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Summary

Whether there are different genes involved in response to different environmental signals and how
these genes interact to determine the final expression of the trait are of fundamental importance

in agricultural and biological research. We present a statistical framework for mapping
environment-induced genes (or quantitative trait loci, QTLs) of major effects on the expression

of a trait that respond to changing environments. This framework is constructed with a maximum-
likelihood-based mixture model, in which the mean and covariance structure of environment-
induced responses is modelled. The means for responses to continuous environmental states, referred
to as reaction norms, are approximated for different QTL genotypes by mathematical equations that
were derived from fundamental biological principles or based on statistical goodness-of-fit to
observational data. The residual covariance between different environmental states was modelled by
autoregressive processes. Such an approach to studying the genetic control of reaction norms can be
expected to be advantageous over traditional mapping approaches in which no biological principles
and statistical structures are considered. We demonstrate the analytical procedure and power of this
approach by modelling the photosynthetic rate process as a function of temperature and light
irradiance. Our approach allows for testing how a QTL affects the reaction norm of photosynthetic
rate to a specific environment and whether there exist different QTLs to mediate photosynthetic
responses to temperature and light irradiance, respectively.

1. Introduction

The study of genetic and developmental interactions
that modulate an organism’s response to environ-
mental signals has become one of the most vital areas
in environmental genomic, evolutionary genomic
and toxicogenomic research (Lynch & Walsh, 1998;
Borlak, 2005). To increase the efficiency of breeding
programmes seeking high-yielding genotypes adapted
to a wide range of environments, we need to gain
knowledge about the genetic basis of structural-
functional relationships that regulate plant or animal
form and size (Cronk, 2005). Genetic control mech-
anisms for developmental aspects of an organism are
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being synthesized into evolutionary biology. Whereas
a conceptual framework for evo-devo has emerged to
integrate evolution and development (Raff, 2000;
Arthur, 2002), biologists are creating eco-devo to em-
phasize environmental influences on the development
of organisms (Dusheck, 2002 ; Sultan, 2005).

The question of how genetic, developmental and
environmental factors are coordinated to direct bio-
logical processes has been poorly understood. This is
partly due to a lack of effective analytical tools that
can handle intrinsically complicated relationships
among these factors. The phenotypes of most bio-
logical traits involve multiple quantitative trait loci
(QTLs) (Lander & Botstein, 1989), with varying ef-
fects and each segregating in the Mendelian fashion,
whose expression relies upon the stage of develop-
ment and the environmental condition in which the
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organism is reared. Thus, any analytical approach
that attempts to estimate the specific effects of
individual development- or environment-dependent
QTLs should consider the coordinating mechanisms
that govern the dynamic changes of a living system.

Ptak & Schaeffer (1993) developed test-day models
for the genetic analysis of milk yield as a function of
days from calving. These models were further ex-
tended to consider the inheritance of major genes
(Lund et al., 2002). Some sophisticated models based
on random regression have been developed to model
multiple traits and multiple environmental factors
(Kolmodin et al., 2002). These studies have used
statistically convenient mathematical functions, but
the elucidation of the relationship between genetic
control and development using biologically relevant
mathematical functions has not been explored
thoroughly until the publication of functional map-
ping, originally by R. Wu and colleagues (Ma ef al.,
2002; Wu et al., 2003 a, b, 2004 a—c; reviewed in Wu &
Lin, 2006). The basic rationale of functional mapping
is to bridge gene actions and interactions of the
underlying QTL within developmental pathways by
parametric or non-parametric models. Through
reducing the number of parameters to be estimated,
functional mapping displays increased statistical
power and stability.

From a statistical standpoint, functional mapping
strives to jointly model mean and covariance struc-
tures for a longitudinal trait. However, unlike general
treatments of longitudinal problems (Pourahmadi,
1999; Pan & Mackenzie, 2003; Wu & Pourahmadi,
2003), functional mapping integrates the parameter
estimation and test process within a mixture-based
likelihood framework. By embedding the mathemat-
ical aspects of biological principles, such as growth
equations (von Bertalanffy, 1957; Richards, 1959;
West et al., 2001), into the estimation process of QTL
parameters, functional mapping might be biologically
more relevant than traditional mapping models that
fail to consider biology. The results derived from
functional mapping can be expected to be closer to
biological reality.

