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Abstract

Machine learning (ML) and in particular deep learning (DL) methods push state-of-the-art solutions for many hard
problems, for example, image classification, speech recognition, or time series forecasting. In the domain of climate
science, ML and DL are known to be effective for identifying causally linked modes of climate variability as key to
understand the climate system and to improve the predictive skills of forecast systems. To attribute climate events in a
data-driven way, we need sufficient training data, which is often limited for real-world measurements. The data
science community provides standard data sets formany applications. As a newdata set, we introduce a consistent and
comprehensive collection of climate indices typically used to describe Earth System dynamics. Therefore, we use
1000-year control simulations from Earth SystemModels. The data set is provided as an open-source framework that
can be extended and customized to individual needs. It allows users to develop new ML methodologies and to
compare results to existing methods and models as benchmark. For example, we use the data set to predict rainfall in
the African Sahel region and El Niño Southern Oscillation with various ML models. Our aim is to build a bridge
between the data science community and researchers and practitioners from the domain of climate science to jointly
improve our understanding of the climate system.

Impact Statement

Machine learning (ML) models learn from data. To compare and improve ML methods and models, data
scientists need standard data sets as benchmark. There exist many standard data sets, like a collection of
handwritten digits or images. Our contribution adds a consistent and comprehensive collection of climate indices
as new benchmark data set. This collection can be used to trainMLmodels to understand the complex short-term
and long-term variability of the climate system and to predict climate events.

1. Introduction

To develop and compare machine learning (ML) methods and models in an objective way, there exist
standard data sets as benchmark. Among these data sets, we find, for example, a collection of handwritten
digits provided by the National Institute of Standards and Technology, referred to as MNIST data set
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(Lecun et al., 1998). Other data sets contain images, like the CIFAR-10 data set from Canadian Institute
for Advanced Research, introduced by Krizhevsky (2009), or CelebSET, as a collection of photos of
celebrities with different ethnicity (Raji et al., 2020). These data sets are mostly suitable for classification
algorithms. Famous data sets for pattern recognition and clustering applications are, for example, Palmer
Penguins or theWine data set, provided by Horst et al. (2020) and the UCIMachine Learning Repository
(Murphy and Aha, 1994), containing attributes for various species of penguins and results of a chemical
analysis of wines, respectively. Furthermore, the data science community also provides standard time
series collections, for example, the Rainforest Automation Energy data set that contains energy con-
sumption time series for various household appliances (Makonin et al., 2018). However, benchmark data
sets in the field of climate science are rare. To name a few,Mamalakis et al. (2022) provide a framework to
create synthetic data sets designed for problems in geosciences. And Watson-Parris et al. (2022)
introduced ClimateBench, as a benchmark for data-driven climate projections.

Here, we are interested in describing the underlying dynamics of the Earth System. Real-world data
in this context are limited to observable features that can be measured in a comprehensive way or that
can be reconstructed from sparse measurements. Examples are sea surface temperature (SST), sea level
pressure (SLP), surface air temperature (SAT), sea surface salinity (SSS), geopotential height at various
pressure levels, for example, at 500 millibar (Z500), or total precipitation (PREC). These variables
reflect some of the main dynamics of the Earth system in form of known modes of climate variability,
patterns, and oscillations, for example, Atlantic Multidecadal Oscillation (AMO) (Schlesinger and
Ramankutty, 1994), the Southern Annular Mode (SAM) (Gong and Wang, 1999), or the El Niño
Southern Oscillation (ENSO) (Philander, 1989). To describe the Earth System dynamics in a com-
pressed way, multi-dimensional physical fields can be reduced to specific climate indices that capture
the main processes. For instance, ENSO is a complex phenomenon that can be detected as periodic SST
fluctuations in the Tropical Pacific. Several indices are defined to compute the current ENSO phase
from area-averaged SST anomalies (SSTA) in certain regions. For instance, the Niño 3.4 index defined
from the Niño 3.4 region (5°N–5°S, 120°W–170°W) by the National Oceanic and Atmospheric
Administration (NOAA) is often used in the context of ENSO (Climate Diagnostics Bulletin, n.d.).
While ENSO is a large-scale driver of the climate system, other indices aim to capture regional
variability in specific features, like the Sahel precipitation index (SPI) (Badr et al., 2014). This index
measures anomalies of summer rainfall in the African Sahel region (10°N–20°N, 20°W–10°E). Real-
world climate data are, for example, provided by the Joint Institute for the Study of the Atmosphere and
Ocean (n.d.) or National Oceanic and Atmospheric Administration (NOAA) (n.d.). However, climate
indices are limited in their temporal extent, since consistent real-world measurements started only in
recent history or measurements are subject of specific research projects that run over a certain period
in time.

