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Splitting Families and Complete
Separability
Heike Mildenberger, Dilip Raghavan, and Juris Steprans

Abstract. We answer a question from Raghavan and Steprāns by showing that s = sω,ω . Then we
use this to construct a completely separable maximal almost disjoint family under s ≤ a, partially
answering a question of Shelah.

1 Introduction

The purpose of this short note is to answer a question posed by the second and third
authors in [5] and to use this to solve a problem of Shelah [6]. We say that two infinite
subsets a and b of ω are almost disjoint or a.d. if a∩ b is finite. We say that a family A
of infinite subsets of ω is almost disjoint or a.d. if its members are pairwise almost
disjoint. A Maximal Almost Disjoint family or MAD family is an infinite a.d. family
that is not properly contained in a larger a.d. family.

For an a.d. family A , let I(A ) denote the ideal on ω generated by A —that is,
a ∈ I(A ) if and only if ∃a0, . . . , ak ∈ A [ a ⊂∗ a0 ∪ · · · ∪ ak ]. For any ideal I on
ω, I+ denotes P(ω) \ I. An a.d. family A ⊂ [ω]ω is said to be completely separable if
for any b ∈ I+(A ), there is an a ∈ A with a ⊂ b. Notice that an infinite completely
separable a.d. A must be MAD. Though the following is one of the most well-studied
problems in set theory, it continues to remains open.

Question 1 (Erdős and Shelah [3]) Does there exist a completely separable MAD
family A ⊂ [ω]ω?

Progress on Question 1 was made by Balcar, Dočkálková, and Simon who showed
in a series of papers that completely separable MAD families can be constructed from
any of the assumptions b = d, s = ω1, or d ≤ a. See [1], [2], and [7] for this
work. Then Shelah [6] recently showed that the existence of completely separable
MAD families is almost a theorem of ZFC. His construction is divided into three
cases. The first case is when s < a, and he shows on the basis of ZFC alone that a
completely separable MAD family can be constructed in this case. The second and
third cases are when s = a and a < s respectively, and Shelah shows that a completely
separable MAD family can be constructed in these cases provided that certain PCF-
type hypotheses are satisfied. More precisely, he shows that there is a completely
separable MAD family when s = a and U (s) holds, or when a < s and P(s, a) holds.
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Definition 2 For a cardinal κ > ω, U (κ) is the following principle. There is a
sequence 〈uα : ω ≤ α < κ〉 such that

(1) uα ⊂ α and |uα| = ω,
(2) ∀X ∈ [κ]κ∃ω ≤ α < κ[ |uα ∩ X| = ω ].

For cardinals κ > λ > ω, P(κ, λ) says that there is a sequence 〈uα : ω ≤ α < κ〉
such that

(3) uα ⊂ α and |uα| = ω,
(4) for each X ⊂ κ, if X is bounded in κ and otp (X) = λ, then ∃ω ≤ α <

sup (X)[ |uα ∩ X| = ω ].

It is easy to see that both U (s) and P(s, a) are satisfied when s < ℵω , so in partic-
ular, the existence of a completely separable MAD family is a theorem of ZFC when
c < ℵω . Shelah [6] asked whether all uses of PCF-type hypotheses can be eliminated
from the second and third cases.

The second and third authors modified the techniques of Shelah [6] in order to
treat MAD families with few partitioners in [5] (see the introduction there). In that
paper they introduced a cardinal invariant sω,ω , which is a variation of the splitting
number s. They showed that if sω,ω ≤ b, then there is a weakly tight family. Recall
that an a.d. family A ⊂ [ω]ω is called weakly tight if for every countable collection
{bn : n ∈ ω} ⊂ I+(A ), there is a ∈ A such that ∃∞n ∈ ω[ |bn ∩ a| = ω ].
The question of whether s = sω,ω was raised in [5], and the authors pointed out
that an affirmative answer to this question could help eliminate the use of PCF-type
hypotheses from the second case of Shelah’s construction.

In this paper we answer this question from [5] by proving that s = sω,ω . We then
use this information to partially answer the question from Shelah [6]. We show that
the second case can be done without any additional hypothesis. So it is a theorem
of ZFC alone that a completely separable MAD family exists when s ≤ a. We give
a single construction from this assumption, so Shelah’s first and second cases are
unified into a single case.

The question of whether the hypothesis P(s, a) can be eliminated from the case
when a < s remains open.

2 s = sω,ω

In this section we answer Question 21 from [5] by showing that s = sω,ω . For a set
x ⊂ ω, x0 is used to denote x and x1 is used to denote ω \ x. This notation will be
used in the next section also. Recall the following definitions.