The principle of functional mapping can be used to
study the genetic architecture of environmentally
sensitive phenotypic variation for a complex trait.
Phenotypic responsiveness of a genotype to different
environmental signals is known as phenotypic plas-
ticity (Via et al., 1995). The genetic mapping of
phenotypic plasticity over discrete environments can
be performed by traditional statistical approaches,
such as multivariate mapping (Jiang & Zeng, 1995),
through incorporating the environment-dependent
genetic effects into the mapping model. However,
these approaches can only analyse a limited number
of discrete environments. Phenotypic plasticity
over continuous environmental gradients, such as
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temperature and relative humidity gradients, also
called reaction norms, are regarded as ‘infinite-
dimensional traits’ that require an infinite number of
measurements to be completely described (Kirkpatrick
& Heckman, 1989; Gomulkiewicz & Kirkpatrick,
1992). Statistical models for analysing the genetic
control of reaction norms should take into account
their infinite-dimensional feature. Understanding
the variation, selection and evolution of continuous
reaction norms has been a central challenge for
evolutionary ecology for several decades (Stearns,
1989; Scheiner, 1993; Schlichting & Pigliucci, 1998;
Wu, 1998; Sultan, 2000, 2003 a, b, 2004).

In this article, we will develop a functional-
mapping-based model to map QTLs that control
continuous reaction norms for a quantitative trait to
multiple different environments. The new model for
multivariate reaction norms will be constructed with-
in a maximum-likelihood-based mixture framework,
in which the means for reaction norms are modelled
for different QTL genotypes by biologically mean-
ingful mathematical equations and the residual
covariance between different environmental states is
modelled by autoregressive processes. We formulate
a series of hypothesis tests regarding the pattern of
the genetic control for reaction norms to various
environmental stimuli. Simulation studies have been
conducted to investigate the statistical properties of
the new model.

2. Multivariate reaction norms

The development of complex traits is the consequence
of interactions among a multitude of genetic and
environmental factors that affect trait development.
This process is inherently complicated, but can be
illustrated by a landscape of phenotype formed by
genetic and environmental variables. Here, we used a
diagram drawn by Wolf (2002) to elucidate this
landscape (Fig. 1). The surface of the landscape
defines the phenotype determined by a particular
combination of underlying genetic (such as additive,
dominant or epistatic) and environmental factors
(such as temperature, light or moisture) that interact
with each other through complex molecular and
developmental mechanisms. The number of under-
lying factors contributing to phenotypic variation is
equivalent to the number of dimensions of the land-
scape space. As Wolf (2002) pointed out, the number
of underlying factors can be unlimited, implying that
a landscape can exist in hyperspace, i.e., very-
high-dimensional space. In Fig. 1, the phenotype of
an individual is determined by the values of two
underlying factors. By characterizing the topo-
graphical features of such landscape, a fundamental
question of how each underlying factor contributes
to the expression of a particular trait individually or
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Fig. 1. A graphic representation of the formation of a phenotype by a landscape. The phenotypic formation is a function
of the value of underlying factors 1 and 2 (u; and u,) that interact during trait development. Two shaded ovals represent
two different areas on the surface, one being flatter (pointing to inset A) and the second being steeper (pointing to inset B).
The steeper one is associated with a dramatic change in phenotypic expression contributed by a small change in the
underlying factors (indicated by the distribution in inset B), whereas the flatter one is associated with a different pattern in
which dramatic changes in the underlying factors lead to only a minor change in phenotypic expression (indicated by the

distribution in inset A). Adapted from Wolf (2002).

interactively can be addressed. These features typi-
cally include ‘slope’, ‘curvature’, ‘peak-valley’ and
‘ridge” (Wolf, 2002). A similar description of the
topography can also be applied to hyperdimensional
landscapes, although the intuitive interpretation of
the features become increasingly difficult with in-
creased dimensionality.

