,

where RY represents a rotation around the Y-axis by the
polar angle of the connecting line, and RZ represents a
rotation around the Z-axis by its azimuth angle. Applying
these rotations to the points �L, �T gives �T ′′ = (RZRY)−1 �T ,
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Figure 4. (a) Bilinear interpolation for interior point S’s value and spatial derivatives. Region dimensions are 
x,
y, with S coordinates x,y (origin at the
lower-left corner). Here, V represents cell vertex values and EX,EY are edge-centered gradients. (b) Vertex values V and edge gradients EX,EY are derived
from known cell-centered values U.

�L′′ = (RZRY)−1�L. The intersection point coordinates are
then determined on the solution plane as follows:

�i′′ =
⎡⎢⎣sgn

(
L′′

x

)√
r2 −L′′2

x −L′′2
z

L′′
y

L′′
z

⎤⎥⎦ . (15)

Rotating i′′ back to the fluid reference frame gives the
spherical intersection:

�i = (RZRY)�i′′. (16)

This establishes the ray starting points on the domain
boundary. Alternatively, starting points can be determined by
solving the quadratic equation of a line and a curved surface.
However, matrix operations are more compact and efficient
due to simplification and pre-evaluation. They also enable
highly vectorized data flows, leveraging modern hardware
for improved performance.

Finally, the ray velocity must be properly initialized, as
rays may originate inside the plasma corona. The velocity
magnitude is determined by the local refractive index N,
where v0 = cN = c

√
1−ne/nc. The velocity direction is

aligned with the aiming vector, given by v0x = cNax/‖�a‖,

v0y = cNay/‖�a‖,v0z = cNaz/‖�a‖.

3.2. Field interpolation

Ray advancement requires the field value at each node in
space. The general principle of interpolation is to ensure
continuity and minimize oscillation. Testing has shown that
linear (1D), bilinear (2D) and trilinear (3D) interpolation
schemes are optimal for this purpose.

For clarity, a 2D bilinear interpolation case is illustrated
in Figure 4(a). Cell edge lengths are 
x,
y, with V as the
base value at the cell vertex. The distances from the interior
sampling point S to cell walls are x,y:

S = Vi,j

x− x


x

y− y


y
+Vi+1,j

x

x


y− y

y

+Vi,j+1

x− x


x
y


y
+Vi,j

x

x

y

y

.

Interpolation weights for each vertex are proportional
to the areas of the quadrilaterals opposite them. Notably,
despite the term ‘linear’, interpolated fine meshes are
generally not planar, as shown in Figure 4(a). Since bilinear
and trilinear interpolations ensure continuity across cells,
rays crossing cell boundaries do not require total reflection
checks.

Field gradients are essential for advancing the ray and are
calculated as follows:

∂S
∂x

= S (x+ ε,y)−S (x− ε,y)
2ε

= EX
i,j


y− y

y

+EX
i,j+1

y

y

,

EX
i+1,j = Vi+1,j −Vi,j


x
,

EX
i,j = Vi+1,j+1 −Vi,j+1


x
,

where ε is a small step size, Ei,j,Ei,j+1 are gradient values at
edge centers and superscripts denote direction. The deriva-
tion shows that the gradient at any point within the cell
is a linear combination of edge-centered gradients. The
expression for ∂S/∂y takes a similar form, with indices
appropriately interchanged.
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Figure 5. Comparison of linear interpolation and cubic interpolation
methods for constructing internal field values S and gradient values ∂S/∂x
of a rarefaction wave.

For specific ray-tracing tasks, physical quantities relevant
to laser trajectories and energy deposition – such as density,
temperature and effective charge state – are required. As
shown in Figure 4(b), these fluid quantities are defined at
cell centers, denoted as U. During domain initialization,
cell-center interpolation is used to compute vertex values V
(outermost extrapolated vertices take the nearest cell-center
values). Edge-centered gradients EX , EY are then calculated
by dividing vertex value differences by edge lengths 
x,
y.

