SOLUTION TO A MATROID PROBLEM POSED BY D.J.A. WELSH

D.T. Bean

(received April 5, 1968)

The pair (S, M) is a matroid if S is a finite set and M a
collection of subsets of S such that (1) every subset of a set of M
isin M, and (2) all maximal sets in M have a common cardinality.
The span of a set A C S is I'(A) where ycI'(A) if and only if y ¢ A
or thereis A'C A, A'e¢e M and {y}U A' ¢ M. A maximal setin M
is called a base. For each base B in M define B:S— M by: B(x)
is {x} if xeB; otherwise B(x) is the unique minimal subset of B
such that B(x)U {x} ¢ M.

Remark. Using the natural correspondence between bases and
circuits the set B(x)\U {x} is just the atom J(D;x) of Tutte [1] where
D is the dendroid E-B when B is a base and xe¢S-B.

For ACS and xe¢ S, x is B-orthogonal to A, written x ¢ %(A),
if B(x)() B(a) = ¢ for all acA.

A problem posed by Welsh [2] is the following: I Ac:M, B isa
base and x ¢ OB(A) is x ¢ OB(I‘(A))? The answer is yes and is in fact
true for any A CS. To prove this two lemmas are required.

LEMMA 1. Let (S,M) be a matroid and be¢B, B a basein M.
Then B' = (B -{b})U {a} is a base if and only if be B(a).

Proof. Necessity. If aec¢B then B'=B and {b} =B(a). I
a¢ B then B'(b) CB' and B'(b)U{b} d M. Thus aeB'(b) and
B(a) = (B'(b)U{b}) - {a} by uniqueness.

Sufficiency. If ae¢B then b=a and so B'=B. If a ¢ B and B!
is dependent then there is A C B', A minimal dependent. Since B is
independent, ae¢AC(B - {b})U {a} sothat A- {a} =B(a) and
b d B(a), a contradiction. B' is independent and ]BI = IB'] . Hence
B' is a base. (|X| denotes the cardinality of X .)

LEMMA 2. Let (S,M) be a matroid, B abase, aecS- B, beB(a),
and B' = (B - {b})U{a}. Then for peS,

(i) B'(p) = B(p) if b ¢ B(p),
(ii) B'(b) (B(a) U {a}) - {b},
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(i) B'(a) = {a} , and

(iv) B(a) + B(p) € B'(p) C B(a) U B(p) U {a} if be B(p),b #p.
(X +Y denotes the symmetric difference of X and Y.)

Proof. B' is a base by Lemma 1.

(i) ¥ b ¢ B(p) then B(p) C B'. Hence B'(p) = B(p).

(ii) The proof of Lemma 1 shows that B'(b) = (B(a)U{a}) - {b}.

(iii) By definition.

(iv) Right hand side. The minimal dependent sets form a "circuit"
matroid (Edmonds [3, Prop. 2]).

Since b eB(p) U{p} and be B(a)lU {a} , there is a minimal
dependent set C with pe C C B(a)U B(p) U {a,p} - {b} c BU{p} .
Hence B'(p) = C- {p} € B(a) U B(p)U {a} . Also ac B'(p) by
Lemma 1 since B = (B* - {a})U {b} .

Left hand side. (a) For ze B(p) - B(a), B" = (B -{z})U{p}
is a base by Lemma 1 and since z ¢ B(a), B(a) = B'"(a) by Lemma 2, (i).
aeB'(p) U {p} is a circuit, and if z ¢ B'(p) then B'(p) U {p} ¢ B"U {a} ,
giving b ¢B(a) = B'"(a) = B'(p) U {p} - {a}, a contradiction. () For
z ¢ B(a) - B(p), B" = (B- {z}) U{a} is a base by Lemma 1 and since
zd B(p), beB"(p) = B(p) by Lemma 2, (i). I z ¢ B'(p) then
B'Y(p) € (B(p) UB(a) U {a}) - {z} € B". Since B'(p)U {p} isa
circuit in B"U {p} we have be B'(p) = B'"(p) = B'(p), a contradiction.
Thus B(p) + B(a) C B'(p).

THEOREM. Let (S,M) be a matroid, B abase, ACS and
X € OB(A) . Then x eOB(F(A)).

Proof. X B(x) = ¢ there is nothing to prove. K vy e I'(A) with
B(x) M B(y) # ¢ then y ¢ A and there is a circuit C, yeC = A" U {y}
with A'C A, A'¢ M. Then x ¢ OB(A‘), x d OB(I“(A’)) so that it is

sufficient to prove the theorem for sets A ¢ M.
We now have: if the theorem is not true there is a triple (x, A, B)
where x ¢ S, B is abase, A ¢ M, 0< |A - BI, erB(A) and
x dOB(F(A)). Suppose (x, A,B) such a triple. I A C B then UAB(a) = A
ac.

and for y e T(A) - A there is a circuit C with yeC = AU {y}, A'CA.
Hence B(y) = A'C A and B(x) M) B(y) = ¢, a contradiction. Thus for
such triple, 0 < |A - B| and we may choose one with |A - B| least.

Take a¢€ A - B. Since a, € M there is b ¢ B(ao) and by hypothesis
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b ¢ B(x). By Lemma 1, B' = (B -{b})U{aO} is a base and by Lemma 2
(i) B(x) = B'(x). Now a, ¢ B'(x), for otherwise by Lemma 2 (iv)

(with B' and B interchanged) B’(ao) + B'(x) = B(x) = B'(x) giving
B'(aO) = {ao} = ¢, a contradiction. For the remaining a ¢ A again
using Lemma 2 (iv), B'(a) C B(a) U B(ao) U{a} so that B'(x)( B'(a) = o
for all ae A. Thus x ¢ OB' (A) and by the minimality of

|A- B[, x c O, ((A).

Now take y ¢ I'(A). If b ¢ B{y) then by Lemma 2 (i), ¢ = B'(x) M B'(y) =
B(x) M) B(y). If be B(y), B'(y) D B(ao) + B(y) by Lemma 2 (iv) and

¢ = B'(x) M B'(y) = B(x) M (B(ao) + B(y)) = B(x) M B(y). In all cases,
B(x) M) B(y) = ¢ and so x ¢ OB(I‘(A)), a contradiction to the existence of

a triple (x, A,B). Thus the theorem is proved.
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