Our aim is to better understand existing modes of climate variability and to find new relationships.
Therefore, we require a consistent and comprehensive collection of climate indices over a sufficiently
long time span, which favors the use of model data over real-world data. Earth System Models
(ESMs) aim to simulate processes of the Earth system in specified temporal and spatial resolution.
The Flexible Ocean and Climate Infrastructure (FOCI) (Matthes et al., 2020) and the Whole
Atmosphere Community Climate Model (WACCM) as extension of the Community Earth System
Model (CESM) (Hurrell et al., 2013; Marsh et al., 2013) are both coupled, global climate models that
provide state-of-the-art computer simulations of the past, present and future states of the Earth
system. The quality of model outputs is evaluated on certain control runs. This can, for example, be
done by starting an ESM with pre-industrial conditions from the year 1850 and letting the model
unfold its dynamics without external forcing over a desired time span. Here, we use the output of
FOCI and CESM control runs. In particular, we work with SST, SAT, SLP, Z500, SSS, and PREC as
two-dimensional fields. From these variables, we derive a set of climate indices over 1000 and 999
years, respectively. The obtained collection of climate indices based on model data (CICMoD) serves
as a reduced description of the Earth system in a consistent and comprehensive way. Our main
contributions are as follows:
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• We introduce CICMoD as a new benchmark data set to the data science community, describing the
climate system.

• CICMoD allows the user to develop new ML methods and to compare results to existing methods
and models in an objective way.

• We provide an open-source framework that can be extended and customized to individual needs, for
example, by including further ESMs.

• Additionally, we briefly sketch two examples of how our CICMoD data set can be used.

Relationships in the climate systems are often characterized as nonlinear and nonstationary (Pak et al.,
2014, 2018; Zhang et al., 2019). ML and deep learning (DL) models have been shown to be useful for this
kind of problems, for example, byMayer andBarnes (2021) or Pegion et al. (2022).However, workingwith
benchmark data sets bears the risk of having undetected errors and biases or of being unrepresentative. For
instance, Liao et al. (2021) and Luccioni and Rolnick (2022) argue that the ubiquity of benchmarks in
computer science has led to efforts that chase benchmark performance at the expense of real-world
applications. Thus, oncewe find new relationships in the Earth System, these findings need to be confirmed
on real-world data to identify artifacts in ESMsimulations. A better understanding of causally linkedmodes
within our climate system is essential to tackle climate change and to attenuate its impacts.

The rest of this work is structured as follows. In Section 2, we provide a short description of FOCI and
CESM. An overview of all indices included in the CICMoD data set and details on how the indices are
derived from raw ESM outputs are given in Section 3. In Section 4, we show two exemplary applications
and use climate indices from CICMoD data set to predict Sahel rainfall and ENSO, respectively. A
detailed discussion of all results and a conclusion is found in Section 5.