Piecewise linear interpolation does not ensure continu-
ity of first-order derivatives, leading to the question: why
not use higher-order interpolation schemes? Higher-order
methods, however, are unsuitable for ray tracing in plasma
due to severe Runge phenomena. Figure 5 demonstrates
this issue using a rarefaction wave field with known values
(black asterisks). Piecewise cubic interpolation is compared
to linear interpolation. The cubic interpolation assumes an
intra-cell field form S(x) = a0 + a1x + a2x2 + a3x3, where
coefficients a0−a3 are determined by four conditions: field
values S(0),S(1) and gradient values ∂S(0)/∂x,∂S(1)/∂x at
cell corners.

Although cubic interpolation ensures continuity of first-
order spatial derivatives, it introduces substantial oscilla-
tions, which worsen with cell refinement. Such oscillations
can even produce negative values for inherently positive
physical quantities, as shown in Figure 5. This leads to

incorrect ray refraction locations, making higher-order
methods unreliable for this application. In contrast,
bilinear/trilinear interpolation offers superior robustness.
When combined with adaptive-step RK methods, the lack of
first-order derivative continuity does not significantly affect
ray-tracing accuracy.

3.3. Adaptive ray stepping

The ray trajectories are solved using the RKF method with
adaptive step size. Like all RK methods, the RKF method
approximates ray curves through a straight-line segments
sequence ordered according to the time parameter t. The
advantage of the RKF method lies in its dynamic adjustment
of the step size 
t, allowing larger steps in regions with
gradual field variations and smaller steps in regions with
sharp refraction. In plasmas, where the refractive index
distribution is highly nonuniform, adaptive step sizing can
often reduce computational costs by one to two orders of
magnitude. The system of ordinary differential equations for
ray trajectories is as follows:

�̇U = d
dt

⎡⎢⎢⎣
�r
�v
P
. . .

⎤⎥⎥⎦ =

⎡⎢⎢⎣
�v
�g

−νeiP
. . .

⎤⎥⎥⎦ =

⎡⎢⎢⎣
�v

− c2∇ne (�r)/2nc

−νei (�r)P
. . .

⎤⎥⎥⎦, (17)

where �U represents the solution vector, ray acceleration
is �g = �f /m with m = 1, P denotes ray power and νei is
the absorption coefficient, calculated via field interpolation.
The ellipsis indicates other physical quantities varying along
the ray path. The RK4(5) coefficients from Fehlberg’s origi-
nal work[28] are used to estimate the solution gradient at the
initial condition �Un:

�k1 = �̇Un (�r0),

�k2 = �̇Un (�r0)+ (2/9)�k1
t,

�k3 = �̇Un (�r0)+
(
(1/12)�k1 + (1/4)�k2

)

t,

�k4 = �̇Un (�r0)+
(
(69/128)�k1 + (−243/128)�k2

+ (135/64)�k3

)

t,

�k5 = �̇Un (�r0)+
(
(−17/12)�k1 + (27/4)�k2

+ (−27/5)�k3 + (16/15)�k4

)

t,

�k6 = �̇Un (�r0)+
(
(65/432)�k1 + (−5/16)�k2

+ (13/16)�k3 + (4/27)�k4 + (5/144)�k5

)

t.

The RKF method estimates the single-step error by com-
paring the solution difference between fourth- and fifth-order
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approximations:

Err =
(
(1/150)�k1 + (−3/100)�k3 + (16/75)�k4

+ (1/20)�k5 + (−6/25)�k6

)

t.

If the error is below the tolerance Tol, this step is accepted,
producing �Un+1 for the next time step:

�Un+1 = �Un +
(
(47/150)�k1 + (12/25)�k3

+ (32/225)�k4 + (1/30)�k5 + (6/25)�k6

)

t.

The time step is dynamically adjusted as follows:


tnew = C
t(Err/Tol)1/5.

The default safety factor is C = 0.9. The initial step size
can be conservatively estimated as 
tinit. = 0.5N
X/c (
X
is the cell edge length). For accepted steps, the step size
increases but is capped at 
tmax = 
X/c to ensure the ray
does not cross more than two cells per coordinate direction
in a single RK step. If the tolerance is not met, the calculation
restarts from �Un with progressively smaller trial step sizes.

