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A HILBERT LATTICE WITH A SMALL AUTOMORPHISM 
GROUP 

BY 

URS-MARTIN KÛNZI 

ABSTRACT. We construct an orthomodular inner product space to an­
swer the questions posed by R. P. Morash in his paper "Angle bisection and 
orthoautomorphisms in Hilbert lattices" [6]. For example we show that 
every automorphism of the Hilbert lattice belonging to our inner product 
space has the property, that no atom is orthogonal to its image. 

0. Introduction and terminology. A Hilbert lattice is a complete, ortho-
complemented, atomic, irreducible, orthomodular, infinite-dimensional lattice with the 
covering property (for the definition of these properties see e.g. [5]). Hilbert lattices are 
closely related to orthomodular spaces, as is outlined below. 

Let £ be a #-vector space, equipped with a sesquilinear form (,) which is hermitian 
with respect to an antiautomorphism * : £—» K. A subspace U C E is called orthoclosed 
iff f/ = U^ : = (U1)1. The set of all orthoclosed subspaces of E is denoted by Ln(£). 
If U ® U1 = E for all orthoclosed subspaces of E then E is said to be an orthomodular 
space. For an infinite-dimensional orthomodular space E L±(E), ordered by inclusion 
and equipped with the natural orthocomplementation, becomes a Hilbert lattice. Con­
versely every Hilbert lattice is isomorphic (as orthocomplemented lattice) to Ln(E) 
for some infinite-dimensional orthogonal space E. Furthermore every isomorphism 
Lu(£,) —» Lii(£2) is induced by a similarity ^ : £ , —» E2 ( ^ is called a similarity iff it 
is a bijection and there are |x E AT\{0} and a division ring automorphism a\K—>K such 
that the following properties are satisfied: 

(1) Vx,y E £V\ E K:V(x + \y) = *(JC) + a(X)^(y) 

(2) Vxyy E £:<¥*,*>> = a(x,y) 

All the facts cited above concerning the relationship between Hilbert lattices and 
orthomodular spaces follow from the fundamental theorems of projective geometry, see 
e.g. [10] or [7]. 

By a theorem of Amemiya-Araki-Piron [ 1 ] an inner product space E with basefield 
K = IR,Cor H is orthomodular iff E is a Hilbert space. In this caseL := Lu.(E) is easily 
seen by geometric considerations to have the following properties: 
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(o) L is isomorphic to the interval [0,a] (equipped with the relative orthocom-
plementation u »-» u1 D a) iff dim(L) = dim (a), 

(i) Vx,y E E\{0} 3X E K: (x,x) = (Vy, \y) (a purely lattice-theoretic formulation 
of this geometric statement is the angle bisection property of Morash [6].) 

(ii) For all a, b E L with dim (A) = dim(&) and alb there is an automorphism of L 
mapping a to b. 

(iii) For all a,b E L with a D b = a1 O b1 = {0} there is an automorphism of L 
mapping a to b1. 

In [6] the question is discussed whether (i), (ii) and (iii) are valid for all Hilbert lattices. 
We shall construct an example in the next section to show that this is not the case. 

1. The basefield. Consider 

(3) G,: := | - E <Q> \p, q E N & q is odd & q is not divisible by the 

(/ 4- l)th power of any primer 

(4) T := {(g/),-6N E 0N|g,- E G,}. 

T is an ordered abelian group with respect to componentwise addition and anti-
lexicographic order. The elements dt := (8/:/)/e^ (Kronecker-8) can be internally char­
acterized: di is the smallest element greater than 0 and divisible by i-th powers of all 
odd primes. T is generated by elements of the form gd{ with g E Gh so that T admits 
no non-trivial order preserving automorphism. 

Now let A' be a complete and henselian valued field (with valuation cp : K^> T U {°°}) 
satisfying cp(2) = 0 and the residue class field K be quadratically closed. (Such fields 
exist: if A' is any given field and T any abelian ordered group, then there is a maximal 
complete valued field K with value group T and residue class field K. This field is of 
course complete and henselian [8].) The valuation ring of AT can be described in a purely 
algebraic way by 

(5) cp(jc) = 0±>V H 3y:x = y2\ and 

(6) (p(jc) ^ 0 <-» cp(jc) = 0 V <P(1 + *) = 0. 

