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Abstract

In this paper we develop two permutation theorems on argument increasing functions of
a multivariate random vector and a real parameter vector. We use the unified approach of
our two theorems to provide some important theoretical results on the capital allocation
in actuarial science, the deductible and upper limit allocations in insurance policy, and
portfolio allocation in financial engineering. Our results successfully improve or extend
the corresponding works in the literature.
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1. Section

Risk measure and risk management play central roles in economics and the financial sciences.
Financial engineers strive to optimize the portfolio of random risk assets in pursuit of maximized
potential profit, while actuaries endeavour to subdivide better the capital to various insurance
products so as to minimize the risk of default. In general, they both deal with a random
vector X = (X1, . . . , Xn) representing either the potential profit or potential loss and a real
vector λ = (λ1, . . . , λn) concerning the decision policy of the stakeholder. As a stylized
decision problem, the allocation of the total capital to related risks or the allocation of wealth
to concerned risk assets so as to increase profit or minimize the risk of default has received
much attention in recent decades. These types of optimal allocation problem naturally arise in
various situations.

In enterprise risk management (ERM), to supervise the behavior of banks and insurance
companies, the regulator establishes rules to determine the level of sufficient capital held by
financial institutions so that their financial obligations can be met with a high probability when
they are due, even in adverse situations. The level of available capital is a key factor that
rating agencies use to assess the financial strength of a company. In practice, an important
component of one ERM framework is the exercise of capital allocation, that is, the firm
reasonably subdivides the total capital across its various constituents (e.g. business lines, types
of exposure, territories, or even individual products in a portfolio of insurance policies) in order
to reduce the risk of default.
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Suppose that a financial organization with the total capital h̄ has a portfolio of several lines of
business with potential losses X1, . . . , Xn. It is of great interest to allocate the capital hi to Xi
(i = 1, . . . , n and h̄ = h1 + · · · + hn > 0) in a better manner so that the total potential loss
may be minimized. To achieve this, researchers have proposed a number of ways to allocate
the total capital, for example, the haircut allocation principle, the quantile allocation principle,
the covariance allocation principle, the conditional tail expectation (CTE) allocation principle,
and the proportional allocation principle. It should be noted here that only the covariance
allocation principle, the CTE allocation principle, and the proportional allocation principle
take the interdependence among multiple risks into consideration. For more details, we refer
the reader to, e.g. Myers and Read (2001), Laeven and Goovaerts (2004), Frostig et al. (2007),
Furman and Zitikis (2008), Tsanakas (2009), and Dhaene et al. (2012). Determining the
appropriate capital allocation generally boils down to the direct optimization of the expected
value of a function of concerned risks and the parameter vector concerning the allocation
principle; see, for example, Dhaene et al. (2012). On the other hand, one may also formulate
it in terms of the loss function. For example, Xu and Hu (2012) considered the total loss

g(X,h) =
n∑
i=1

φ(Xi − hi) for h = (h1, . . . , hn) with h1 + · · · + hn = h̄,

where the convex function φ denotes the loss resulting from the deviation of loss Xi from
the allocated capital hi . Under the framework of utility, the optimal capital allocation should
minimize the expected utility of the total loss.

In the insurance industry, through paying a premium, the insured could obtain coverage
from an insurance company. Two common forms of coverage are (ordinary) deductible and
policy limit. One single insurance policy is usually designed to cover several random risks,
say X1, . . . , Xn. In some situations, the policyholder has the right to allocate the deductibles
or the policy limits among the involved risks. For example, as one of the main components
of the compensation package of many insurance companies, the so-called ‘flexible spending
account programme’ allows employees to allocate pre-tax dollars toward specific expenses
such as health care, medical costs, or dependent care. In practice, as one inspiring plan, the
insurer always grants the policyholder a total policy limit �, which can be allocated arbitrarily
by the policyholder (say, li to Xi, i = 1, . . . , n) across all the involved risks. In this setup, the
policyholder incurs the total attained loss

g(X, l) =
n∑
i=1

(Xi − li )+ for l = (l1, . . . , ln) with
n∑
i=1

li = � and x+ = max{x, 0}.

On the other hand, the policyholder is sometimes also provided with a total deductible amount d,
and he/she may allocate a deductible amount di to the riskXi, i = 1, . . . , n, according to his/her
own will. In this scenario, the policyholder incurs the total attained loss

g(X, d) =
n∑
i=1

(Xi ∧ di) for d = (d1, . . . , dn) with
n∑
i=1

di = d and x ∧ y = min{x, y}.

Obviously, a policyholder prefers to choose an allocation policy with either a deductible or
upper limit that minimizes the resulting total attained loss covered by the policy. There has
been some research into the optimal allocation of policy limits and deductibles; see, for example,
Cheung (2007), Hua and Cheung (2008b), Zhuang et al. (2009), Lu and Meng (2011), and the
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references therein. In general, these two problems can also be summarized as the optimization of
the expected utility of the total attained loss incurred by the deductible or upper limit allocation.

In financial engineering, the theory of optimum portfolio allocation in response to multiple
random risk assets is of practical interest and is rather extensive, at least where the expected
utility framework is concerned. However, the implications of interdependence among random
risk assets and distributional order in the assets allocation policy is still not well understood.
Consider a risk investor with a portfolio of n risk assets having potential returns X1, . . . , Xn,
and assume that the investor allocates the amount wi of the entire wealth ω held by him/her to
the risk asset Xi, i = 1, . . . , n. Then the investor attains the total potential return

g(X,w) =
n∑
i=1

wiXi for w = (w1, . . . , wn) with
n∑
i=1

wi = ω.

The optimal allocation of the portfolio is pursued in order to maximize the total potential return.
In the framework of utility, this again gives rise to optimizing the expected utility of the total
potential return. The portfolio allocation problem has been extensively discussed in the past
twenty years. For further details of this line of research, we refer the reader to Landsberger
and Meilijson (1990), Kijima and Ohnishi (1996), Hennessy and Lapan (2002), Cheung and
Yang (2004), Cheung (2006), Chen and Hu (2008), Li and You (2014), and the references
therein.

In the framework of utility theory, the above four types of optimal allocation issue can be
summarized as the following optimization problem:

max
λ1+···+λn=λ

E[u(g(X,λ))] for any increasing utility u. (1.1)

By substituting some specific real function g(x,λ) and a certain class of utility function u, we
immediately obtain one of the above allocation problems, which is equivalent to the optimal
parameter vector λ (denoting the allocation policy), leading to the maximized function g(X,λ)
in the sense of some specific stochastic orders. Without doubt, the general form (1.1) also
includes some potential applications in other areas, such as redundance allocation in the theory
of reliability and order allocation in inventory administration. We will focus on the portfolio
allocation of capital, deductibles, the policy limit, and assets. Also, it is worth pointing out that,
owing to the nonlinear nature of (1.1) or the partial aspect of the involved stochastic orders, the
closed-form expression of the optimal allocation vector λ is not available in a general context;
however, some useful qualitative results concerning the relative size of each allocation may still
be addressed to some extent.

The aim of this paper is twofold. On the one hand, we study the optimal allocation
problem (1.1) with a more general function g(x,λ) and build some theoretical permutation
theories on multiple random risks with interdependence. On the other hand, these theories
are successfully applied to the optimal allocation problem in actuarial science, the insurance
industry, and financial engineering. We obtain some insightful results, which either generalize
or supplement the existing results in the literature and, hence, shed some light on the related
line of research on risk management. It should be remarked here that these theories are of
independent interest, as well as having excellent applications in financial engineering and
actuarial science.