While not the fastest in convergence, Fehlberg’s origi-
nal coefficients offer the advantage of using non-negative
weights for slope combinations, preserving the sign of phys-
ical quantities. For instance, predicted changes in ray power
remain negative, maintaining physical consistency.

The adaptive RKF method naturally incorporates energy
absorption into error control. However, a special case arises
where RKF advancement may produce incorrect nodes
despite satisfying the error tolerance, as shown in Figure 6.
This typically occurs at density discontinuities near solid
target surfaces. All six RKF midpoint evaluations may lie
entirely within the low-density region, causing the ray to
erroneously overshoot into the super-critical density region
instead of reflecting at the interface.

At sharp interfaces, extremely small RK steps would be
needed to accurately capture trajectory curves, which is
computationally inefficient and physically unrealistic. RKF
failure can also be identified by violations of energy con-
servation at nodes (v/c 	= N). To address this, a velocity
correction patch is applied when energy conservation is
violated:

�v1c = �v1 + (1− sgn(�v1 · (−∇ne)))

(
�v1 · ∇ne

‖∇ne‖
)( −∇ne

‖∇ne‖
)

.

This patch reflects the ray velocity �v1 to �v1c if it forms an
obtuse angle with the acceleration direction −∇ne, bending
it back toward the lower-density region. No correction is
applied for acute angles. This patch is particularly important

Figure 6. Ray reflection at a sharp interface. The lower part represents
the high-density target. Here, �v0 is the incident velocity, �v1 the overshoot
velocity, �v1c the corrected velocity and �v2 the ejection velocity.

during the initial simulation frames and becomes unneces-
sary once plasma spans several cells.

The number of RKF steps for a single ray is approximately
proportional to the cell count in the fluid domain, ensuring
computational efficiency.

3.4. Rasterized deposition

The rasterization process handles individual RK line seg-
ments to allocate energy losses, as illustrated in Figure 7,
which shows possible relative positions between line seg-
ments and 2D fluid cells:

(1) no crossing;

(2) single-cell-face crossing (X or Y);

(3) double-cell-face crossing (X–Y/Y–X).

When a line segment is divided into subsegments

l1,
l2, . . . (
t = 
t1 +
t2 +. . . ) by cell faces, the single-
step energy deposition is distributed among subsegments
as 
P1 ∝ νeiP
t1,
P2 ∝ νeiP
t2, . . . , and so on. Since
ray acceleration g remains constant within a single RK
step, subsegment lengths can be expressed as 
l1 =
v
t1 + 0.5g
t2

1,
l2 = (v+g
t1)
t2 + 0.5g
t2
2, . . . . The

RKF method ensures v > g
t everywhere except at normal-
incidence reflection points. Neglecting higher-order terms
of time, the approximation 
P1 : 
P2 ≈ 
l1 : 
l2 indicates
that energy deposition ratios across cells are proportional to
subsegment lengths.

For 1D energy deposition, as shown in the flowchart in
Figure 8, the process involves the following steps: given
line segment endpoints �r0,�r1 and their corresponding cell
indices i0,i1, potential cell face intersections are determined
as �rx = Xface (max (i0,i1)) regardless of the ray’s traveling
direction. The array Xface stores the coordinates of all cell
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Figure 7. Possible scenarios of ray segments intersecting 2D fluid cells under the 
tmax = 
x/c constraint. Rectangular faces are shown, but sphere/cylinder
faces are also applicable.

Figure 8. One-dimensional energy deposition rasterization allocation pro-
cess.

faces. If r0 = r1, indicating no crossing, the ray’s energy loss
is entirely deposited in local cell i0. Otherwise, the energy is
distributed between adjacent cells i0 and i1 in proportion to
the subsegment lengths.

For 2D energy deposition, as outlined in the flowchart in
Figure 9, the process begins by determining 2D cell indices
i0,j0,i1,j1 from the endpoint coordinates �r0,�r1. The algorithm
proceeds with branch case evaluation:

(1) no crossing?