2. Model Data

The climate indices included in our CICMoD data set are derived frommonthly averaged output of climate
model simulationswith FOCI andCESM, respectively. TheCESMsimulation is based on version 1.0.6with
WACCM version 4 (Drews et al., 2022). The FOCI simulation used in this manuscript is the control
simulation referred to as “FOCI-piCtl” based on FOCI version 1.3.0 (Matthes et al., 2020). Both simulations
were run using pre-industrial external forcing that is representative for the year 1850. The FOCI pre-
industrial control simulation has been initialized from an ocean at rest with a salinity and temperature
distributionbasedon observations approximately from the last 30years and then ran for 1500years.Here,we
only use the latter 1000 years and skip the first 500 years to allow the model to find its equilibrium. The
CESM control simulation has been initialized from another multi-centennial pre-industrial control run
provided by the core development teamof theNational Center forAtmospheric Research (NCAR) (National
Center forAtmosphericResearch, n.d.) and is therefore already in equilibrium.FOCI (1.8°� 1.8°, 95vertical
levels) and CESM (1.8° � 2.5°, 106 vertical levels) were run at similar horizontal and vertical resolution,
although the vertical distribution of the model layers differs significantly between FOCI and CESM. Both
models have been extensively evaluated and used in various climate studies. FOCI and CESM are based on
very different componentmodels (seeHurrell et al., 2013;Marsh et al., 2013;Matthes et al., 2020, for details)
with different strengths and weaknesses in simulating various aspects of the global climate.

From both control simulations’ output we use Z500, SLP, SST, SSS, SAT, and PREC. All features
except SSS are provided on a two-dimensional atmospheric latitude–longitude grid. As SSS was
originally stored on the curvilinear ocean grids, it was sampled to the grid of the other atmospheric fields
of the respectivemodel by aggregationwith xhistogram (Abernathey et al., 2022). Note, that SAT refers to
the temperature in 2 m height for both, CESM and FOCI data.

3. Climate Index Collection

In this section, we give an overview of all indices included in the CICMoD data set and reveal details on
how the indices are derived. In total, our CICMoD data set consists of 29 climate indices. The indices can
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be grouped by the underlying feature. Each feature is discussed separately in the following subsections.
We conclude this section with remarks on statistics and pairwise correlation of all indices.

3.1. Geopotential height

Geopotential height is a vertical coordinate with reference to Earth’s mean sea level. Its contours are used
to calculate the geostrophic wind which is of interest for climate dynamics. Here, we choose geopotential
height at constant pressure of 500 millibar, referred to as Z500. According to NOAA, Z500 relates to
winds in the range between 5000 and 6000 meters above mean sea level (National Oceanic and
Atmospheric Administration’s National Weather Service, n.d.). We use Z500 to compute the SAM index
which relates to the principal mode of variability in the Southern Hemisphere (SH) extratropics. The SAM
index can be obtained as the Principle Component (PC) time series of the leading Empirical Orthogonal
Function (EOF) of monthly geopotential height anomalies over parts of the SH (20°S–90°S) (Thompson
and Wallace, 2000). SAM has large impact on climate dynamics of the SH, including Australian rainfall
and Antarctic surface temperatures (Marshall, 2007).

3.2. Sea level pressure

SLP refers to the air pressure at sea level. Several indices are derived from SLP and its anomalies.
Opposed to the PC-based version described in Section 3.1, the SAM index was originally defined by
Gong and Wang (1999) as the difference of normalized monthly zonal mean SLP at 40°S and 65°S,
respectively. Both versions are included in our CICMoD data set.