The rest of this paper is organized as follows. In Section 2 we review some basic concepts
and several useful facts that we will use in developing our theoretical results. In Section 3
we present several permutation theorems concerning the expected utility of either the attained
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loss or potential profit corresponding to a certain allocation policy. In Section 4 we return to
examine the capital allocation in actuarial science, the policy limit and deductible allocation
in insurance, and portfolio allocation in financial engineering. In Section 4, we provide some
insightful conclusions into the application of those theories that either enrich or improve the
research in related fields.

Throughout this paper, the terms increasing and decreasing stand for nondecreasing and
nonincreasing, respectively. In what follows, we use boldface uppercase and boldface lowercase
letters to denote random vectors (e.g. X) and real vectors (e.g. x), respectively. Their elements,
random variables on a probability space (�,F ,P) and real variables on R, are represented by
uppercase and lowercase letters (e.g. Xi and xi), respectively. Also, we denote by 1(A) the
indicator function on a set A, which takes the value 1 or 0 according to whether A occurs or
not, and x ∨ y = max{x, y} and x ∧ y = min{x, y} will be used frequently in what follows.
For convenience, we let x+ = x ∨ 0, denote by (x,λ) the vector concatenating the elements of
x and λ, and implicitly assumed that all expectations are finite whenever they appear.

2. Preliminaries

For ease of reference, in this section we recall some important notions such as stochastic
orders, arrangement increasing property, and Archimedean copula, etc. The main theoretical
results will be presented in terms of these concepts.

In economics and finance, stochastic orders play an important role in comparing inequalities
and risks. For example, in economics the well-known utility theory may be stated in terms of
the usual stochastic order and increasing concave order, and the increasing convex order serves
as the main tool to compare two insurance risks. Without doubt, the magnitude of random risks
is the utmost important factor in determining the optimal portfolio allocation in the sense of
minimizing the potential loss in actuarial science or maximizing the prospective gain in financial
engineering. In the following sections, we will show that stochastic orders are rather convenient
and pertinent in making a judgement on the performance of the portfolio of either actuarial or
financial risks.

A random variable X with density f is said to be smaller than a random variable Y with
density g in the

(i) likelihood ratio order (denoted by X ≤lr Y ) if g(x)/f (x) is increasing in x;

(ii) stochastic order (denoted by X ≤st Y ) if E[φ(X)] ≤ E[φ(Y )] for any increasing φ;

(iii) hazard rate order (denoted by X ≤hr Y ) if Ḡ(x)/F̄ (x) is increasing in x;

(iv) reversed hazard rate order (denoted by X ≤rh Y ) if G(x)/F (x) is increasing in x;

(v) increasing concave (convex) order (denoted by X ≤icv (≤icx)Y ) if E[φ(X)] ≤ E[φ(Y )]
for any increasing and concave (convex) φ.

It should be remarked here that the likelihood ratio order, the reversed hazard rate order,
the usual stochastic order, and the increasing concave order are referred to as the likelihood
ratio dominance, the reversed hazard rate dominance, the first-order stochastic dominance,
and the second-order stochastic dominance, respectively, in the economic and finance litera-
ture; see, for example, Kijima and Ohnishi (1996). Standard references for stochastic orders
include Müller and Stoyan (2002), Denuit et al. (2005), and Shaked and Shanthikumar (2007).
For recent advances of stochastic orders in reliability and risk, see Li and Li (2013).
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Both the capital allocation in actuarial science and portfolio allocation in financial engineer-
ing center on reasonably assigning certain amounts of capital to concerned risk losses or assets.
In many such cases, permutation properties of the potential loss or gain have a key impact on
the portfolio’s performance.

For any permutation τ of {1, . . . , n} and a real vector x = (x1, . . . , xn) ∈ R
n, let τ(x) =

(xτ(1), . . . , xτ(n)) be the permutated vector. Denote by x↑ = (x[1], . . . , x[n]) and x↓ =
(x[n], . . . , x[1]) the rearrangement vectors with the components of x being arranged in ascending
and descending order, respectively.

A vector (x,λ) is said to be

(a) arrangement equivalent to the other vector (y, γ ) (written as (x,λ)
a=(y, γ )) if there

exists some permutation τ such that (τ (x), τ (λ)) = (y, γ );

(b) smaller in the sense of the arrangement order than the other vector (y, γ ) (written as
(x,λ) ≤a (y, γ )) if there are vectors zi = (zi,1, . . . , zi,n), i = 1, . . . , m, such that
(i) (x,λ)

a= (x↑, z1) and (y, γ )
a=(x↑, zm) hold, and (ii) for each i = 1, . . . , m, there

exists a pair {j, k} with 1 ≤ j < k ≤ n such that zi,k = zi−1,j > zi−1,k = zi,j and
zi,l = zi−1,l for l 	∈ {j, k}.

The arrangement order may be illustrated by the example

((7, 5, 3, 1), (2, 4, 6, 8))
a= ((1, 3, 5, 7), (8, 6, 4, 2))

≤a ((1, 3, 5, 7), (2, 6, 4, 8))

≤a ((1, 3, 5, 7), (2, 4, 6, 8)).

A real function g(x,λ) : R
n × R

n 
→ R is said to be arrangement increasing (AI) on
(x,λ) if g(x,λ) ≤ g(y, γ ) whenever (x,λ) ≤a (y, γ ); g(x,λ) is said to be arrangement
decreasing (AD) when the above inequality is reversed.

TheAI property on (x,λ) actually emphasizes the monotone property owing to the similarity
on the arrangement of x and λ. According to Hollander et al. (1977),

g1(x,λ) =
n∑
i=1

λixi and g2(x,λ) =
n∑
i=1

(xi ∧ λi) (2.1)

are AI on (x,λ), and g3(x,λ) = ∑n
i=1(xi − λi)+ is AD on (x,λ). For more on the general

theory of AI functions and their applications, see, e.g. Hollander et al. (1977), Boland and
Proschan (1988), Boland et al. (1988), and Marshall et al. (2011).

When elements of λ are in the ascending order, the AI property on (x,λ) is just the monotone
property due to the similarity on the arrangement of x and the vector (1, . . . , n). Let

τij (x1, . . . , xi, . . . , xj , . . . , xn) = (x1, . . . , xj , . . . , xi, . . . , xn)

for 1 ≤ i < j ≤ n. Let us introduce the permutation monotone property of a multivariate
function.

Definition 2.1. A function g(x) : R
n 
→ R is said to be permutation decreasing (PD) with

respect to (i, j) with i < j if g(x) ≥ g(τij (x)) for xi ≤ xj ; g is said to be permutation
increasing (PI) with respect to (i, j) with i < j when the inequality is reversed.
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The PD (PI) property actually asserts that, for (i, j), the function attains a greater (smaller)
value when (xi, xj ) and (i, j) are similarly ordered with other arguments unchanged. Recall
that a function g(x) : R

n 
→ R is said to be AI in x if

(xi − xj )[g(x)− g(τij (x))] ≤ 0 for all i and j such that 1 ≤ i < j ≤ n;
it is said to be AD in x when the above inequality is reversed.

Evidently, the AI (AD) property of a function g(x) is just its PD (PI) properties with respect
to any pair (i, j) with 1 ≤ i < j ≤ n. For more on the AI and AD properties, see Boland et al.
(1988) and Marshall et al. (2011). Here we introduce the following two weak versions of the
PD and PI properties; they play a critical role in developing our main theoretical results.