(2) single X-face crossing?

(3) single Y-face crossing?

(4) double-face crossing?

The first three cases reduce to 1D problems along the
X- or Y -direction. For the fourth case (double-face crossing),
intersections �rx,�ry with X/Y faces are calculated using the
same line–face intersection subroutine from the ‘lens sys-
tem’ to determine the first intersected face.

(1) If the X-face is encountered first, the X-direction 1D
problem is solved, then the starting point is updated
�r0 → �rx and the Y-direction problem is solved with the
remaining energy 
P.

(2) If the Y-face is encountered first, the same logic
applies, but in reverse order.

This approach ensures that 2D problems are always
decomposed into a sequence of 1D solutions for compu-
tational simplicity and efficiency.

While the flowchart for 3D fluid cell energy allocation
would be extensive, the actual implementation is concise.
1D problems involve two branches, 2D problems have four
and 3D problems can be treated as an eight-branch structure
using two-layer decompositions: 3D to 2D, and 2D to 1D.
All branches ultimately reduce to 1D problems, allowing
recursive logic to efficiently construct energy allocation
algorithms for any dimension.
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Figure 9. Two-dimensional energy deposition rasterization process.

Volume-averaged quantities, such as frequency shifts and
polarization, can be computed using the same rasterization
logic. By weighting with ray power first and then depositing
onto cells, these quantities are easily calculated. For flux
density, such as light intensity I, ray power through cell
faces is tracked. At each interface crossing, ray power P is
accumulated into the entered cell i1. The intensity is then
calculated as Icell = �crossPray/Sproj, where the projected area
Sproj = cos (min(θ,π/2− θ))
X
Y (in two dimensions),
and θ is the angle between the ray and the cell face normal.

This concludes the description of an unconstrained,
rasterization-based algorithm for ray tracing in gradient-
index media. Aside from adaptive RK step-size adjustments,
the algorithm is non-iterative and employs a unified tracing
kernel applicable to all coordinate systems.

4. Test cases for rasterized ray tracing

4.1. Plasma Luneburg lens (ray 3D-in-1D sphere)

The Luneburg lens[32] is a spherical lens with a refrac-
tive index that gradually decreases from the center to the
periphery. Parallel incident rays focus to a point on the
lens surface, while a point source at the boundary produces

parallel rays on the opposite side. This property makes
the Luneburg lens ideal for beam forming and directional
radiation applications. The refractive index distribution of a
classical optical Luneburg lens is given by

Nopt(R) =
√

2−
(

R
Rmax

)2

,

where R is the radial coordinate of the spherical lens, with
the refractive index Nopt maximized at the center and equal
to unity at the boundary Rmax.

Plasma refractive indices are inherently less than unity.
However, it is possible to construct a ‘plasma Luneburg lens’
with equivalent focusing performance (for extended designs,
see Ref. [33]). The refractive index distribution for a plasma
Luneburg lens is given by the following:

Npla(R) =
⎧⎨⎩b

√
2−

(
R
Rf

)2
, if R ≤ Rf,

b, if R > Rf,

(18)

where b ∈
[
1,1/

√
2
]

is a scaling factor, and Rf < Rmax is
the focal sphere radius. The corresponding electron density
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Figure 10. Plasma Luneburg lens parameters and ray trajectories.

Figure 11. (a) Ray impact points near the focus. Shown are 32 rays per beam. (b) Error in impact point distribution versus cell grid spacing.

distribution is as follows:

ne(R) =
{

nc
(
1−2b2 +b2(R/Rf)

2), if R ≤ Rf,

nc
(
1−b2

)
, if R > Rf.

(19)

Figure 10 presents an example within a spherical com-
putational domain of 600 μm diameter. A parallel beam
(Φ = 400 μm) is incident obliquely from above and focuses
at 0.8Rmax on the opposite side.
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Figure 12. (a) Density and (b) flow velocity distributions of rarefied step-profile plasma. (c) Doppler frequency shifts during ray traversal through plasma.
(d) Fluid domain light intensity. (e) Fluid domain frequency shift.