As demonstrated in a series of developmental
studies of insects (Davidowitz et al., 2003, 2004;
Davidowitz & Nijhout, 2004), the degree and pattern
of phenotypic sensitivities to different environmental
stimuli may be controlled by the same or different
genetic systems. This should be common also in other
organisms. For example, photosynthesis as the pri-
mary process in plant growth is determined by many
biotic or abiotic environmental factors, such as
leaf age, carbon dioxide concentration, temperature,
irradiance, nutrient and water potential. The respon-
siveness of photosynthetic rate to each of these factors
follows different physiological mechanisms. A major
challenge is how to determine the genetic background
of the reaction norms of photosynthetic rate to these
factors simultaneously. Mechanistic or empirical
models have been proposed to describe the relation-
ship of various biotic or abiotic factors, separately or
jointly, with photosynthetic rate (Wu, 1993). These
models can be embedded into the functional mapping
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of dynamic traits to reveal specific QTLs for en-
vironmental sensitivity.

For simplicity, our functional-mapping-based
model is constructed to map photosynthetic sensi-
tivities to temperature and irradiance. A typical
mathematical function, the non-rectangular hyper-
bola, has been developed to describe the relationship
of photosynthetic rate (P) with leaf irradiance (/) and
temperature (7°), expressed as (Thornley & Johnson,
1990)

1
P(I,T)= % {al—l— P, — \/ (al+ P,,)* —40alP,, }

)

where 6 is the fraction of the resistance of carbon
dioxide diffusion over the sum of diffusion and
carboxylation resistances, with 0<f0<1, a is the
photochemical efficiency and P,, is the maximum
photosynthetic rate at a saturating irradiance, which
is determined by temperature in a linear function:

Tr-T*
P,20)| ———%) T=2T*(Q2
o= {700 (357) @, @
T<T*

P,,(20) is the value of P,, at the reference temperature
of 20 °C and T* is the reference temperature for the
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start-up of photosynthesis, i.e. the temperature at
which photosynthesis ceases. The choice of 7* should
be based on a good fit to observed data over a tem-
perature range. Fig. 2 shows the reaction norms of
photosynthetic rate over irradiance and temperature.
By estimating the parameters (a, P,,(20), 8) contained
in equations (1) and (2), we can determine in which
pattern changes in irradiance and temperature cause
the alteration in photosynthetic rate.

3. Functional mapping model
(1) Likelihood

Our analysis and modelling will be based on a simple
backcross design. Extensions to other more compli-
cated designs are straightforward. Consider a back-
cross population composed of n plants, in which
photosynthetic rate is measured at a series of
irradiance (s;=1, ..., S;) and temperature levels
(ss=1, ..., S,). Each backcross progeny is genotyped
for molecular markers to construct a genetic linkage
map. Suppose there are two QTLs, each with two
genotypes 1 and 2, that affect the reaction norms of
photosynthetic rate to irradiance and temperature.
These two QTLs that have four possible genotypes,
generally labelled by j; j» (j1, =1, 2), in the back-
cross family should be located on the genetic map and
can be inferred by the markers that constructed the
map. The likelihood of phenotypic (y) and marker
data (M) at the QTL is written, within the mixture
model context, as

n 2 2
L(®l’ u, Z|y’ M) = H [Zl ‘Zl wj1j2|iff1j2(yi)‘| (3)
i=1 |h=1lp=

where w;, ;,; is the conditional probability of a QTL
genotype given marker information for backcross i,
which contains the location parameters of the QTL
(©)), and f; ,(y,) is a multivariate normal distribution
of phenotypic vector

y,=[y:(1, 1), ...,»(1,Ss), ...

irradiance 1

5 yi(Sla 1)7 oo ayi(Sla SZ)]

irradiance Sy

with QTL genotype-specific mean vector

30
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Fig. 2. Non-rectangular hyperbola describing
photosynthetic rate as a function of irradiance and
temperature. The parameters of photosynthetic rate used to
draw the landscape are («, P,,(20), 6)=(0-02,1,0-9) obtained
from published literature (Thornley & Johnson, 1990).

