SOLUTION TO A MATROID PROBLEM POSED BY D. J. A. WELSH

D.T. Bean

(received April 5, 1968)

The pair (S,M) is a <u>matroid</u> if S is a finite set and M a collection of subsets of S such that (1) every subset of a set of M is in M, and (2) all maximal sets in M have a common cardinality. The <u>span</u> of a set $A \subseteq S$ is $\Gamma(A)$ where $y \in \Gamma(A)$ if and only if $y \in A$ or there is $A' \subseteq A$, $A' \in M$ and $\{y\} \bigcup A' \notin M$. A maximal set in M is called a <u>base</u>. For each base B in M define $B:S \to M$ by: B(x) is $\{x\}$ if $x \in B$; otherwise B(x) is the unique minimal subset of B such that $B(x) \bigcup \{x\} \notin M$.

Remark. Using the natural correspondence between bases and circuits the set $B(x) \cup \{x\}$ is just the atom J(D;x) of Tutte [1] where D is the dendroid E-B when B is a base and $x \in S$ -B.

For $A \subseteq S$ and $x \in S$, x is B-orthogonal to A, written $x \in Q_B(A)$, if $B(x) \cap B(a) = \emptyset$ for all $a \in A$.

A problem posed by Welsh [2] is the following: If $A \in M$, B is a base and $x \in O_B(A)$ is $x \in O_B(\Gamma(A))$? The answer is yes and is in fact true for any $A \subset S$. To prove this two lemmas are required.

LEMMA 1. Let (S, M) be a matroid and $b \in B$, B a base in M. Then $B' = (B - \{b\}) \cup \{a\}$ is a base if and only if $b \in B(a)$.

<u>Proof.</u> Necessity. If $a \in B$ then B' = B and $\{b\} = B(a)$. If $a \notin B$ then $B'(b) \subset B'$ and $B'(b) \cup \{b\} \notin M$. Thus $a \in B'(b)$ and $B(a) = (B'(b) \cup \{b\}) - \{a\}$ by uniqueness.

Sufficiency. If $a \in B$ then b = a and so B' = B. If $a \notin B$ and B' is dependent then there is $A \subset B'$, A minimal dependent. Since B is independent, $a \in A \subset (B - \{b\}) \cup \{a\}$ so that $A - \{a\} = B(a)$ and $b \notin B(a)$, a contradiction. B' is independent and |B| = |B'|. Hence B' is a base. (|X| denotes the cardinality of X.)

LEMMA 2. Let (S, M) be a matroid, B a base, $a \in S - B$, $b \in B(a)$, and $B' = (B - \{b\}) \cup \{a\}$. Then for $p \in S$,

- (i) B'(p) = B(p) if $b \notin B(p)$,
- (ii) $B'(b) = (B(a) \cup \{a\}) \{b\}$,

Canad. Math. Bull. vol. 12, no. 2, 1969

- (iii) $B'(a) = \{a\}$, and
- (iv) B(a) + B(p) \subset B'(p) \subset B(a) \cup B(p) \cup {a} $\underline{\text{if}}$ b \in B(p), b \neq p. (X + Y denotes the symmetric difference of X and Y.)

Proof. B' is a base by Lemma 1.

- (i) If $b \notin B(p)$ then $B(p) \subset B'$. Hence B'(p) = B(p).
- (ii) The proof of Lemma 1 shows that $B'(b) = (B(a) \cup \{a\}) \{b\}$.
- (iii) By definition.
- (iv) Right hand side. The minimal dependent sets form a "circuit" matroid (Edmonds [3, Prop. 2]).

Since $b \in B(p) \cup \{p\}$ and $b \in B(a) \cup \{a\}$, there is a minimal dependent set C with $p \in C \subset B(a) \cup B(p) \cup \{a,p\}$ - $\{b\} \subset B' \cup \{p\}$. Hence $B'(p) = C - \{p\} \subset B(a) \cup B(p) \cup \{a\}$. Also $a \in B'(p)$ by Lemma 1 since $B = (B' - \{a\}) \cup \{b\}$.