Definition 2.2. A joint density f (x) is said to be

(i) upper tail permutation decreasing (UTPD) with respect to (i, j) with i < j if∫ ∞

t

[f (x)− f (τij (x))] dxj ≥ 0 for all t ≥ xi and any fixed xi;

(ii) lower tail permutation decreasing (LTPD) with respect to (i, j) with i < j if∫ t

−∞
[f (x)− f (τij (x))] dxi ≥ 0 for all t ≥ xi and any fixed xi.

The joint density f (x) is said to be upper tail permutation increasing (UTPI) and lower tail
permutation increasing (LTPI) with respect to i < j if the above two inequalities are reversed.

Note that, for some given (i, j) with i < j , the PD (PI) property always implies the UTPD
and LTPD (UTPI and LTPI) properties.

Another factor that has a vital impact on the performance of the portfolio in economics,
finance, and insurance is the interdependence among concerned multiple random risks.
Classical models usually assume the mutual independence among them; however, it is obviously
inappropriate in practice. In the last two decades, the copula theory has gained more and
more attention in areas dealing with risks due to its simple mathematical form and statistical
tractability.

Denote by X = (X1, . . . , Xn) a random vector with marginal distributions F1, . . . , Fn.
If there exists a joint distribution function C on the n-dimensional unit square [0, 1]n such
that the joint distribution of X may be represented as F(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn))

for any x1, . . . , xn, then C is called the copula of X. If there exists some joint distribution
function Ĉ on the n-dimensional unit square [0, 1]n such that the survival function F̄ of X may
be represented as F̄ (x) = Ĉ(F̄1(x1), . . . , F̄n(xn)) for all xi, i = 1, . . . , n, then Ĉ is called the
survival copula of X.

Recently, much attention has been paid to Archimedean copulas due to the mathematical
tractability and flexibility in specifying the dependence structure of multivariate distributions.
As one of the most important family of copulas, the Archimedean copula was first introduced
by Kimberling (1974), and studied at closer range by Genest and MacKay (1986a), (1986b),
Marshall and Olkin (1988), and Genest and Rivest (1993), among others.

A function ϕ defined on (0,+∞) is said to be n-monotone if (−1)kϕ(k)(t) ≥ 0 for t ∈
(0,+∞), where ϕ(0)(t) = ϕ(t) and ϕ(k)(t) is the kth-order derivative evaluated at t , k =
1, . . . , n. Obviously, for an n-monotone function ϕ(t), (−1)kϕ(k)(t) is always decreasing in t
for any k = 1, . . . , n− 1.
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Definition 2.3. (McNeil and Nes̆lehová (2009).) For an n-monotone function ϕ : [0,+∞)


→ (0, 1] with ϕ(0) = 1 and limt→∞ ϕ(t) = 0, the function C(u1, . . . , un) = ϕ(ϕ−1(u1)

+ · · · + ϕ−1(un)) is called the Archimedean copula with generator ϕ.

Assume that Xi has the distribution function Fi and the density function fi, i = 1, . . . , n.
Let ψ = ϕ−1 : (0, 1] → [0,+∞), and, for i = 1, . . . , n, let

si(x) = ψ(1)(Fi(x))fi(x) and s∗i (x) = ψ(1)(F̄i(x))fi(x).

Then X with the Archimedean copula generated by ϕ has the joint distribution F(x) =
ϕ(ψ(F1(x1))+ · · · + ψ(Fn(xn))) and the probability density

f (x) = ϕ(n)
( n∑
i=1

ψ(Fi(xi))

) n∏
i=1

si(xi),

and X with the Archimedean survival copula generated by ϕ has the survival function F̄ (x) =
ϕ(ψ(F̄1(x1))+ · · · + ψ(F̄n(xn))) and the probability density

f (x) = ϕ(n)
( n∑
i=1

ψ(F̄i(xi))

) n∏
i=1

s∗i (xi).

In the remainder of this paper, we will handle Archimedean copulas with a log-convex
generator. It is easily verified that the log-convex generator of bivariate Archimedean survival
copulas leads to a right-tail increasing property and that the log-convex generator of bivariate
Archimedean copulas leads to a left-tail decreasing property—two positive dependence relations
due to Esary and Proschan (1972). The theory of copulas is quite useful in modeling the
dependence of multivariate distributions, and it is the standard tool in handling interdependence
in statistics. See Joe (1997), McNeil et al. (2005), and Nelsen (2006) for comprehensive studies
on copula theory and its applications.

3. Theoretical results

Since the optimization problems introduced in Section 1 share a unified mathematical
form (1.1), the expectation of a real function of the risk vector, and the parameter vector
of allocation in the portfolio, we provide new insight to some aspects of the optimality of the
portfolio allocation by pursuing the essence of the pure mathematical issue.

The first theory due to Boland et al. (1988) presents the stochastic order of the AI function
of a random vector with AI joint density. As will be seen, we play a new tune on this ancient
flute in the next section.

Theorem 3.1. (Boland et al. (1988, Corollary 3.1).) Suppose that a real function g(x,λ) is AI
on (x,λ) and that a random vector X = (X1, . . . , Xn) has an AI joint density f (x). Then it
holds that g(X,λ) ≥st g

(
X, τij (λ)

)
whenever λi ≤ λj for 1 ≤ i < j ≤ n.

For risk-neutral investors with AI total risk return, Theorem 3.1 proposes a better portfolio
or capital allocation for multiple risks with an AI joint density. Now, let us proceed to two main
theoretical results on multiple risks having the UTPD (UTPI) or LTPD (LTPI) joint density,
which will be applied to study the optimal portfolio allocations in the next section. The first
result involves finding sufficient conditions on the increasing convex order of the function
of a random vector X that defines the multiple risks, and a real parameter vector λ of the
allocation policy.
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Theorem 3.2. Suppose that g(x,λ) : R
n × R

n → R is AI (AD) on (x,λ) and that the joint
density of a random vector X has the UTPD (UTPI) property with respect to a pair (i, j) with
i > j (i < j ). For the pair (i, j), if both g(x,λ) and g(x,λ)− g(x, τij (λ)) are increasing in
xi ≥ xj and λi ≥ (≤)λj , then g(X,λ) ≥icx (≤icx)g(X, τij (λ)) whenever λi ≥ λj .

The above theorem provides risk-seeking investors that have an AI total risk return with a
guide to allocating better their capital in a portfolio of multiple risks. It should be pointed out
here that, for a pair (i, j) with i > j , the UTPD property of X is invoked when either of the
following two assumptions holds.

(i) X has an Archimedean survival copula with s∗i (x) ≥ s∗j (x) for 1 ≤ j < i ≤ n.

(ii) All (n− 1)-dimensional marginal distributions of X are identical and

(Xi | X(i) = x(i)) ≥st (Xj | τij (X)(i) = x(i)) for 1 ≤ j < i ≤ n, (3.1)

where x(i) = (x1, . . . , xi−1, xi+1, . . . , xn).

Assumption (i) follows directly from the proof of Corollary 3.1. As for assumption (ii), note
that (3.1) is equivalent to

fτij (X)(i) (x(i))

∫ ∞

t

f (x)dxi ≥ fX(i)
(x(i))

∫ ∞

t

f (τij (x))dxi for t ≥ 0,

and all (n − 1)-dimensional marginal densities of X are identical. Then we immediately
have fτij (X)(i) (x(i)) = fX(i)

(x(i)) and, hence, the joint density has the UTPD property on the
pair (i, j).

From Theorem 3.2, we develop the following corollary concerning the multiple random
variables with an Archimedean survival copula.