Definition 3 For x, a ∈ P(ω), x splits a if |x0 ∩ a| = |x1 ∩ a| = ω. F ⊂ P(ω)
is called a splitting family if ∀a ∈ [ω]ω∃x ∈ F[ x splits a ]. F ⊂ P(ω) is said to be
(ω, ω)-splitting if for each countable collection {an : n ∈ ω} ⊂ [ω]ω , there exists
x ∈ F such that ∃∞n ∈ ω[ |x0 ∩ an| = ω ] and ∃∞n ∈ ω[ |x1 ∩ an| = ω ]. Define

s = min{|F| : F ⊂ P(ω) ∧ F is a splitting family}

sω,ω = min{|F| : F ⊂ P(ω) ∧ F is (ω, ω)-splitting}.
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Obviously every (ω, ω)-splitting family is a splitting family. So s ≤ sω,ω . It was
shown in Theorem 13 of [5] that if s < b, then s = sω,ω . We reproduce that result
here for the reader’s convenience.

Lemma 4 (Theorem 13 of [5]) If s < b, then s = sω,ω .

Proof Let 〈eα : α < κ〉 witness that κ = s. Suppose {bn : n ∈ ω} ⊂ [ω]ω is a
countable collection such that ∀α < κ∃i ∈ 2∀∞n ∈ ω[ bn ⊂∗ ei

α ]. By shrinking
them if necessary we may assume that bn ∩ bm = 0 whenever n 6= m. Now, for each
α < κ define fα ∈ ωω as follows. We know that there is a unique iα ∈ 2 such that
there is a kα ∈ ω such that ∀n ≥ kα[ |bn∩eiα

α | < ω ]. We define fα(n) = max(bn∩eiα
α )

if n ≥ kα, and fα(n) = 0 if n < kα. As κ < b, there is an f ∈ ωω with f ∗> fα for each
α < κ. Now, for each n ∈ ω, choose ln ∈ bn with ln ≥ f (n). Since the bn are pairwise
disjoint, c = {ln : n ∈ ω} ∈ [ω]ω . So by definition of s, there is α < κ such that
|c ∩ e0

α| = |c ∩ e1
α| = ω. In particular, c ∩ eiα

α is infinite. However we know that there
is an mα ∈ ω such that ∀n ≥ mα[ fα(n) < f (n) ]. So there exists n ≥ max{mα, kα}
with ln ∈ bn ∩ eiα

α . But this is a contradiction because ln ≤ fα(n) < f (n).

In the case when b ≤ s it turns out that s = sω,ω can still be proved by considering
the following notion appearing in [4].

Definition 5 F is called block-splitting if given any partition 〈an : n ∈ ω〉 of ω into
finite sets there is a set x ∈ F such that there are infinitely many n with an ⊂ x and
there are infinitely many n with an ∩ x = 0.

It was proved by Kamburelis and W
‘
eglorz [4] that the least size of a block-splitting

family is max{b, s}. Therefore, when b ≤ s, there is a block-splitting family of size s.

Theorem 6 s = sω,ω .

Proof In view of Lemma 4, we may assume that b ≤ s. By results of Kamburelis
and W

‘
eglorz [4] fix 〈xα : α < s〉 ⊂ P(ω), a block-splitting family. We show that

〈xα : α < s〉 is an (ω, ω)-splitting family. Let {an : n ∈ ω} ⊂ [ω]ω be given. For
n ∈ ω, define sn ∈ [ω]<ω as follows. Suppose 〈si : i < n〉 have been defined. Put
s =

⋃
i<nsi . Put sn = {min(ω \ s)} ∪ {min(ai \ s) : i ≤ n}. Note that 〈sn : n ∈ ω〉 is

a partition of ω into finite sets and that ∀i ∈ ω∀∞n ∈ ω[ sn ∩ ai 6= 0 ]. Now choose
α < s such that ∃∞n ∈ ω[ sn ⊂ x0

α ] and ∃∞n ∈ ω[ sn ⊂ x1
α ]. So for each i ∈ ω,

∃∞n ∈ ω[ sn∩ai∩x0
α 6= 0 ] and ∃∞n ∈ ω[ sn∩ai∩x1

α 6= 0 ]. Since the sn are pairwise
disjoint, it follows that |ai ∩ x0

α| = |ai ∩ x1
α| = ω, for each i ∈ ω.

3 Constructing a Completely Separable MAD Family from s ≤ a

As s = sω,ω and as every (ω, ω)-splitting family is also a splitting family, fix once and
for all a sequence 〈xα : α < κ〉 witnessing that κ = s = sω,ω . We will construct
a completely separable MAD family assuming that κ ≤ a. The construction closely
follows the proof of Lemma 8 in [5], which in turn is based on Shelah [6]. An impor-
tant point of the construction is that if A is an arbitrary a.d. family and b ∈ I+(A ),
then every (ω, ω)-splitting family contains an element which splits b into two positive
pieces.
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Lemma 7 Let A ⊂ [ω]ω be any a.d. family. Suppose b ∈ I+(A ). Then there is
α < κ such that b ∩ x0

α ∈ I+(A ) and b ∩ x1
α ∈ I+(A ).