Left hand side. (a) For $z \in B(p) - B(a)$, $B'' = (B - \{z\}) \cup \{p\}$ is a base by Lemma 1 and since $z \notin B(a)$, B(a) = B''(a) by Lemma 2, (i). $a \in B'(p) \cup \{p\}$ is a circuit, and if $z \notin B'(p)$ then $B'(p) \cup \{p\} \subset B'' \cup \{a\}$, giving $b \in B(a) = B''(a) = B'(p) \cup \{p\} - \{a\}$, a contradiction. (b) For $z \in B(a) - B(p)$, $B'' = (B - \{z\}) \cup \{a\}$ is a base by Lemma 1 and since $z \notin B(p)$, $b \in B''(p) = B(p)$ by Lemma 2, (i). If $z \notin B'(p)$ then $B'(p) \subset (B(p) \cup B(a) \cup \{a\}) - \{z\} \subset B''$. Since $B'(p) \cup \{p\}$ is a circuit in $B'' \cup \{p\}$ we have $b \in B'(p) = B''(p) = B'(p)$, a contradiction. Thus $B(p) + B(a) \subset B'(p)$.

THEOREM. Let (S,M) be a matroid, B a base, $A \subseteq S$ and $x \in O_B(A)$. Then $x \in O_B(\Gamma(A))$.

<u>Proof.</u> If $B(x) = \phi$ there is nothing to prove. If $y \in \Gamma(A)$ with $B(x) \cap B(y) \neq \phi$ then $y \notin A$ and there is a circuit C, $y \in C = A' \cup \{y\}$ with $A' \subset A$, $A' \in M$. Then $x \in O_B(A')$, $x \notin O_B(\Gamma(A'))$ so that it is sufficient to prove the theorem for sets $A \in M$.

We now have: if the theorem is not true there is a triple (x, A, B) where $x \in S$, B is a base, $A \in M$, $0 \le |A - B|$, $x \in O_B(A)$ and $x \notin O_B(\Gamma(A))$. Suppose (x, A, B) such a triple. If $A \subset B$ then $\bigcup_{a \in A} B(a) = A$ and for $y \in \Gamma(A)$ - A there is a circuit C with $y \in C = A' \cup \{y\}$, $A' \subset A$. Hence $B(y) = A' \subset A$ and $B(x) \cap B(y) = \emptyset$, a contradiction. Thus for such triple, 0 < |A - B| and we may choose one with |A - B| least.

Take $a_0 \in A - B$. Since $a_0 \in M$ there is $b \in B(a_0)$ and by hypothesis

b \notin B(x). By Lemma 1, B' = (B - {b}) \cup {a₀} is a base and by Lemma 2 (i) B(x) = B'(x). Now a₀ \notin B'(x), for otherwise by Lemma 2 (iv) (with B' and B interchanged) B'(a₀) + B'(x) = B(x) = B'(x) giving B'(a₀) = {a₀} = \emptyset , a contradiction. For the remaining a \in A again using Lemma 2 (iv), B'(a) \subset B(a) \cup B(a₀) \cup {a} so that B'(x) \cap B'(a) = \emptyset for all a \in A. Thus $x \in O_{B'}$ (\cap A) and by the minimality of \cap A - B \cap X \cap O_{B'} (\cap A).

Now take $y \in \Gamma(A)$. If $b \notin B(y)$ then by Lemma 2 (i), $\phi = B'(x) \cap B'(y) = B(x) \cap B(y)$. If $b \in B(y)$, $B'(y) \supset B(a_0) + B(y)$ by Lemma 2 (iv) and $\phi = B'(x) \cap B'(y) = B(x) \cap (B(a_0) + B(y)) = B(x) \cap B(y)$. In all cases, $B(x) \cap B(y) = \phi$ and so $x \in O_B(\Gamma(A))$, a contradiction to the existence of a triple (x, A, B). Thus the theorem is proved.

REFERENCES

- W. Tutte, Lectures on matroids. National Bureau of Standards Journal of Research 69B (1965) 1-47.
- D. J. A. Welsh, On dependence in matroids. Canad. Math. Bull. 10 (1967) 599-603.
- 3. J. Edmonds, Minimum partition of a matroid into independent subsets. National Bureau of Standards Journal of Research 69B (1965) 67-72.

York University Toronto