mean vector, the element of which is expressed as

1
(51, S2) = 55— {O‘A/L/zleFij,jz

J1J2

2
- \/(ajljzsl + ijljz) _40./1j2 Q/ljzslpn?/l./z }’

jl 7j2 = 15 2
s —T* "
ijljz _ ijlfz (20) <ﬁ> Sy = T
0 Sy < T%*
Parameters (. ,, 0;,},- P, ,(20)), symbolized by

9‘9‘1/‘2’ describe the shape of the reaction norms of
photosynthetic rate for a QTL genotype across dif-
ferent irradiance and temperature levels. The residual

covariance matrix X for the two-dimensional reaction

ujlfz = [ujlfz(l’ 1)’ Tt ujljz(l’ SZ)’ Tt uflfz(Sl’ 1)’ Tt ujljz(Sl’ S2)]’

irradiance 1 irradiance S;
2

=1’ and residual covariance
1-J/2 —

arrayed by u={u; ;,}
matrix Z.

(11) Modelling the mean vector and residual
covariance matrix

According to the idea of functional mapping (Ma
et al., 2002), we will use the mathematical function of
photosynthetic rate (equations 1 and 2) to model the
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norms can be modelled as a completely separable
structure (Porcu et al., 2006, 2007), in which X is ob-
tained as the Kronecker product of two covariance
matrices each for a reaction norm process, i.e.

2 = 21 ® 22 (4)
where Z; and 3, are the (S; X .S,) and (S, x S,) covari-

ance matrices among different temperatures and dif-
ferent irradiance levels, respectively. This separable
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approach has computational advantages (Porcu et al.,
2006a, b), although it does not take into account the
interactions between the two different reaction norm
processes.

The structure of the two covariance matrices in
equation (4) can be modelled by a stationary auto-
regressive (AR) (Diggle et al., 2002) or non-stationary
antedependence (SAD) process (Gabriel, 1962).
According to these two processes, the residual at the
current state can be described by a weighted sum of its
preceding values and a white noise error. The number
of the preceding states that have a direct effect on
the current residual is defined as the order (r), with the
process expressed as AR(r) or SAD(r). For AR(1), the
residual variance is expressed as 03(1)=...=0%(S;) =
o? for Z; and 0%(1)=...=0%S,) =0} for X,, whereas
the correlation decays only with state lag in an auto-
regressive coefficient p; and p, for Z; and Z,, respect-
ively. The variance and covariance stationarity
assumptions of the AR process can be relaxed in the
SAD process. By defining an antedependence par-
ameter, ¢; and ¢,, and an innovative variance, v?
and v3, for 2, and Z,, respectively, SAD(1) allows
the variance and covariance to be non-stationary
(Nufiez-Antoén et al., 1999; Zimmerman & Nufez-
Anton, 2001). We use ©, to denote these covariance-
modelling parameters for AR or SAD. The advantage
of using AR and SAD to model the covariance
structures lies in the explicit forms of the determinants
and inverses of the covariance matrices (Ma et al.,
2002; Zhao et al., 2005a), which facilitates the esti-
mation process of unknown parameters.

Ma et al. (2002) and Wu et al. (2004 ) implemented
the EM algorithm to obtain the maximum likeli-
hood estinates (MLEs) of unknown parameters,
©=(0,{0, 12, ,_1.©,), for functional mapping
described by the likelihood (3). To increase the com-
puting efficiency of functional mapping, the simplex
and Newton-Raphson algorithms can be coupled in
the estimation process with the EM algorithm (Zhao
et al., 2004). A computer program for computational
algorithms used in this study is available from the
authors.

(ii1) Hypothesis testing

After the MLEs of the unknown parameters are
obtained, a number of hypotheses can be tested within
the functional mapping framework (Wu et al., 2004 a).
The existence of QTLs that determine the shape of
reaction curves can be tested by formulating the null
hypothesis

@ = ®l,'n fOf 311]'1’]'2: 172, (5)

Unja

which states that all individual curves can be fitted
with a mean curve by parameters ©;=(a, 0, P,,(20)).
The log-likelihood ratio between this null hypothesis
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and its alternative is calculated and then compared
against the critical threshold determined from
permutation tests to test the significance of the
QTL detected. The additive effects of each QTL and
additive x additive epistatic effects between the two
QTL on reaction norms can be further tested using a
procedure described in Wu et al. (2004 a).