Proof See proof of Lemma 7 of [5].

At a stage δ < c, an a.d. family Aδ = 〈aα : α < δ〉 ⊂ [ω]ω is given. Moreover
we assume that there is also a family 〈σα : α < δ〉 ⊂ 2<κ such that for each α < δ,
∀ξ < dom(σα)[ aα⊂∗xσα(ξ)

ξ ]. We say that σα is the node associated with aα. The next
lemma says that under the assumption κ ≤ a, such an a.d. family must be “nowhere
maximal”, which is of course a property that we need to maintain in order to end up
with a completely separable MAD family.

Definition 8 Let η ∈ 2<κ. Define Iη = {a ∈ P(ω) : ∀ξ < dom(η)[ a⊂∗xη(ξ)
ξ ]}.

Lemma 9 (Main Lemma) Let κ ≤ a and δ < c. Suppose that Aδ = 〈aα : α < δ〉
and 〈σα : α < δ〉 are as above. Assume also that ∀α, β < δ[α 6= β =⇒ σα 6= σβ ].
Let b ∈ I+(Aδ). Then there exist a ∈ [b]ω and σ ∈ 2<κ such that

(1) ∀α < δ[ |a ∩ aα| < ω ],
(2) for each α < δ, σ 6⊂ σα and a ∈ Iσ .

Proof Applying Lemma 7, let α0 < κ be least such that b ∩ x0
α0
∈ I+(Aδ) and

b ∩ x1
α0
∈ I+(Aδ). Define τ0 ∈ 2α0 by stipulating that

∀ξ < α0∀i ∈ 2[ τ0(ξ) = i ↔ b ∩ xi
ξ ∈ I+(Aδ) ].

By choice of α0 and by the hypothesis that b ∈ I+(Aδ), τ0 is well defined. Now
construct two sequences 〈αs : s ∈ 2<ω〉 ⊂ κ and 〈τs : s ∈ 2<ω〉 ⊂ 2<κ such that the
following hold:

(3) ∀s ∈ 2<ω∀i ∈ 2[αs = dom(τs) ∧ αs_〈i〉 > αs ∧ τs_〈i〉 ⊃ τs
_〈i〉 ].

(4) For each s ∈ 2<ω and for each ξ < αs, x1−τs(ξ)
ξ ∩ b∩ (

⋂
t(s xτs(αt )

αt
) ∈ I(Aδ). Here,⋂

t(s xτs(αt )
αt

is taken to be ω when s = 0.
(5) For each s ∈ 2<ω , both

x0
αs
∩ b ∩ (

⋂
t(s

xτs(αt )
αt

) ∈ I+(Aδ) and x1
αs
∩ b ∩ (

⋂
t(s

xτs(αt )
αt

) ∈ I+(Aδ).

α0 and τ0 are already defined. Suppose that αs and τs are given. By (5), for each i ∈ 2,
xi
αs
∩b∩ (

⋂
t(s xτs(αt )

αt
) ∈ I+(Aδ). Apply Lemma 7 to let αs_〈i〉 be the least α < κ such

that both xi
αs
∩ b ∩ (

⋂
t(s xτs(αt )

αt
) ∩ x0

α and xi
αs
∩ b ∩ (

⋂
t(s xτs(αt )

αt
) ∩ x1

α are in I+(Aδ).
Again define τs_〈i〉 ∈ 2αs_〈i〉 by stipulating that

∀ξ < αs_〈i〉∀ j ∈ 2[ τs_〈i〉(ξ) = j ↔ xi
αs
∩ b ∩

( ⋂
t(s

xτs(αt )
αt

)
∩ x j

ξ ∈ I+(Aδ) ]

τs_〈i〉 is well defined because xi
αs
∩ b ∩ (

⋂
t(s xτs(αt )

αt
) ∈ I+(Aδ) and because of the

choice of αs_〈i〉. Now, for each ξ < αs, xi
αs
∩ b ∩ (

⋂
t(s xτs(αt )

αt
) ⊂ b ∩ (

⋂
t(s xτs(αt )

αt
)

https://doi.org/10.4153/CMB-2013-027-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2013-027-2


Splitting Families and Complete Separability 123

and, by (4), b ∩ (
⋂

t(s xτs(αt )
αt

) ∩ x1−τs(ξ)
ξ ∈ I(Aδ). It follows that αs_〈i〉 ≥ αs and that

for each ξ < αs, τs(ξ) = τs_〈i〉(ξ). Next, since xi
αs
∩ b ∩ (

⋂
t(s xτs(αt )