The plasma Luneburg lens provides a precision benchmark
for ray-tracing algorithms. As shown in Figure 11(a), a
grid with 
X = 3 μm (200 cells along R) achieves a focal
spot smaller than 0.05 μm in diameter. Errors, primarily
from field interpolation and RK stepping, decrease with
grid refinement. A grid spacing scan from 0.375 to 12 μm
produces the error statistics in Figure 11(b).

(1) The residual �ij,i>j
(∥∥�ri −�rj

∥∥)
/C2

nray
, defined as the

average distance between impact points i, j, k, . . . ,
converges at O

(

X2

)
.

(2) The root mean square (RMS) of impact point distri-
bution shows exponential convergence, indicating a
significantly higher ray density at the focal spot center
compared to the surrounding halo.

This highlights the algorithm’s precision and its efficiency
in capturing fine-scale focusing behavior.

4.2. Plasma Doppler shift (ray 3D-in-2D plane)

When laser light propagates in the plasma, Doppler fre-
quency shifts occur due to plasma motion[34]. These Doppler
shifts influence the characteristics of laser–plasma interac-
tions. In the fluid reference frame, the light wave frequency
can be interpreted as the number of electric field peaks
detected per unit time by a probe at the cell center: blue
shifts occur when the phase velocity in plasma shows an

increasing trend (analogous to an accelerating wave-peak
conveyor) or when reflecting surfaces move toward the wave
source, resulting in more wave peaks detected per unit time;
red shifts occur under the opposite conditions. The Doppler
frequency shift is quantitatively described by the following:


ω

ω
= −1

c

∫
ray

| d�r | ∂N (�r,t)
∂t

, (20)

where ω is the central frequency. Integration along the ray
path provides the frequency shift at any location, assuming
the shift is small relative to the central frequency. Using the
fluid continuity equation, the rate of change of the refractive
index can be expressed in terms of the flow field divergence:

∂N
∂t

= ∂
√

1−ne/nc

∂t
,

∂ne

∂t
= −∇ · (ne�v) .

The frequency shift in a fluid cell is calculated as the
power-weighted average of all incident rays:


ωcell = �cross
ωrayPray

�crossPray
. (21)

Figure 12 shows Doppler frequency shifts in a 2D planar
rarefaction wave. Using the ideal gas equation of state for
fully ionized hydrogen plasma, the density and velocity
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Figure 13. Laser-driven spherical water vapor target in R − Z cylindrical coordinates: (a) initial density distribution, half-space mirrored; (b) 3D ray
trajectories recorded in Cartesian coordinates; (c) laser volumetric heating power; (d) density distribution at 690 ns.

follow self-similar solutions:

ne (x,t) = ne0exp
(

− x
cTt

−1
)

, if x > −cTt,

vx (x,t) = x
t
+ cT, if x > −cTt,

where cT is the sound speed. For a step density ne0 = 100nc,
temperature T0 = 100 eV, and 1 ns rarefaction time, a
λ = 1064 nm beam is incident at 45◦ from the right-
hand boundary. Figure 12(c) depicts the frequency shift
along the ray path. At a fluid cell spacing of 
X =
3.125 μm, ray tracing predicts 
ω/ω = 3.2069 × 10−3,
corresponding to a wavelength shift of 
λ = 34.12145 Å.
The analytical solution (Equation (6) in Ref. [34]), 
ω/ω =
(2cosθ/c) (vTP +2(1− ln2)cT), gives 
λ = 34.12464 Å,
where vTP is the turning point velocity. The relative error is
approximately 10−4.

The Doppler shift is dominated by the near-critical to
super-critical density transition region near the turning
point. Accurate results require smooth ray trajectories
in this region. In the cell-AVG algorithm, the density is
discontinuous at the cell interface, leading to frequency shift
errors up to 18% under identical conditions.

Figure 12(d) shows the fluid domain light intensity, with an
incident power density of approximately 100 GW/cm2 and
about 95% energy absorption by the plasma. Figure 12(e)
presents the frequency shift distribution in the fluid domain,
indicating an overall blue shift after reflection.