An alternative to testing the existence of QTLs for
reaction norms is based on the volume under surface
(V) expressed as the integral of the photosynthetic
reaction norm function over both irradiance and
temperature, with the corresponding null hypothesis
V.

i =V, forall ji, jo=1,2. (6)

where

Sy 1S,
Vin= / / P(sq, 85)dsyds,.
1 1

The functional-mapping-incorporated model allows
for separate tests of the genetic control of the reaction
norm to different environmental factors. While equa-
tions (1) and (2) describe the joint effects of irradiance
and temperature on photosynthetic rate, the marginal
effect of each of these two environmental factors is
expressed as an integral, i.e.

Sy
P(51)=/ P(s1, $2)dss,
1
and
S1
Pod= [ Ploisidss,
1

for the irradiance and temperature reaction norms,
respectively. The null hypotheses for testing the
separate effect of the QTLs on temperature- and
irradiance-dependent reaction norms are formulated,
respectively, as

Pj ;,(s1) = P(sy), forall ji,j=1,2 (7
and
lejz(s2) = P(S2)a fOI' all jlaj2 = 1’ 2. (8)

Whether the QTLs affect the interaction effects be-
tween irradiance and temperature on photosynthetic
rate can also be tested by formulating the null hypo-
thesis expressed as

Ay =Py (51,82) = Py (1) — Py (s2) + Vi, = A,
for all j;,jo=1,2. (9)

It should be noted that hypotheses (6) and (9) are
different in terms of the pattern of QTL control. All
four hypotheses can be extended to test the effects of
different genetic components, additive and additive x
additive, on two-dimensional reaction norms.
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The slope of reaction norm with the change
in an environmental factor can be calculated by
differentiating the photosynthetic process with respect
to this environmental factor, whereas the gradient of
reaction norm is expressed as the partial derivative of
the photosynthetic process with both environmental
factors. How the QTL affects the slope and gradient
of reaction norms can be tested by formulating the
following null hypotheses:

di,j,(s1) = d(sy), forall jp,jp=1,2 (10)
for irradiance,
d j,(s2) = d(sp), for all jy,js=1,2 (11)

for temperature, and

6j1]z - d

jljz(ylﬁ sv2) /1/2(92)+df1j2 = 6’

forall ji,j,=1,2 (12)

i 72(91)

for both the environmental factors, with

]1j2(vl) P(vla Ss),
i /2(S2) P(SI’SZ)
2
d;, (51, 89) = 95,0 2P(Sla52)

The integrals and differentiations of photosynthetic
reaction norms used for the above hypotheses are
derived in the Appendix.

4. Monte Carlo simulation
(1) Design

Simulation studies were performed to investigate the
statistical flexibility, stability and power of the model.
We simulated a backcross of different sizes (n=100
and 400) in which a 100 cM long linkage group com-
posed of 11 evenly spaced markers was generated. In
the first setting, one QTL was hypothesized to be
located 46 cM from the first marker of the linkage
group. Two genotypes at the hypothesized QTL,
which are assigned different combinations of photo-
synthetic rate parameters (8;,;,, @;, ,» P, ,(20)), form
two different surfaces in the irradiance—temperature
space. Fig. 2 illustrates such a photosynthetic surface
for a typical QTL genotype. The phenotypic value for
a given irradiance (0, 50, 100, 200, 300) and tempera-
ture (15, 20, 25, 30) was simulated by summing the
genotypic values and residual errors which follow a
multivariate normal distribution with mean vector 0
and covariance matrix X (equation 4). The structure
of Z is modelled by AR(1). The constant variance
o? was determined by assuming different heritability
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(H?) levels, 0-1 and 0-4, at a representative state for
irradiance and temperature. In the second setting, we
performed simulations under a two-QTL model, in
which two QTLs, forming four backcross genotypes,
were assumed at 46 and 73 cM from the first marker
of the linkage group.