Corollary 3.1. Suppose that X has an Archimedean survival copula and that g(x,λ) satisfies
the conditions of Theorem 3.2. Then s∗i (x) ≥ s∗j (x) for all x ≥ 0 and 1 ≤ i, j ≤ n, implying
that g(X,λ) ≥icx (≤icx)g(X, τij (λ)) whenever λi ≥ λj .

As an immediate consequence of Corollary 3.1, we obtain the following corollary concerning
multiple random variables arrayed according to the hazard rate order and equipped with an
Archimedean survival copula.

Corollary 3.2. Assume that X has an Archimedean survival copula with a log-convex generator
and that g(x,λ) satisfies the related conditions of Theorem 3.2. Then for 1 ≤ i, j ≤ n,
Xi ≥hr Xj implies that g(X,λ) ≥icx (≤icx)g(X, τij (λ)) whenever λi ≥ λj .

Now we proceed to the second main theoretical result.

Theorem 3.3. Suppose that a real function g(x,λ) : R
n × R

n 
→ R is AI (AD) on (x,λ) and
that the joint density of a random vector X is LTPD or LTPI with respect to a pair (i, j) with
i > j or i < j . For the pair (i, j), if g(x,λ) and g(x, τij (λ)) − g(x,λ) are increasing in
xj ≤ xi and λi ≥ (≤)λj , then g(X,λ) ≥icv (≤icv)g(X, τij (λ)) whenever λi ≥ λj .

In parallel to Theorem 3.2, Theorem 3.3 provides risk-averse investors that have an AI total
risk return with a guide to better allocating their capital in a portfolio of multiple risks. Likewise,
it is easy to verify that, for a pair (i, j) with i > j , the LTPD property of X is followed when
either of the next two statements holds.
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(i) X has an Archimedean copula and si(x) ≤ sj (x) for 1 ≤ j < i ≤ n.

(ii) All (n−1)-dimensional marginals of X have identical distributions and (3.1) is satisfied.

The remaining results concerning random vectors with an Archimedean copula follow as a
consequence of Theorem 3.3.

Corollary 3.3. Assume that X has an Archimedean copula. If g(x,λ) satisfies the related
conditions in Theorem 3.3, then si(x) ≤ sj (x) for all x ≥ 0 and 1 ≤ i, j ≤ n, implying that
g(X,λ) ≥icv (≤icv)g(X, τij (λ)) whenever λi ≥ λj .

Moreover, we present a result based on the reversed hazard rate order.

Corollary 3.4. Assume that X has an Archimedean copula with a log-convex generator.
If g(x,λ) satisfies the related conditions in Theorem 3.3, then for 1 ≤ i, j ≤ n,Xi ≥rh Xj
implies that g(X,λ) ≥icv (≤icv)g(X, τij (λ)) whenever λi ≥ λj .

4. Applications in actuarial and financial risk management

In this section we apply the theoretical results presented in Section 3 to capital allocation
in actuarial science, the deductible and upper limit allocation in the insurance industry, and
the portfolio allocation in financial engineering. For convenience, throughout this section, all
random variablesXi are assumed to be nonnegative, and we denote, for any λ > 0, the simplex

Aλ = {(λ1, . . . , λn) : λ1 + · · · + λn = λ, λi ≥ 0, i = 1, . . . , n}
as the set of all feasible allocation policies.

4.1. Actuarial risk capital allocation

In the literature on actuarial science, the optimal capital allocation has been extensively
discussed. Based on the marginal cost and tail value-at-risk, Panjer (2001) was the first
to provide an explicit expression for allocations of multivariate normally distributed risks,
and Landsman and Valdez (2003) extended this result to multivariate elliptical distributions.
Tsanakas (2004) subsequently studied capital allocations based on the distorted risk measure,
and Tsanakas (2009) further generalized these allocation principles to the general convex
risk measures. Moreover, Dhaene et al. (2012) developed a unified framework for capital
allocations.

Here we focus on the following model:

min
h∈Ah̄

E

[
u

( n∑
i=1

φ(Xi − hi)

)]
for any increasing u, convex φ, and h̄ > 0. (4.1)

Let h∗ = (h∗
1, . . . , h

∗
n) be an optimal solution to problem (4.1). Recently, Xu and Hu (2012)

provided the following result.

Proposition 4.1. (Xu and Hu (2012, Theorem 4.6).) Suppose that X1, . . . , Xn are mutually
independent. Then Xi ≤lr Xj implies that h∗

i ≤ h∗
j for any 1 ≤ i, j ≤ n.

From Proposition 4.1, if X1, . . . , Xn are mutually independent and X1 ≤lr · · · ≤lr Xn, then
the optimal capital allocation policy h∗ for (4.1) should satisfy h∗

i ≤ h∗
j for any 1 ≤ i < j ≤ n.

According to Hua and Cheung (2008a), (X1, . . . , Xn) has anAI joint density if they are mutually
independent andX1 ≤lr · · · ≤lr Xn; Proposition 4.2 below provides a more general conclusion
on the optimal allocation policy for (4.1).
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Proposition 4.2. Suppose that (X1, . . . , Xn) has an AI joint density. Then the optimal capital
allocation vector h∗ satisfies h∗

i ≤ h∗
j for any 1 ≤ i < j ≤ n.

Proof. Let g(x, h) = −φ(x − h). For xi ≥ xj and hi ≥ hj , it holds that

xi ∨ xj − hi ∧ hj ≥ xi ∨ xj − hi ∨ hj ,
xi ∧ xj − hi ∧ hj ≥ xi ∧ xj − hi ∨ hj ,
xi ∨ xj − hi ∧ hj ≥ xi ∧ xj − hi ∧ hj .

By the convexity of φ, we have

φ(xi ∨ xj − hi ∧ hj )− φ(xi ∨ xj − hi ∨ hj )
≥ φ(xi ∧ xj − hi ∧ hj )− φ(xi ∧ xj − hi ∨ hj ),

which is equivalent to

g(xi ∨ xj , hi ∨ hj )+ g(xi ∧ xj , hi ∧ hj )
≥ g(xi ∨ xj , hi ∧ hj )+ g(xi ∧ xj , hi ∨ hj ). (4.2)

Then from Proposition 2.5(b) of Boland et al. (1988) and (4.2), it follows that

n∑
i=1

g(xi, hi) = −
n∑
i=1

φ(xi − hi)

is AI on (x,h). As a result of Theorem 3.1, it follows that, for 1 ≤ i < j ≤ n and hi ≤ hj ,

−
n∑
k=1

φ(Xk − hk) ≥st −φ(Xi − hj )− φ(Xj − hi)−
n∑

k 	∈{i,j}
φ(Xk − hk).

This is just

n∑
k=1

φ(Xk − hk) ≤st φ(Xi − hj )+ φ(Xj − hi)+
n∑

k 	∈{i,j}
φ(Xk − hk)

for i < j and hi ≤ hj . So, we obtain the desired result.

In parallel, we also present an application of Corollary 3.2.

Proposition 4.3. Assume that u is convex and that X has an Archimedean survival copula with
a log-convex generator. If φ is increasing and convex, then Xi ≥hr Xj implies that h∗

i ≥ h∗
j

for 1 ≤ i, j ≤ n.

Proof. The increasing property of φ guarantees that g(x,h) := ∑n
i=1 φ(xi − hi) increases

in xi . From the proof of Proposition 4.2, it follows that g(x,h) is AD on (x,h). Since φ is
convex, φ(xi − hi)− φ(xi − hj ) is increasing in xi for hi ≤ hj , and, hence,

g(x,h)− g(x, τij (h)) = φ(xi − hi)− φ(xi − hj )+ φ(xj − hj )− φ(xj − hi)
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increases in xi for hi ≤ hj . That is, g(x,h) satisfies the related conditions of Theorem 3.2
for hi ≤ hj . Consequently, from Corollary 3.2, Xi ≥hr Xj implies that, for hi ≥ hj and
1 ≤ i, j ≤ n,

n∑
k=1

φ(Xk − hk) ≤icx φ(Xi − hj )+ φ(Xj − hi)+
n∑

k 	∈{i,j}
φ(Xk − hk).