The Southern Oscillation Index (SOI) is defined as normalized SLP differences between Tahiti (17°410S,
149°270W)andDarwin,Australia (12°270S, 130°500E) (Walker andBliss, 1932). It is used as ameasure of the
large-scale fluctuations in the air pressure between the Western and Eastern Tropical Pacific and is closely
related to ENSO. Similar to SOI, the North Atlantic Oscillation (NAO) index can be computed from SLP as
the normalized difference between Reykjavik (64°90N, 21°560W) and Ponta Delgada (37°450N, 25°400W)
(Hurrell, 1995). Additionally, the NAO index can be obtained as the PC time series of the leading EOF of
monthly SLPanomalies over theAtlantic sector (20°N–80°N, 90°W–40°E) (NationalCenter forAtmospheric
Research, n.d.). The NAO refers to swings in the atmospheric SLP between the Arctic and the subtropical
Atlantic that are associated with changes in the mean wind speed and direction. Such changes are reflected in
the seasonal mean heat and moisture transport between the Atlantic and the neighboring continents and have
an impact on the intensity and number of storms, their paths, and their weather (Hurrell et al., 2003).

The North Pacific (NP) index measures interannual to decadal variations in the atmospheric circula-
tion. It is derived from area-weighted SLP anomalies in a box bordered by 30°N to 65°N and 160°E to
140°W (Trenberth and Hurrell, 1994). Each grid point’s SLP anomaly value represents the mean value
over the corresponding grid box. Since the area of the grid boxes depends on the latitude, we need to use
area-weighted SLP anomalies to avoid overestimating values in high latitudes. Usually, the index focuses
on anomalies during November and March. Here we keep full information and provide monthly
anomalies for all months of a year.

3.3. Sea surface temperature

SST is the ocean temperature close to the surface. By removing the seasonal cycle, we obtain SSTanomalies
(SSTA). In particular, we subtract the mean over time separately for each month. SSTA impact the energy
transfer at the interface between ocean and atmosphere and are of high interest for describing processes in the
climate system. Several modes of variability are known to exist on different time scales in the range of years,
decades, or even longer. AMO refers to a natural variability occurring in the SSTof the North Atlantic with a
multidecadal period of 60–80 years. AMO is computed from area-weighted SSTA of the North Atlantic
(Trenberth and Shea, 2006).

The Pacific Decadal Oscillation (PDO) index is obtained as the PC time series of the leading EOF of
monthly SSTA in the North Pacific basin (20°N–60°N, 120°E–260°E). PDO resembles ENSO in its
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spatial pattern. However, ENSO is referred to as an interannual phenomenon while PDO is decadal in
scale (Newman et al., 2016).

ENSO is characterized by periodic fluctuations in SST in the Tropical Pacific. Its positive and negative
phases relate to unusual warm (El Niño) or cold (LaNiña) SST, respectively. Tropical Pacific is divided into
specific regions, so-called Niño regions. ENSO indices are then derived from SSTA in the corresponding
region by spatial averaging. Indices are divided by the standard deviation of area-weighted SSTover time in
the same region, as normalization. Here, we include Niño 1 þ 2 region as the smallest and eastern-most
Niño region where the phenomenon was first recognized by the local coastal population. Additionally, we
present ENSO indices on Niño 3, 3.4, and 4 regions, respectively (National Oceanic and Atmospheric
Administration, n.d.). ENSO is a large-scale driver of the climate system (Philander, 1989). Usually, ENSO
indices are smoothed by taking the rolling mean over several months to erase noise. Here, we omit the
rolling mean and provide pure SSTA indices instead, to preserve full information.

Other regions of interest in the context of climate dynamics related to SSTA are Tropical North
Atlantic, Tropical South Atlantic, Eastern Subtropical Indian Ocean, Western Subtropical Indian Ocean,
Mediterranean Sea, and hurricane main development region, respectively. For instance, the African
summer monsoon is found to be highly sensitive to SST variability in all tropical basins (Giannini et al.,
2003). Corresponding indices are included in our CICMoD data set.

3.4. Sea surface salinity

SSSmeasures the amount of salt dissolved in the ocean surface water and plays an important role in ocean
circulation processes. Furthermore, rainfall on land is largely supplied by evaporation over the ocean and
that evaporation leaves an imprint in SSS. Here, we include several indices derived from SSS anomalies
(SSSA) in specific regions of the Atlantic Ocean introduced by Li et al. (2016).