(1) Results

In general, our model was robust in that the locations
of QTLs and their values for reaction norms were
accurately and precisely estimated. Tables 1 and 2
tabulate such estimation results from one representa-
tive parameter space under different sample sizes and
heritability levels. For the backcross with a modest
sample size (100) and heritability (0-1), surface par-
ameters for two QTL genotypes under the one-QTL
model and the parameters that model residual co-
variance matrices can be estimated with reasonable
accuracy and precision (Table 1). The estimation
precision increases monotonically with increased
sample size and heritability. In the case of two QTLs,
all the parameters can still be estimated, but the esti-
mation precision is greatly reduced compared with the
one-QTL model because of the larger number of un-
knowns being estimated. Reasonable estimation pre-
cision for the two-QTL model can be achieved when
sample size and heritability increase to 400 and 0-4,
respectively (Table 2). But the three curve parameters
respond to sample size and heritability differently in
estimation precision, with a being more sensitive than
P,,and 6. For the two-QTL model, the QTL positions
can be well estimated. Fig. 3 is an example of
the log-likelihood ratio (LR) profile for a sample size
400 and heritability 0-1 across two dimensions of
chromosomal lengths, with the LR peak being
broadly consistent with the true QTL positions.

Theoretically, hypotheses (6)—(12) can each be used
to test the pattern of QTL control over reaction
norms for any data set, although it is computationally
expensive. Here, we used one random simulation data
set to test the effect of the two QTLs on the surface of
photosynthetic reaction norms based on hypothesis
(6). The log-likelihood ratio tests for the additive
effects of two QTLs and their additive x additive effect
for the volume under surface were estimated, re-
spectively, suggesting that they are all significant
compared with the critical thresholds determined
from simulation studies.

5. Discussion

As naturally occurring environmental variation, such
as temperature and irradiance, can be continuous, so
can the response or sensitivity of an organism to the
change in environment. The genetic and develop-
mental basis of continuous environmental sensitivity
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Table 1. The means of the MLEs of the QTL position and the parameters that model photosynthetic reaction
norm processes for two different QTL genotypes (Qq and qq) for one hypothesized QTL Q and residual
covariance matrices for 100 simulation replicates. The square roots of the mean squared errors of the MLEs
are given in parentheses
Qq Qq
Position
H: n (46) =002 Pou(20)=1 0,=09 =001 P,(20)=08 6,=09 p=09 p,=08 o
0-1 100 4544 0-020 1-001 0-900 0-010 0-809 0-894 0-900 0-798 0-201
(3-15) (0-0008)  (0-027) (0-:020)  (0-0006)  (0-043) (0-031) (0-007) (0-011) (0-014)
0-1 400 46-08 0-020 1-001 0-901 0-010 0-803 0-897 0-900 0-799 0-201
(126)  (0:0004) (0-013) (0-009)  (0-0003)  (0-019) (0-014)  (0-003)  (0-006)  (0-007)
0-4 100 4580 0-020 1-001 0-900 0-010 0-800 0-900 0-899 0-798 0-034
(2:48)  (0:0003) (0-013) (0:009)  (0-0002)  (0-014) 0-011)  (0:007) (0-011)  (0-002)
0-4 400 4602 0-020 1-000 0-900 0-010 0-800 0-899 0-900 0-800 0-034
(1-15)  (0:0002)  (0-005) (0-004)  (0-0001)  (0-008) (0-006)  (0-003)  (0-006) (0-001)

The location of the QTL is described by the map distance (in centimorgans) from the first marker of the linkage group
(100 ¢M long). The hypothesized o® value is 0-034 for H>=0-4 and 0-202 for H*=0-1.