(6) holds trivially for all valuations. The implication from left to right in (5) is a 
consequence of the henselian property of K and the fact that AT is a quadratic element 
of T other than 0 is divisible by all powers of 2. Now using (5) and (6), if a : K -^ K 
is a field automorphism, then cp(x) ^ 0 —» cpa(x) ^ 0. Hence <pOa is a valuation 
equivalent to cp and so, by general valuation theory, there is an order preserving group 
isomorphism ^ : Y -» V such that cp o a = ^ o cp. But it was just shown that such a ^ 
must be the identity. Hence all field automorphisms of K preserve the valuation. 

2. The space. For each n E N choose an a„ E K satisfying ( a j = dn. Then put 

(7) E : = {(X/X-EN E KN\\xm xfo - 0}. 
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E is a A'-vectorspace with respect to componentwise addition and scalar multiplication. 
Defining 

(8) ( M I E N , Cn/)/EN> := 2 M/T]/ 
iEN 

makes E into symmetric orthomodular space (cf. [3], Remark 29). E has the following 
property ([3], Lemma 25). 

(9) If (e/)/GN is a maximal orthogonal family in L, then there is a 
bijection T:I —» N such that for all / E / <p(e,-, £,) = dT(i) (mod 2r). 

An immediate consequence of (9) is 

(10) Vx,y E E:(x,y) = 0 -» <p<*,*> + 9 < ^ > (mod 2D. 

It follows that if x and y are orthogonal nonzero elements of L, then (JC,JC) =|= (y>y)> 
and so (i) fails for Lu(L). 

Now let ty.E —» £/ C £ be a similarity with respect to a field automorphism 
a:K—> A'and the constant |x. cp(|x) has the form (ra0,. . . , rar,0,0,.. .). Next choose 
x E E such that <p(x,x) = d„ for some n > r. Then cp(^rx,'vFx) = <pa(jc,jc) 4- cp(|ji) 
= d„ + <p(|x). Hence it follows by (9) that cp(|ji) E 2r, so |JL is a square and therefore 
JJL = 1 can be assumed without loss of generality, implying 

(11) Vj E Enpi^y^y) = <p(y,y). 

Applying (10), one sees that y is orthogonal to Wy only if y = 0, thus (ii) does not hold 
for Lu(E). 

In order to treat (iii) consider 
A : = {(\/) / e N £ E\k2i = X2,-+ i}, and 

B: = { ( \ , ) , e N EL|X 2 ; + 1 = 0 } . 

The orthogonals to these spaces are 

A 1 = { (Tl / ) /6N ^ L|Tl2 /«2/ + T12.+ I02/+1 = °l» a n d 

tf1 = { (T i / ) /ENe^h 2 / = o}. 

It is easily seen that A,B E Lu(L) and A D £ = {0} = AL H £ \ For any Cn.,),^ E 
51\{0} there is an n E N with 

9(Cni)ieN,Cni)ieN} = 91 S ^2/+i«2,+ i) = Min 9(Tfi2/+iû2/+i) — din+\ (mod 2T), 

and for any (X/),eN E A\{0} there is an m E TV with 

9<(^«)/6N,(^/)/eN) = 91 S ^I2(Û,- + fl/+i)) = Min 9(\fû/) = d2w (mod 2T). 
\ e 2 N

 7 iG2N 

(11) now shows that (iii) fails for Lu(L). 
Finally consider (o): Recall that ty is a similarity between E and some subspace U 

of E. Then U is also an orthomodular space. As in [1] it can be shown that U is a closed 
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subset of E with respect to the vector space topology having ({x E E\(p(x,x) ^ £})Eer­
as basis for the neighborhoods of 0. By Theorem 28 of [3], U E Lu (E). Now let (ej)iEN 

be a maximal orthogonal family in E. By (9) and (11), 0J^/)/eN is also a maximal 
orthogonal family in E. But ^ e , E U = £/u, so U = £. 

3. Remarks. The space constructed in section 2 can be modified in several ways (see 
e.g. [2], [4]). The interest in (iii) comes from the fact that it implies the osymmetry. 
But even though (iii) fails in our example, Lu(E) is ^-symmetric. This follows from 
§XII of [3] and from Remark 3 of [9]. It is still an open problem whether there are 
Hilbert lattices which are not ^-symmetric. 

I thank Prof. H. Gross for encouraging me in treating these questions and for fruitful 
discussions. 
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