3.5. Surface air temperature

SAT is the air temperature close to the surface and relates to the ability of evaporation, sincewarmer air has
a higher storage capacity for water vapor. Like this, SATanomalies (SATA) influence the energy transfer
at the interface between Earth’s surface and atmosphere. Here, we track area-averaged monthly SATA on
large scales with indices covering complete NH and SH (Jones et al., 1999). Additionally, we split NH and
SH into land-only and ocean-only regions, respectively, and include corresponding indices in our
CICMoD data set. The ocean masks are taken from the native model grids.

3.6. Precipitation

Precipitation has a high impact on society in form of extreme events like flooding caused by heavy rainfall
or droughts due to missing or lower as normal rainfall. As an example, we include the SPI as measure for
rainfall in the African Sahel region (Badr et al., 2014). The rainy season in this area is centered on June
through October (Joint Institute for the Study of the Atmosphere and Ocean, n.d.). In its original form, the
SPI gives a measure of the year to year variability of Sahel rainfall as mean over the rainy season.
Moreover, we provide the SPI as monthly anomalies of rainfall in the Sahel zone (10°N–20°N, 20°W–10°
E) to preserve full information.

3.7. CICMoD data set

Table 1 gives an overview of all 29 indices included in CICMoD data set ordered by the underlying
feature. By definition, all indices have zeromean over time, whereas onlyNAO_PC, PDO_PC, SAM_PC,
SAM_ZM, and SOI are normalized by design to have unit variance. If required, normalization of the
remaining indices can be done in pre-processing. Exemplary, pairwise correlation coefficients for all
indices included in CICMoD data set derived from FOCI data are shown in Figure 1. Indices derived from
CESM data show similar characteristics. ENSO indices are found to be highly correlated, as expected,
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Table 1. All indices are included in CICMoD data set with their acronyms and spatial domains, ordered by the underlying feature.

Spatial domain

Index Acronym Lat in °N Lon in °E

Z500 Southern Annular Mode (PC-based) SAM_PC �90 to �20

SLP Southern Annular Mode (zonal mean) SAM_ZM �65 to �40

Southern Oscillation SOI Tahiti Darwin

(�18°N, 211°E) (�12°N, 131°E)

North Atlantic Oscillation (station) NAO_ST Reykjavik Ponta Delgada

(64°N, 338°E) (38°N, 334°E)