4.3. Laser-driven gas sphere (ray 3D-in-2D cylinder)

The rasterization algorithm has been integrated into the
multiphase RHD code DRIM (details to be published). A
full-physics simulation of a laser-driven gas sphere demon-
strates the robustness and efficiency of the laser module. The
laser parameters are: 1064 nm wavelength, 80 μm focal spot
diameter and 0.5 MW square pulse lasting 1 ns. The water
vapor sphere has a core density of 100 mg/cm3 within 25 μm
radius, a 5 μm buffer layer at 40 mg/cm3 and a background
density of 1 μg/cm3.

The simulation traces 3D laser beams in a 2D cylindrical
fluid domain, allowing energy deposition for multiple beams
at arbitrary incidence angles. Figure 13(b) shows 3D ray
trajectories. Initially, the sharp density transition between the
core and background causes velocity-corrected ray reflection
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at the interface. The deposited energy is azimuthally aver-
aged before coupling to the fluid. Figure 13(c) shows signif-
icant energy deposition at the sphere surface, driving mate-
rial ablation and inward compression waves. After multiple
internal reflections, these waves induce global deformation,
as shown in Figure 13(d). Statistical analysis reveals that less
than 10% of the laser energy converts to the gas target’s
internal and kinetic energy.

The principle of parallelizing ray tracing is to minimize the
waiting time for each ray process. In cell-based algorithms
(e.g., the cell-AVG method used in FLASH), the computa-
tional domain is spatially divided into many blocks (each
containing multiple cells), and the smallest computational
step involves a ray traversing a single block. This often
leads to an inefficient situation where a few blocks have
a large number of ray-tracing tasks, while most blocks
have no rays at all but still need to wait due to parallel
barriers. Our algorithm is slightly different: ray tracing
adopts a hybrid Message Passing Interface (MPI)+OpenMP
strategy. Each MPI task corresponds to one computational
node (with multiple central processing unit (CPU) cores),
which communicates via interlink to obtain the complete
interpolated field information and is assigned a batch of
rays to process. For example, if there are 4096 ray-tracing
tasks, they can be distributed across eight nodes, with each
MPI task processing a batch of 512 rays. Within each batch,
OpenMP is used to trace each ray in parallel, achieving fine-
grained task decomposition. If the communication time for
the interpolated field is relatively low, the MPI+OpenMP
strategy can achieve better load balancing.

MPI tasks access the full interpolation field and trace
multiple rays per batch, with batch-wise depositions summed
for the total energy. On an Intel Xeon 6326 CPU (2.9 GHz)
with a 500 × 500 grid and 1024 rays per batch, wall-clock
times for 1, 2, 4, 8 and 16 processes are 16.106, 8.622,
4.904, 3.046 and 2.219 seconds, respectively, demonstrating
near-linear speedup. Convergence studies indicate gas target
simulations require at least 16,384 rays, utilizing 256 CPU
cores. For 3D fluid domains, the ray count requirement
exceeds 106 rays per step.

5. Summary

This paper introduces a novel rasterization-based ray-
tracing methodology that addresses key limitations of
traditional cell-confined algorithms in gradient-index
materials. The development of an adaptive-step integration
approach eliminates the need for rays to terminate at cell
interfaces, avoiding costly iterative cross-point calculations.
A rasterization deposition method is introduced, decoupling
the tracing algorithm from domain-specific geometries and
enabling a unified, simplified computational framework for
various curvilinear coordinate systems. The method’s effec-
tiveness is demonstrated through numerical experiments,

showcasing robustness, rapid convergence and accurate
handling of diverse ray physics, including beam intensity
and frequency shifts. Simulations of planar, cylindrical
and spherical laser-ablation scenarios further indicate its
enormous potential in engineering applications.

Future developments may include extending the method to
more complex optical phenomena, such as non-linear laser–
plasma interactions, incorporating modules for synthetic
optical diagnostics and optimizing for large-scale simula-
tions.
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