Table 2. The means of the MLEs of the QTL position and the parameters that model photosynthetic reaction
norm processes for four different QTL genotypes (PpQq, Ppqq, ppQq and ppqq) at two hypothesized QTL P and
Q and residual covariance matrices for 100 simulation replicates. The square roots of the mean squared errors of

the MLEs are given in parentheses

H n P Q PO Pq 0 rq p1 2 o
True value 46 73 a 0022 0016 0012 0010 0-900 0-800 0-356

P, 1350 0-850 0-660 0-350

0 0-960 0-820 0-700 0-620
0-1 100 44-32 7260 « 0022 0-016 0012 0-010 0-900 0-798 2124
(519)  (623) (0-:002)  (0:099)  (0-006)  (0-005)  (0-010) (0-011)  (0-163)

P, 1362 0-927 0732 0373

(0-123)  (0:395)  (0-327)  (0-116)

6 0953 0-709 0-780 0-658

(0-:039)  (0:322)  (0-353)  (0-342)
0-1 400 4584 7328« 0022 0-017 0013 0-010 0-900 0-800 2135
(3:04)  (525) (0-001)  (0-005)  (0-008)  (0-003)  (0-003)  (0-006)  (0-078)

P, 1349 0-880 0-645 0-356

(0-050)  (0-175)  (0-184)  (0-072)

6 0-960 0-772 0-684 0-647

(0-012)  (0-231)  (0-305)  (0-283)
0-4 100  47-36 7048  « 0022 0-016 0-012 0-010 0-900 0-798 0-355
(6:36)  (6:42) (0-001)  (0-004)  (0-003)  (0-003)  (0-006)  (0-0110)  (0-024)

P, 1358 0-864 0672 0-361

(0-039)  (0:139)  (0-171)  (0-051)

6 0-964 0-750 0-733 0-590

(0-021)  (0-231)  (0-240)  (0-278)
0-4 400  (4744)  (71:08) « 0022 0-016 0012 0-010 0-900 0-800 0-356
(4-84)  (477) (0-:0004)  (0-002)  (0-002)  (0-002)  (0-003)  (0-006)  (0-012)

P, 1351 0-854 0-658 0-354

(0-018)  (0-058)  (0-068)  (0-030)

6 0-965 0-820 0-706 0-620

(0-016)  (0-101)  (0-117)  (0-110)

or reaction norm has been increasingly studied by
evolutionary and ecological biologists (Schlichting,
1986; Scheiner, 1993; Sultan, 2000, 2003 a, b, 2004;
Davidowitz & Nijhout, 2004). The genetic archi-
tecture of reaction norms in terms of the number of
underlying quantitative trait loci and their actions/
interactions can be unravelled by use of functional
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mapping (Wu & Lin, 2006), aimed at estimating and
testing the degree and pattern of genetic regulation
in shaping the phenotypic curves across ecological
contexts. The construction of such an analytical
model will help us to synthesize the information from
genomics and developmental ecology and to gain
an insight into the genomic basis of organismic
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Fig. 3. Landscape of the log-likelihood ratios (LR) for testing the locations of two QTLs that control the reaction norm
processes of photosynthetic rate to different irradiance and temperature levels. The red and black lines on the bottom
surface indicate the true and estimated locations of the QTL, respectively.

responsiveness to changing environments (Dusheck,
2002; Sultan, 2005; Cronk, 2005).

In this article, we developed a functional-mapping-
based model for testing the genetic control of
multivariate reaction norms for an ecologically or
physiologically significant trait. There is a pressing
need for developing a general model for mapping the
phenotype of reaction norms to multiple environ-
mental factors. Many biological processes, such as
the photosynthetic rate, can be modelled by a
mathematical function that is derived from firm bio-
logically principles (Thornely & Johnson, 1990; West
et al., 2001). Other biological processes, such as
thermal performance curves, can be modelled by a
non-linear function that is derived by a best statistical
fit to observational data (Kingsolver et al., 2004).
While the slope of a parametric reaction norm mea-
sures the sensitivity of a genotype towards a change
in the environment, the gradient of multivariate
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reaction norms defines the influence of interacting
environmental factors on phenotypic values. In this
sense, functional mapping, merged into models for
ecological plasticity, can provide unique power to test
fundamental issues of ecological and evolutionary
roles of interactions between the genotype and en-
vironment in shaping phenotypic expression and
evolution.