Thus, it follows that h∗
i ≥ h∗

j for 1 ≤ i, j ≤ n.

4.2. Insurance upper limits and deductibles allocation

For the allocation of upper limits and deductibles in the insurance industry, the optimal
problem (1.1) can be represented as

min
l∈A�

E

[
u

( n∑
i=1

(Xi − li )+
)]

for any increasing u and � > 0 (4.3)

and

min
d∈Ad

E

[
u

( n∑
i=1

(Xi ∧ di)
)]

for any increasing u and d > 0. (4.4)

Let l∗ = (l∗1 , . . . , l∗n) and d∗ = (d∗
1 , . . . , d

∗
n) be the optimal solutions to (4.3) and (4.4),

respectively. Cheung (2007), who was one of the first to study the optimal allocation of policy
limits and deductibles, provided the following result on mutually independent random risks.

Proposition 4.4. (Cheung (2007, Propositions 1 and 4).) Assume that u is convex and that
X1, . . . , Xn are mutually independent. Then Xi ≥hr Xj implies that l∗i ≥ l∗j and d∗

i ≤ d∗
j for

1 ≤ i, j ≤ n.

From the viewpoint of the insurer, Hua and Cheung (2008b) investigated the worst allocation
of policy limits and deductibles. Zhuang et al. (2009) then established some nice comple-
ments and extensions for the main results in Cheung (2007) and Hua and Cheung (2008b).
The following most recent result is due to Lu and Meng (2011).

Proposition 4.5. (Lu and Meng (2011, Lemmas 5.1 and 5.3).) Assume that the random risks
X1, . . . , Xn are mutually independent. Then Xi ≤lr Xj implies that l∗i ≤ l∗j and d∗

i ≥ d∗
j for

1 ≤ i, j ≤ n.

Next, we establish a generalization of Proposition 4.5.

Proposition 4.6. Suppose that (X1, . . . , Xn) has an AI joint density. Then l∗i ≤ l∗j and d∗
i ≥ d∗

j

for any 1 ≤ i < j ≤ n.

Proof. Since φ(x) = x+ is convex, by Proposition 4.2, we immediately obtain l∗i ≤ l∗j for
any 1 ≤ i < j ≤ n.

From (2.1) and Theorem 3.1, the AI property of the joint density implies that, for any
1 ≤ i < j ≤ n and di ≤ dj ,

n∑
k=1

(Xk ∧ dk) ≥st (Xi ∧ dj )+ (Xj ∧ di)+
∑
k 	∈{i,j}

(Xk ∧ dk).

This results in d∗
i ≥ d∗

j for any 1 ≤ i < j ≤ n and, hence, completes the proof.
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The next result serves as an extension of Proposition 4.4 in the sense of relaxing the
independence among X to the interdependence through an Archimedean copula.

Proposition 4.7. Assume that u is convex and that X has an Archimedean survival copula with
a log-convex generator. Then Xi ≥hr Xj implies that l∗i ≥ l∗j and d∗

i ≤ d∗
j for 1 ≤ i, j ≤ n.

Proof. Let g(x, d) = ∑n
i=1(xi ∧ di), which is obviously increasing in xi . From (2.1),

g(x, d) is AI on (x, d). For di ≥ dj ,

g(x, d)− g(x, τij (d)) = xi ∧ di + xj ∧ dj − xi ∧ dj − xj ∧ di

=

⎧⎪⎨
⎪⎩
xj ∧ dj − xj ∧ di, xi ≤ dj ,

xi − dj + xj ∧ dj − xj ∧ di, dj ≤ xi ≤ di,

di − dj + xj ∧ dj − xj ∧ di, di ≤ xi,

is increasing in xi and, hence, g(x, d) satisfies the conditions of Theorem 3.2 for di ≥ dj . By
Corollary 3.2, Xi ≥hr Xj implies that, for di ≥ dj and 1 ≤ i, j ≤ n,

n∑
k=1

(Xk ∧ dk) ≥icx (Xi ∧ dj )+ (Xj ∧ di)+
∑
k 	∈{i,j}

(Xk ∧ dk).

It then follows that d∗
i ≤ d∗

j for 1 ≤ i, j ≤ n.
Note that φ(x) = x+ is increasing and convex, and recall from Proposition 4.3 that

Xi ≥hr Xj . Then l∗i ≥ l∗j for 1 ≤ i, j ≤ n.

It should be remarked here that the independent copula has the log-convex generator ϕ(x) =
e−x , and, thus, Proposition 4.4 is substantially extended by Proposition 4.7.

4.3. Financial portfolio allocation based on utility

For financial portfolio allocations, the optimization problem (1.1) becomes

max
w∈Aω

E

[
u

( n∑
i=1

wiXi

)]
for any increasing u and ω > 0. (4.5)

Let w∗ = (w∗
1, . . . , w

∗
n) be an optimal solution to (4.5). Landsberger and Meilijson (1990)

provided the following pioneering result.

Proposition 4.8. (Landsberger and Meilijson (1990, Proposition 1).) Suppose that the random
risks X1, . . . , Xn are mutually independent. Then Xi ≤lr Xj implies that w∗

i ≤ w∗
j for 1 ≤

i, j ≤ n.

In a similar manner, Kijima and Ohnishi (1996) proved that the shares of the portfolio
allocation should be ordered whenever the corresponding returns are arrayed according to the
reversed hazard rate order. Subsequently, Hennessy and Lapan (2002) were the first to study the
risk-averter’s portfolio allocation under the assumption of the Archimedean copula for potential
returns of risk assets and developed the following result.

Proposition 4.9. (Lapan and Hennessy (2002, Proposition 4.2).) Suppose thatu is concave and
twice continuously differentiable, and that the random risks X1, . . . , Xn have an Archimedean
copula with a log-convex generator. Then Xi ≥rh Xj implies that w∗

i ≥ w∗
j for 1 ≤ i, j ≤ n.
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In addition, Cheung andYang (2004) discussed the assets modeled by dependent default risks
by considering both the threshold model and the independent model of risks driven by default
indicators. They provided the condition on the default indicators sufficient to the same order
as in the optimal allocation. Moreover, instead of assuming any specific dependent structure,
Cheung (2006) proposed the maximin criterion as an alternative optimization criterion, which
first identifies the least favorable dependence structure as the actual one, and then proceeds
to analyze the optimal portfolio allocation for this situation. In the context of dependent
returns driven by default indicators, Chen and Hu (2008) established sufficient conditions on
the dependence of indicators and the utility function for the optimal allocation vector to be
ordered. Recently, Li and You (2014) investigated the risk-neutral’s portfolio allocation under
the assumption that the returns are coupled by some Archimedean copula.

Let lxi and uxi be the left and right endpoints of its support, i = 1, . . . , n. For convenience,
let lij = max{lxi , lxj } and uij = min{uxi , uxj } for 1 ≤ i < j ≤ n.

Proposition 4.10. (Li and You (2014, Theorem 5).) Suppose that X has an Archimedean
copula with (n + 1)-monotone ϕ such that (i) (1 − t)ψ(2)(t)/ψ(1)(t) is decreasing in t , and
(ii) for 1 ≤ i < j ≤ n, si(t)/sj (t) → 1 as t → lij . Then Xi ≤lr Xj implies that w∗

i ≤ w∗
j for

1 ≤ i < j ≤ n.