αt
) ∩ x1−i

αs
= 0,

αs_〈i〉 > αs, and τs_〈i〉 ⊃ τs
_〈i〉. Now, it is clear that (4) and (5) hold for s_〈i〉. This

completes the construction of 〈αs : s ∈ 2<ω〉 and 〈τs : s ∈ 2<ω〉.
For each f ∈ 2ω , put α f = sup{α f �n : n ∈ ω} and τ f =

⋃
n∈ωτ f �n. As κ = s,

cf(κ) > ω. Therefore, α f < κ. Note that τ f ∈ 2α f . Also, if f , g ∈ 2ω , f 6= g,
and n ∈ ω is least such that f (n) 6= g(n), then τ f ⊃ τs

_〈i〉 and τg ⊃ τs
_〈1− i〉,

where s = f � n = g � n and i ∈ 2. So there cannot be α < δ such that both
τ f ⊂ σα and τg ⊂ σα hold. Therefore, it is possible to find f ∈ 2ω such that
τ f /∈ {σ ∈ 2<κ : ∃α < δ[σ ⊂ σα ]}. Fix such f and for each n ∈ ω, define en to be

b ∩ (
⋂

m<n x
τ f (α f�m)
α f�m ). By (5) each en ∈ I+(Aδ). Moreover, en+1 ⊂ en ⊂ b. Therefore,

by a standard argument, there is e ∈ [b]ω ∩ I+(Aδ) such that ∀n ∈ ω[ e ⊂∗ en ].
Now suppose ξ < α f . Since α f �n+1 > α f �n for all n ∈ ω, it follows that ξ < α f �n

for some n. By (4) applied to s = f � n, we have x
1−τ f (ξ)
ξ ∩ en ∈ I(Aδ). Since e⊂∗en,

x
1−τ f (ξ)
ξ ∩ e ∈ I(Aδ). Thus we conclude that ∀ξ < α f [ x

1−τ f (ξ)
ξ ∩ e ∈ I(Aδ) ]. So for

each ξ < α f , fix Fξ ∈ [δ]<ω such that

(x
1−τ f (ξ)
ξ ∩ e) ⊂∗

( ⋃
α∈Fξ

aα
)
.

Now put F =
⋃
ξ<α f

Fξ and G = {α < δ : σα ⊂ τ f }. Note that |F ∪ G| < κ ≤ a

because of the assumption that ∀α, β < δ[α 6= β =⇒ σα 6= σβ ]. Since e ∈
I+(Aδ), there is a ∈ [e]ω such that ∀α ∈ F ∪ G[ |a ∩ aα| < ω ]. Note that for each

ξ < α f , x
1−τ f (ξ)
ξ ∩ a is finite. Thus, putting σ = τ f , we have that ∀α < δ[σ 6⊂ σα ]

and a ∈ Iσ . In order to finish the proof, it is enough to check that ∀α < δ[ |aα ∩ a| <
ω ].

Fix α < δ. If α ∈ G, then |a ∩ aα| < ω simply by choice of a. Suppose α /∈ G.
Then there must be ξ ∈ dom(σα) ∩ α f such that σα(ξ) = 1− τ f (ξ). However, since

aα⊂∗xσα(ξ)
ξ and a ∩ x

1−τ f (ξ)
ξ is finite, it follows that |a ∩ aα| < ω.

Theorem 10 If s ≤ a, then there is a completely separable MAD family.

Proof Fix an enumeration 〈bα : α < c〉 of [ω]ω . Let 〈xα : α < κ〉 witness κ = s =
sω,ω . Build two sequences 〈aδ : δ < c〉 and 〈σδ : δ < c〉 such that the following hold:

(1) For each δ < c, aδ ∈ [ω]ω , σδ ∈ 2<κ, and aδ ∈ Iσδ .
(2) ∀γ, δ < c[ γ 6= δ =⇒ (|aγ ∩ aδ| < ω ∧ σγ 6= σδ) ].
(3) For each δ < c, if bδ ∈ I+(Aδ), then aδ ⊂ bδ , where Aδ = {aα : α < δ}.
Note that if we succeed in this, then Ac = {aδ : δ < c} will be completely separable.
For given any b ∈ I+(Ac), b is in I+(Aδ) for every δ < c and so there is a δ < c, where
bδ = b and bδ ∈ I+(Aδ), whence by (3), aδ ⊂ b.

At a stage δ < c suppose 〈aα : α < δ〉 and 〈σα : α < δ〉 are given. If bδ ∈ I+(Aδ),
then let b = bδ , else let b = ω. In either case, the hypotheses of Lemma 9 are satisfied.
So find aδ ∈ [b]ω and σδ ∈ 2<κ such that

(4) ∀α < δ[ |aδ ∩ aα| < ω ],
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(5) for each α < δ, σδ 6⊂ σα and aδ ∈ Iσδ .

It is clear that aδ and σδ are as needed.
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