North Atlantic Oscillation (PC-based) NAO_PC 20 to 80 �90 to 40

North Pacific Pattern NP 30 to 65 �160 to 220

SST Atlantic Multidecadal Oscillation AMO 0 to 70 Atlantic basin

Pacific Decadal Oscillation PDO_PC 20 to 60 120 to 260

El Niño Southern Oscillation (1 þ 2) ENSO_12 �10 to 0 270 to 280

El Niño Southern Oscillation (3) ENSO_3 �5 to 5 210 to 270

El Niño Southern Oscillation (3.4) ENSO_34 �5 to 5 190 to 240

El Niño Southern Oscillation (4) ENSO_4 �5 to 5 160 to 210

Tropical North Atlantic SSTA SST_TNA 5 to 25 �55 to �15

Tropical South Atlantic SSTA SST_TSA �20 to 0 �30 to 10

Eastern Subtrop. Indian Ocean SSTA SST_ESIO �28 to �18 90 to 100

Western Subtrop. Indian Ocean SSTA SST_WSIO �37 to �27 55 to 65

Mediterranean Sea SSTA SST_MED 30 to 45 0 to 25

Hurricane main dev. region SSTA SST_HMDR 10 to 20 �85 to �20

SSS North Atlantic SSSA SSS_NA 25 to 50 �50 to �15

Western North Atlantic SSSA SSS_WNA 25 to 38 �50 to �40

Eastern North Atlantic SSSA SSS_ENA 25 to 50 �40 to �15

South Atlantic SSSA SSS_SA �22.5 to �10 �42 to �10

SAT Northern Hemisphere SATA SAT_N_ALL 0 to 90

Northern Hemisphere SATA (ocean) SAT_N_OCEAN 0 to 90 Ocean

Northern Hemisphere SATA (land) SAT_N_LAND 0 to 90 Land

Southern Hemisphere SATA SAT_S_ALL �90 to 0

Southern Hemisphere SATA (ocean) SAT_S_OCEAN �90 to 0 Ocean

Southern Hemisphere SATA (land) SAT_S_LAND �90 to 0 Land

PREC Sahel Precipitation PREC_SAHEL 10 to 20 �20 to 10
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since these indices are all computed from SSTA in some narrow region of the Tropical Pacific.
Additionally, we find station- and PC-based NAO indices to be highly correlated, as well as PC-based
SAM and SAM from zonal mean, as these indices are designed to describe the same processes. Indices
regarding SATA in the NH and SH, respectively, and indices regarding SSS anomalies in the North
Atlantic also reveal similarities in terms of high correlation, since by design spatially related features are
involved in the computation. Besides that, SOI is found to be negatively correlated to all ENSO indices.
Periods of negative (positive) SOI values coincide with warmer (colder) than normal ocean water across
the Eastern Tropical Pacific, which is typical for El Niño (La Niña) episodes (Power and Kociuba, 2011).

4. Application and Results

In this section, we briefly sketch two applications of our CICMoD data set to predict Sahel rainfall and
ENSO, respectively.

4.1. Sahel rainfall

Sahel summer precipitation has been observed to be highly variable with floods and droughts occurring on
a regular basis and has a high impact on living conditions in the region. Predicting Sahel rainfall and
understanding the underlying processes is essential, since it allows taking measures in advance to avoid
damage and prevent hunger crises. As a first application, we use ML models on our CICMoD data set to

Figure 1. Pairwise correlation coefficients of all CICMoD indices derived from FOCI data.
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predict rainfall in the Sahel region. In particular, we apply a linear regression model as a baseline and,
additionally, train a multilayer perceptron (MLP). Following the approach of Badr et al. (2014), we use
April to June mean index values for all indices included in our CICMoD data set except SPI as predictors
to infer July to September seasonal sum of SPI as target. The input layer of the MLP thus consists of
28 input units. Additionally, we have two hidden layers with 20 and 10 units, respectively, and a single
output unit. We use a linear activation function and train the MLP over 10 epochs with a batch size of
10, set the learning rate to 0:0005 and use the Adam optimizer (Kingma and Ba, 2014). For FOCI and
CESM data, the first 800 years are used as training data, while the remaining 200 and 199 years,
respectively, are used for validation. Figure 2 shows results from MLP models. Results from linear
regression are similar and therefore not shown, here. To evaluate model performance, we look at mean
squared error (MSE) of predictions compared to true targets used as objective or loss function. Add-
itionally, the correlation of predicted values and true targets is computed as metric. Corresponding MSE
and correlation for linear regression andMLPmodels on FOCI andCESMdata, respectively, are shown in
Table 2.

4.2. El Niño Southern Oscillation

ENSO is the predominant variation of winds and SST in the Tropical Pacific. The positive phase
(El Niño) is characterized by unusual warm SST and high SLP in the Eastern Tropical Pacific, whereas
the negative phase (La Niña) relates to unusual cold SST and low SLP in the same region and above-
average SST in theWestern Tropical Pacific. Both events last several months and occur with a period of
2–7 years with varying intensity per period. ENSO tremendously affects those countries bordering the
Pacific Ocean. Strong El Niños, for example, correspond to warm weather conditions with heavy
rainfalls from April through October causing major flooding along the West coast of South America
near Ecuador and the Northern part of Peru (Cai et al., 2020). Consequences of La Niña are, for
example, heavy rainfalls over Malaysia, the Philippines, and Indonesia. Therefore, knowing the ENSO
phase several months in advance is of high interest for society since it allows to take measures to avoid