We have carried out simulation studies to investi-
gate the statistical behaviour of our functional map-
ping used to study the genetic basis of reaction norms.
It has been found that the model performs well
in terms of the estimation accuracy, precision and
robustness. Some of the good features of the model
result from elegant expressions of the structured non-
genetic residual covariance matrix by commonly used
time series processes (Diggle et al., 2002 ; Zimmerman
& Nufnez-Anton, 2001). For example, closed forms
exist for the determinant and inverse of the structured
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covariance matrix when it is modelled by an auto-
regressive (AR) or antedependence (SAD) process.
Zhao et al. (2005a) showed that both AR and SAD
can be interesting alternatives, although SAD can be
more general than AR under some circumstances. For
many practical problems, non-genetic effects can be
dissolved into autocorrelated permanent environ-
mental and uncorrelated random residual effects
(Ptak & Schaeffer, 1993; Lund et al., 2002 ; Kolmodin
et al., 2002), with a new parameter used to define the
ratio of the variances due to these two effects. The AR
or SAD processes have been shown to be powerful for
modelling the structure of the permanent environ-
mental covariance (J. Wu and R. L. Wu, unpublished
results).

In modelling reaction norms to multiple environ-
mental factors, a so-called completely separable
structure has been used to facilitate computation, but
it does not take into account the interactions between
the two different reaction norm processes. A model
for non-separable isotropic spatio-temporal vario-
grams could be built to characterize the dependence
between the two random variables (Porcu et al.,
2006 a, b) with copulas, a technique widely used in the
financial context (Nelsen, 1999), and by extending
Sklar’s and Nelsen’s theorems to isotropic spatio-
temporal random fields. The advantage of this ap-
proach is that the marginal reaction norm process
dependence can be modelled separately and the in-
teraction between different environments is achieved
through an appropriate choice of a parametric cop-
ula. Using the Archimedean copula as a generating
class, a proper generating function can be chosen to
reflect the interaction between different environments.

In theory, our general framework for eco-devo
functional mapping can be extended to higher di-
mensions. The significance of higher dimensions can
be exemplified by a photosynthetic rate process. In
our example, photosynthetic rate is assumed to be
controlled by irradiance and temperature (Thornley
& Johnson, 1990; Wu, 1993). However, other
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environmental factors such as concentration, leaf age
and nutrient contents also play an important role in
regulating photosynthetic rate and, thus, the joint in-
clusion of such factors should provide a better insight
into the genetic basis of this physiological process.
Although this will present a statistical challenge, fur-
ther modelling and analysis are worthwhile using the
recent advances in statistics in the field. For example,
the procedure for mapping multivariate developmen-
tal trajectories by Zhao et al. (2005b) can be used
to construct the theory for the functional mapping
of reaction norms for multiple traits to multiple
environmental factors.

Many biological processes can be mathematically
described, but there are many others for which a
rigorous mathematical function cannot be defined.
For such processes it might be difficult to perform a
parametric analysis. However, for those reaction
norm processes for which parametric functions do not
exist, a random regression model for approximating
the mean structure of longitudinal data should be used
(see Kolmodin et al., 2002). Lin & Wu (2006) used
Legendre polynomials to model curves that cannot be
fitted by mathematical equations. Alternatively, an
approach based on B-spline basis functions, which
has been well developed in the statistical literature
(Rice & Wu, 2001), can be used for non-parametric
regression fitting. The B-spline approach constructs
curves from pieces of lower degree polynomials
smoothed at selected pointed (knots). Brown et al.
(2005) extended the B-spline basis to model multiple
longitudinal variables. The idea of B-spline curve
fitting will be incorporated into the functional map-
ping model, with the aim of increasing the breadth of
the use of functional mapping in solving practical
genetic problems.

We thank the two anonymous referees for constructive
comments on the earlier version of this manuscript. This
work is partially supported by grants (09-95671 and
30230300) from the National Natural Science Foundation
of China and from NSF (0540745).

Below, we describe a mathematical procedure for calculating the integrals and derivatives of the photosynthetic
reaction norm curves used to construct hypotheses (6)—(12).
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