In what follows, we will construct a generalized version of Propositions 4.8 and 4.10.

Proposition 4.11. Suppose that X has an AI joint density. Then we have w∗
i ≤ w∗

j for any
1 ≤ i < j ≤ n.

Proof. Since
∑n
i=1wixi is AI on (x,w), by Theorem 3.1, we have, for any 1 ≤ i < j ≤ n

and wi ≤ wj , n∑
k=1

wkXk ≥st wjXi + wiXj +
∑
k 	∈{i,j}

wkXk.

This implies that w∗
i ≤ w∗

j for any 1 ≤ i < j ≤ n.

Evidently, Proposition 4.11 successfully extends Proposition 4.8. According to the proof of
Theorem 5 in Li and You (2014), sj (x)/si(x) increases in x ∈ (lij , uij ) for any 1 ≤ i < j ≤ n,
and then the conditions of Proposition 4.10 fall into the setup of Theorem 9 of Li andYou (2014).
So, (X1, . . . , Xn) in Proposition 4.10 has an AI joint density. That is, Proposition 4.11 covers
Proposition 4.10.

Next, we present an improved version of Proposition 4.9, which also eliminates the
differentiability of the utility functions.

Proposition 4.12. Assume that u is concave and X has an Archimedean copula with a log-
convex generator. Then Xi ≥rh Xj implies that w∗

i ≥ w∗
j for 1 ≤ i, j ≤ n.

Proof. It is easy to verify that g(x,w) = ∑n
i=1wixi is AI on (x,w) and increases in xj for

any j = 1, · · · , n. Note that

g(x, τij (w))− g(x,w) = (wi − wj)xj + (wj − wi)xi

is increasing in xj for wi ≥ wj , and g(x,w) satisfies the corresponding conditions in
Theorem 3.3 for wi ≥ wj . As a result, by Corollary 3.4, Xi ≥rh Xj implies that

n∑
i=1

wiXi ≥icv wjXi + wiXj +
∑
k 	∈{i,j}

wkXk for wi ≥ wj and 1 ≤ i, j ≤ n.

Thus, it follows that w∗
i ≥ w∗

j for 1 ≤ i, j ≤ n.
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4.4. Financial portfolio allocation based on a distortion risk measure

A risk measure is simply a functional assigning of a nonnegative real number to a risk. For
a distortion function h : [0, 1] → [0, 1], which is increasing and satisfies h(0) = 0, h(1) = 1,
the so-called distortion risk measure ρh(X) for a risk X with survival function F̄ is defined as

ρh(X) =
∫ ∞

0
h(F̄ (t)) dt −

∫ 0

−∞
[1 − h(F̄ (t))] dt.

Distortion risk measures have several useful properties, e.g. positive homogeneity, translation
invariance, and additivity for comonotonic risks. Some distortion risk measures preserve
appropriate stochastic orders. For more details; see, Denuit et al. (2005) and Dhaene et al.
(2006).

Lemma 4.1. (Denuit et al. (2005, Proposition 3.4.7).) For random variables X and Y ,

(a) X ≤icx Y if and only if ρh(X) ≤ ρh(Y ) for all concave distortion function h;

(b) X ≤icv Y if and only if ρh(X) ≤ ρh(Y ) for all convex distortion function h.

Let us reconsider the financial portfolio allocation based on the distortion measure. From
the investors’ viewpoint, a good allocation policy is to ensure that the potential return is as
great as possible. In the frame of distorted expectation theory, the optimization problem boils
down to

max
α∈Aα

ρh

( n∑
i=1

αiXi

)
for α > 0,

whereρh is the risk measure with distortion functionh. Let (α∗
1 , . . . , α

∗
n) be the optimal solution

of the above optimization problem. By Lemma 4.1(b) and the proof of Proposition 4.12, we
immediately reach the following proposition.

Proposition 4.13. Suppose that the distortion function h is convex and the concerned asset
vector X has an Archimedean copula with a log-convex generator. Then Xi ≥rh Xj implies
that α∗

i ≥ α∗
j for 1 ≤ i, j ≤ n.

As an application of Corollary 3.2, we also obtain the following result.

Proposition 4.14. Assume the distortion function h is concave and X has an Archimedean
survival copula with a log-convex generator. Then Xi ≥hr Xj implies that α∗

i ≥ α∗
j for 1 ≤

i, j ≤ n.

Proof. Let g(x,α) := ∑n
i=1 αixi . It is easy to check that both g(x,α) and

g(x,α)− g(x, τij (α)) = (αi − αj )xi − (αi − αj )xj

are increasing in xi for αi ≥ αj . That is, g(x,α) satisfies the related conditions of Theorem 3.2
for αi ≥ αj . Consequently, as a result of Corollary 3.2, Xi ≥hr Xj implies that, for αi ≥ αj
and 1 ≤ i, j ≤ n,

n∑
k=1

αkXk ≥icx αjXi + αiXj +
n∑

k 	∈{i,j}
αkXk.
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From Lemma 4.1(a), it follows that, for any concave distortion function h,

ρh

( n∑
k=1

αkXk

)
≥ ρh

(
αjXi + αiXj +

n∑
k 	∈{i,j}

αkXk

)
,

and this implies that α∗
i ≥ α∗

j for 1 ≤ i, j ≤ n.

Appendix A. Proof of Theorem 3.2

Note that the joint density f (x) of the random vector X is UTPD or UTPI with respect to a
pair (i, j) with i > j or i < j , that is,∫ ∞

t

[f (x)− f (τij (x))]dxi ≥ 0 for t ≥ xj and 1 ≤ i, j ≤ n. (A.1)

For any increasing convex function u and the pair (i, j), fixed xk with k 	= i, let g1(xi) =
g(x,λ) and g2(xi) = g(x, τij (λ)). By the increasing property of g(x,λ) − g(x, τij (λ)), it
follows that, for y ≥ x ≥ xj and λi ≥ λj , g1(y)− g2(y) ≥ g1(x)− g2(x) and, hence,

u(g1(y)− [g1(x)− g2(x)])− u(g2(y)) ≥ 0. (A.2)

Note that the componentwise increasing property of g(x,λ) guarantees that g1(y) ≥ g1(x) for
y ≥ x ≥ xj . On the other hand, since g(x,λ) is AI, it follows that, for xi ≥ xj and λi ≥ λj ,

g1(xi)− g2(xi) = g(x,λ)− g(x, τij (λ)) ≥ 0.

Thus, from the convexity of u, it follows that, for y ≥ x ≥ xj ,

u(g1(y))− u(g1(y)− [g1(x)− g2(x)]) ≥ u(g1(x))− u(g2(x)). (A.3)

From (A.2) and (A.3), it follows that, for y ≥ x ≥ xj ,

u(g1(y))− u(g2(y))

= u(g1(y))− u(g1(y)− (g1(x)− g2(x)))+ u(g1(y)− (g1(x)− g2(x)))− u(g2(y))

≥ u(g1(x))− u(g2(x)).

That is, for λi ≥ λj ,

h(xi) = [u(g1(xi))− u(g2(xi))] 1(xi ≥ xj ) = [u(g(x,λ))− u(g(x, τij (λ))] 1(xi ≥ xj )

is nonnegative and increasing in xi .
For fixed xk with k 	= i and the pair (i, j), let w(xi) = [f (x) − f (τij (x))] 1(xi ≥ xj ).