Figure 2. Fidelity check on validation data: Sahel rainfall predictions (black line) from MLP models on
FOCI data (upper part) and CESM data (lower part), respectively, compared to true targets shown as a
bar plot.
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damage and to protect people. As second example, we use different ANNmodels on our CICMoD data
set to predict ENSO with various lead times. In particular, we train convolutional neural networks
(CNNs) and long short-term memory (LSTM) models to predict current ENSO phase and ENSO phase
3 and 6 months into the future, respectively. Here, targets are derived from ENSO_34 time series
included in CICMoD, which reflects Niño 3.4 index. As input features, we use all remaining indices
from our CICMoD data set, excluding other Niño indices due to the high correlation to our targets. Input
features are split into sequences of 24 months. We thus try to predict current and future ENSO phases
from past 2 years’ conditions.

In particular, the CNNmodels are based on two one-dimensional convolutions with 10 and 20 filters,
respectively. Kernel size is set to 5 with a stride of 1. Each convolution is followed by batch
normalization, a leaky rectified linear unit activation with negative slope coefficient α¼ 0:3, and a
maximum pooling operation with a pool size of 2. The output of the final pooling operation is then
flattened and used as input for two fully connected layers with 20 and 10 units, respectively, and finally,
we have a single output unit. The LSTM models are based on two LSTM layers with 10 and 20 units,
respectively. The output of the final LSTM layer is used as input for two fully connected layers with
20 and 10 units, respectively, and finally, we have a single output unit, similar to the CNN models.
Furthermore, we use a linear activation function for all fully connected layers and the output unit and
train the models over 20 epochs with a batch size of 20, set the learning rate to 0:0001 and use the Adam
optimizer.

Figure 3 shows pairwise correlation of targets and input features used in this experiment. Again, the
first 800 years of FOCI and CESM data are used as training data, while the remaining 200 and 199
years, respectively, are used for validation. Figure 4 shows results from CNN models on the first 500
months of FOCI and CESM validation data, respectively, for various lead times. To evaluate model
performance, we again look at MSE and correlation of predictions compared to true targets, as shown
in Table 3.

Table 2. Evaluating model performance for predicting Sahel rainfall with linear regression (lin. reg.) and MLP models trained on
FOCI and CESM data, respectively.

FOCI CESM

Lin. reg. MLP Lin. reg. MLP

MSEtrain 0.86 0.88 0.49 0.51

MSEval 0.83 0.78 0.62 0.60

Correltrain 0.55 0.53 0.70 0.69

Correlval 0.50 0.52 0.68 0.69

Note. The MSE and correlation (Correl) of predicted values and true targets are shown separately for training and validation data.

Figure 3.Pairwise correlation coefficients of Nino 3.4 indexwith various lead times (current phase, 3 and
6 months into the future) used as targets and input features, both derived from FOCI data.

Environmental Data Science e9-9

https://doi.org/10.1017/eds.2023.5 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2023.5


Figure 4.Fidelity check on the first 500months of validation data: Compare predictions (black line) from
CNN models on FOCI (left-hand side) and CESM data (right-hand side), respectively, compared to true
targets shown as bar plot for various lead times. (a,b) Current phase. (c,d) Three months into the future.
(e,f) Six months into the future.

Table 3. Evaluating model performance for predicting ENSO with CNN and LSTM models trained on FOCI and CESM data,
respectively.