In view of (A.1), it follows that, for all t ,∫ ∞

t

w(xi) dxi =
∫ ∞

t∨xj
[f (x)− f (τij (x))] dxi ≥ 0.

From Lemma 7.1(a) of Barlow and Proschan (1975), we immediately obtain, for (i, j) with
λi ≥ λj ,∫ ∞

xj

[u(g(x,λ))− u(g(τij (x),λ))][f (x)− f (τij (x))] dxi =
∫ +∞

−∞
h(xi)w(xi) dxi

≥ 0. (A.4)
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As a result of the AI property of g(x,λ), it holds that g(x,λ) = g(τij (x), τij (λ)) and
g(τij (x),λ) = g(x, τij (λ)). Thus, for any increasing and convex function u,

E[u(g(X,λ))] − E[u(g(X, τij (λ)))]

=
∫
xi≥xj ,Rn−2

u(g(x,λ))f (x)

n∏
k=1

dxk +
∫
xi≤xj ,Rn−2

u(g(x,λ))f (x)

n∏
k=1

dxk

−
∫
xi≥xj ,Rn−2

u(g(x, τij (λ)))f (x)

n∏
i=1

dxk −
∫
xi≤xj ,Rn−2

u(g(x, τij (λ)))f (x)

n∏
k=1

dxk

=
∫
xi≥xj ,Rn−2

u(g(x,λ)f (x)

n∏
k=1

dxk +
∫
xi≥xj ,Rn−2

u(g(τij (x),λ))f (τij (x))

n∏
i=1

dxk

−
∫
xi≥xj ,Rn−2

u(g(x, τij (λ)))f (x)

n∏
k=1

dxk

−
∫
xi≥xj ,Rn−2

u(g(τij (x), τij (λ)))f (τij (x))

n∏
k=1

dxk

=
∫

Rn−2

∫
xi≥xj

[u(g(x,λ))− u(g(x), τij (λ))][f (x)− f (τij (x))] dxi dxj
∏

k 	∈{i,j}
dxk

=
∫

Rn−1

∫ ∞

xj

[u(g(x,λ))− u(g(x), τij (λ))][f (x)− f (τij (x))] dxi
∏
k 	=i

dxk.

Now, by virtue of (A.4), we conclude that the above n-fold integration is nonnegative and,
hence, E[u(g(X,λ))] ≥ E[u(g(X, τij (λ)))] for λi ≥ λj and the pair (i, j). That is just the
desired increasing convex order.

The increasing convex order in the reverse direction may be constructed in a similar manner.

Appendix B. Proof of Corollary 3.1

Note that ψ(0) = ∞ and s∗k (x) = ψ(1)(F̄k(x))fk(x), for t ≥ xj and 1 ≤ i, j ≤ n,

∫ ∞

t

[f (x)− f (τij (x))] dxi

=
∫ ∞

t

n∏
k=1

s∗k (xk) · ϕ(n)
( n∑
k=1

ψ(F̄k(xk))

)
dxi

−
∫ ∞

t

∏
k 	∈{i,j}

s∗k (xk) · s∗i (xj )s∗j (xi)ϕ(n)
(
ψ(F̄i(xj ))+ ψ(F̄j (xi))

+
∑
k 	∈{i,j}

ψ(F̄k(xk))

)
dxi
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=
∏

k 	∈{i,j}
s∗k (xk)

{
s∗j (xj )

∫ ∞

t

ϕ(n)
( n∑
k=1

ψ(F̄k(xk))

)
d[−ψ(F̄i(xi))]

− s∗i (xj )
∫ ∞

t

ϕ(n)
(
ψ(F̄i(xj ))+ ψ(F̄j (xi))

+
∑
k 	∈{i,j}

ψ(F̄k(xk))

)
d[−ψ(F̄j (xi))]

}

=
∏

k 	∈{i,j}
s∗k (xk)

{
s∗j (xj )

[
ϕ(n−1)

(
ψ(F̄i(t))+ ψ(F̄j (xj ))+

∑
k 	∈{i,j}

ψ(F̄k(xk))

)

− lim
s→∞ϕ

(n−1)(s)

]
− s∗i (xj )

[
ϕ(n−1)

(
ψ(F̄i(xj ))+ ψ(F̄j (t))

+
∑
k 	∈{i,j}

ψ(F̄k(xk))

)

− lim
s→∞ϕ

(n−1)(s)

]}
= [s∗j (xj )�∗

1 − s∗i (xj )�∗
2]

∏
k 	∈{i,j}

s∗k (xk), (B.1)

where

�∗
1 = ϕ(n−1)

(
ψ(F̄i(t))+ ψ(F̄j (xj ))+

∑
k 	∈{i,j}

ψ(F̄k(xk))

)
− lim
s→∞ϕ

(n−1)(s),

�∗
2 = ϕ(n−1)

(
ψ(F̄i(xj ))+ ψ(F̄j (t))+

∑
k 	∈{i,j}

ψ(F̄k(xk))

)
− lim
s→∞ϕ

(n−1)(s).

As a result of s∗i (x) ≥ s∗j (x), it follows that, for any t ≥ xj ,

0 ≤
∫ t

xj

(s∗i (x)− s∗j (x)) dx

=
∫ t

xj

[ψ(1)(F̄i(x))fi(x)− ψ(1)(F̄j (x))fj (x)] dxi

= [ψ(F̄i(xj ))+ ψ(F̄j (t))] − [ψ(F̄i(t))+ ψ(F̄j (xj ))].

Hence, the decreasing property of (−1)n−1ϕ(n−1) implies that, for any t ≥ xj ,

(−1)n−1ϕ(n−1)
(
ψ(F̄i(t))+ ψ(F̄j (xj ))+

∑
k 	∈{i,j}

ψ(F̄k(xk))

)

≥ (−1)n−1ϕ(n−1)
(
ψ(F̄i(xj ))+ ψ(F̄j (t))+

∑
k 	∈{i,j}

ψ(F̄k(xk))

)

≥ lim
s→∞(−1)n−1ϕ(n−1)(s)
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and, thus,

(−1)n−1�∗
1 = (−1)n−1ϕ(n−1)

(
ψ(F̄i(t))+ ψ(F̄j (xj ))+

∑
k 	∈{i,j}

ψ(F̄k(xk))

)

− lim
s→∞(−1)n−1ϕ(n−1)(s)

≥ (−1)n−1ϕ(n−1)
(
ψ(F̄i(xj ))+ ψ(F̄j (t))+

∑
k 	∈{i,j}

ψ(F̄k(xk))

)

− lim
s→∞(−1)n−1ϕ(n−1)(s) (B.2)

= (−1)n−1�∗
2

≥ 0.

Since ψ(x) decreases, s∗i (x) = ψ(1)(F̄i(x))fi(x) ≤ 0 for all x, and s∗i (x) ≥ s∗j (x) leads to
−s∗j (xj ) ≥ −s∗i (xj ) ≥ 0. By (B.2), it follows that

(−1)n−2s∗j (xj )�∗
1 − (−1)n−2s∗i (xj )�∗

2 = −s∗j (xj )(−1)n−1�∗
1 − (−s∗i (xj ))(−1)n−1�∗

2

≥ 0.

From (B.1) and (−1)n−2 ∏
k 	∈{i,j} s∗k (xk) ≥ 0, we may be conclude that

0 ≤ [−s∗j (xj )(−1)n−1�∗
1 − (−s∗i (xj ))(−1)n−1�∗

2](−1)n−2
∏

k 	∈{i,j}
s∗k (xk)

=
∫ ∞

t

[f (x)− f (τij (x))] dxi.

This invokes (A.1) and, hence, completes the proof.

Appendix C. Proof of Corollary 3.2

Since the generator ϕ is log-convex then ϕ(1)(x)/ϕ(x) is increasing, i.e. ϕ(x)/ϕ(1)(x) is
decreasing. As a result of the decreasing property of ψ = ϕ−1, it follows that xψ(1)(x) =
ϕ(ψ(x))/ϕ(1)(ψ(x)) is increasing. On the other hand, for 1 ≤ i, j ≤ n, Xi ≥hr Xj implies
that Xi ≥st Xj , i.e. F̄i(x) ≥ F̄j (x) for all x, and, hence, it holds that ψ(1)(F̄i(x))F̄i(x) ≥
ψ(1)(F̄j (x))F̄j (x). In view of ψ(1)(x) ≤ 0, we obtain

0 ≤ ψ(1)(F̄i(x))F̄i(x)

ψ(1)(F̄j (x))F̄j (x)
≤ 1.

Also, Xi ≥hr Xj implies that fi(x)/F̄i(x) ≤ fj (x)/F̄j (x) for all x ≥ 0. As a result, we obtain

ψ(1)(F̄i(x))F̄i(x)

ψ(1)(F̄j (x))F̄j (x)

fi(x)

F̄i(x)
≤ fj (x)

F̄j (x)
.

This results in

s∗i (x) = ψ(1)(F̄i(x))fi(x) ≥ ψ(1)(F̄j (x))fj (x) = s∗j (x).

Thus, by Corollary 3.1, we complete the proof.
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Appendix D. Proof of Theorem 3.3

Note that the joint density f (x) of the random vector X is LTPD or LTPI with respect to a
pair (i, j) with i > j or i < j , that is,∫ t

−∞
[f (x)− f (τij (x))] dxj ≥ 0 for t ≤ xi and 1 ≤ i, j ≤ n. (D.1)

Assume that function u is increasing and concave. Let

g1(xj ) = g(x,λ) and g2(xj ) = g(x, τij (λ)).

Since g(x,λ)− g(τij (x),λ) decreases in xj for xj ≤ xi and λi ≥ λj , it holds that

g1(x)− g2(x) ≥ g1(y)− g2(y) for x ≤ y ≤ xi ,

and, hence,

u(g1(x)− (g1(y)− g2(y)))− u(g2(x)) ≥ 0 for x ≤ y ≤ xi. (D.2)

Since g(x,λ) is AI, it follows that, for xj ≤ xi and λi ≥ λj ,

g1(xj )− g2(xj ) = g(x,λ)− g(x, τij (λ)) ≥ 0.

The increasing property of g(x,λ) implies that g1(y) ≥ g1(x) for x ≤ y ≤ xi . As a result of
the concavity of u, it follows that, for x ≤ y ≤ xi ,

u(g1(x))− u(g1(x)− (g1(y)− g2(y))) ≥ u(g1(y))− u(g2(y)). (D.3)

From (D.2) and (D.3), it follows that, for x ≤ y ≤ xi ,

u(g1(x))− u(g2(x))

= u(g1(x))− u(g1(x)− (g1(y)− g2(y)))+ u(g1(x)− (g1(y)− g2(y)))− u(g2(x))

≥ u(g1(y))− u(g2(y)).

That is,
h(xj ) = [u(g(x,λ))− u(g(x), τij (λ))] 1(xj ≤ xi) ≥ 0

is decreasing in xj for λi ≥ λj .
Let w(xj ) = [f (x)− f (τij (x))] 1(xj ≤ xi). By virtue of (D.1), we obtain∫ t

−∞
w(xj ) dxj =

∫ t∧xi

−∞
[f (x)− f (τij (x))] dxj ≥ 0,

for all t and 1 ≤ i, j ≤ n. According to Lemma 7.1(b) of Barlow and Proschan (1981), it holds
that, for λi ≥ λj and the pair (i, j),∫ xi

−∞
[u(g(x,λ))− u(g(τij (x),λ))][f (x)− f (τij (x))] dxj =

∫ ∞

−∞
h(xj )w(xj ) dxj ≥ 0.

Now, in a similar manner to the proof of Theorem 3.2, it follows that, for λi ≥ λj and the pair
(i, j),

0 ≤
∫

Rn−1

∫ xi

−∞
[u(g(x,λ))− u(g(x), τij (λ))][f (x)− f (τij (x))] dxj

∏
k 	=j

dxk

= E[u(g(X,λ))] − E[u(g(X, τij (λ)))].
That is, E[u(g(X,λ))] ≥ E[u(g(X, τij (λ)))], yielding the desired increasing concave order.

The order in the reverse direction may be constructed in a similar manner.
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Appendix E. Proof of Corollary 3.3

Since ψ(0) = ∞ and sk(x) = ψ(1)(Fk(x))fk(x), it holds that

∫ t

−∞
[f (x)− f (τij (x))] dxj

=
∫ t

−∞

n∏
k=1

sk(xk)ϕ
(n)

( n∑
k=1

ψ(Fk(xk))

)
dxj

−
∫ t

−∞

∏
k 	∈{i,j}

sk(xk)si(xj )sj (xi)ϕ
(n)

(
ψ(Fi(xj ))+ ψ(Fj (xi))

+
∑
k 	∈{i,j}

ψ(Fk(xk))

)
dxj

=
∏

k 	∈{i,j}
sk(xk)

{
si(xi)

[
ϕ(n−1)

(
ψ(Fi(xi))+ ψ(Fj (t))+

∑
k 	∈{i,j}

ψ(Fk(xk))

)

− lim
s→∞ϕ

(n−1)(s)

]
− sj (xi)

[
ϕ(n−1)

(
ψ(Fi(t))+ ψ(Fj (xi))

+
∑
k 	∈{i,j}

ψ(Fk(xk))

)

− lim
s→∞ϕ

(n−1)(s)

]}
= [si(xi)�1 − sj (xi)�2]

∏
k 	∈{i,j}

sk(xk),

for t ≤ xi and 1 ≤ i, j ≤ n, where

�1 = ϕ(n−1)
(
ψ(Fi(xi))+ ψ(Fj (t))+

∑
k 	∈{i,j}

ψ(Fk(xk))

)
− lim
s→∞ϕ

(n−1)(s),

�2 = ϕ(n−1)
(
ψ(Fi(t))+ ψ(Fj (xi))+

∑
k 	∈{i,j}

ψ(Fk(xk))

)
− lim
s→∞ϕ

(n−1)(s).

As a result of si(x) ≤ sj (x), it follows that, for t ≤ xi ,

0 ≥
∫ xi

t

(si(x)− sj (x)) dx

=
∫ xi

t

[ψ(1)(Fi(x))fi(x)− ψ(1)(Fj (x))fj (x)] dxi

= ψ(Fi(xi))+ ψ(Fj (t))− ψ(Fi(t))− ψ(Fj (xi)).

That is, ψ(Fi(xi))+ ψ(Fj (t)) ≤ ψ(Fi(t))+ ψ(Fj (xi)).
Now, in a similar manner to the proof of Corollary 3.1, (D.1) may be invoked. And by

Theorem 3.3, we complete the proof.
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Appendix F. Proof of Corollary 3.4

For each pair (i, j), since Xi ≥rh Xj implies that Fi(x) ≤ Fj (x) and fi(x)/Fi(x) ≥
fj (x)/Fj (x) for all x ≥ 0, in a similar manner to the proof of Corollary 3.2, we can prove
si(x) ≤ sj (x) for all x and 1 ≤ i, j ≤ n. And, thus, the desired result immediately follows
from Corollary 3.3.
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