CNN LSTM

ENSO_34 Lead 3 Lead 6 ENSO_34 Lead 3 Lead 6

FOCI MSEtrain 0.16 0.21 0.27 0.16 0.23 0.28

MSEval 0.24 0.37 0.47 0.26 0.41 0.53

Correltrain 0.84 0.79 0.72 0.84 0.77 0.71

Correlval 0.81 0.68 0.56 0.79 0.64 0.47

CESM MSEtrain 0.20 0.31 0.42 0.20 0.32 0.41

MSEval 0.29 0.48 0.65 0.30 0.50 0.73

Correltrain 0.88 0.80 0.72 0.88 0.79 0.72

Correlval 0.84 0.72 0.59 0.83 0.70 0.56

Note. The MSE and correlation (Correl) of predicted values and true targets are shown separately for training and validation data. ENSO phases at 3 and 6
months into the future are denoted as lead 3 and lead 6, respectively.
Abbreviations: CESM, community earth system model; FOCI, flexible ocean and climate infrastructure.
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5. Discussion and Conclusion

In this work, we introduce a consistent and comprehensive collection of climate indices as a new
benchmark data set. The collection is consistent in a sense that we use the output of ESM control runs
to derive all indices. For FOCI and CESM control runs, we have 1000 and 999 years of monthly data,
respectively, as an advantage compared to real-world data, since ML models require sufficient training
data. The collection is comprehensive as we include a broad selection of known patterns, oscillations, and
variability of the Earth system. The index collection is not complete since we focus on processes within
the atmosphere, in the upper ocean and at the interface of ocean and atmosphere. However, our CICMoD
data set serves as basis. Additionally, we provide an open-source framework that can to be extended and
customized to individual needs including the application to further ESMs. This opens the door for
collaboration in many ways. Our new data set allows researchers from the data science community to
adapt existing ML models and develop new ML methods to tackle problems from the domain of climate
science and get a deeper understanding of the Earth system. This requires involving scientists and
practitioners from the domain of climate science.

To give an impression of how the new data set can be used, we apply several ML models on our
CICMoD data set to predict Sahel rainfall and ENSO, respectively. In particular, we compare linear
regression and MLP models to predict SPI. Results are shown in Section 4.1. Linear regression models
perform slightly better on training data in terms of lower MSE combined with higher correlation of
predictions and true targets, while MLP models show better performance on validation data, hence
generalize better to unseen data. Comparing FOCI and CESM, we find lowerMSE and higher correlation
for linear regression and MLP models trained on indices derived from CESM data. As future work, these
differences need to be further investigated.

As the second example, we predict current ENSO phase and ENSO phase 3 and 6 months into the
future with CNN and LSTM models, respectively. Targets are derived from Niño 3.4 index and as
predictors we use all remaining indices, excluding Niño indices. Input features and targets are found to be
mostly uncorrelated with correlation coefficients in the range of �0.5 and 0.4. Results are shown in
Section 4.2. We find a higher frequency of ENSO events in time series derived from CESM data,
compared to FOCI. Still, periodicity for El Niño events falls in the expected range of 2–7 years for both
ESMs.Overall, our CNNmodels slightly outperformLSTMmodels for predicting ENSO.Again, we look
at MSE and correlation for evaluating model performance. The longer the target horizon, the worse the
model performance in terms of higher MSE and lower correlation, as expected, since ENSO is a complex
phenomenon that hinders long-term prediction beyond several months. As for Sahel rainfall prediction,
ourMLmodels perform better on indices derived fromCESMdata, compared to FOCI, which needs to be
further investigated in future work.

ESMs aim to simulate Earth system dynamics. Different ESMs have their individual strengths and
weaknesses. For our CICMoD data set, we use two distinct ESMs to derive all indices. Whenever we find
some relation in onemodel context, wemay try to reproduce our findings on the other model’s data to gain
trust before repeating our experiments on real-world data. Like this, our CICMoD data set can help to
reveal blind spots in ESMs and to find new causally linked modes within the real-world climate system.
As future project, we plan to combine CICMoD with an extensive toolbox of explainable artificial
intelligence (xAI) methods. Our new data set in combination with this xAI toolbox can then be used, for
example, for data science competitions to tackle climate change and push the understanding of the climate
system.
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