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STRONGLY ABELIAN VARIETIES 
AND THE HAMILTONIAN PROPERTY 

E. KISS AND M. VALERIOTE 

ABSTRACT. In this paper we show that every locally finite strongly Abelian variety 
satisfies the Hamiltonian property. An algebra is Hamiltonian if every one of its sub-
universes is a block of some congruence of the algebra. A counterexample is provided 
to show that not all strongly Abelian varieties are Hamiltonian. 

1. Introduction. The class of strongly Abelian algebras was first defined by Ralph 
McKenzie in [6]. The significance of these algebras, especially in the role they play in the 
classification of finite algebras and locally finite varieties was demonstrated in [6, 4, 9]. 
Much of the work in this paper was motivated by the desire to understand the structure 
of locally finite Abelian varieties. In particular we would like to know whether or not 
every locally finite Abelian variety is Hamiltonian. This would answer a question posed 
in [4] and originally mentioned in [1]. 

In this paper we give an affirmative answer to this question for locally finite strong­
ly Abelian varieties (Theorem 3.5). We also present an example that strongly Abelian 
varieties need not be Hamiltonian in general. 

J. Shapiro in his doctoral thesis ([12] or see [13]) was able to settle the above problem 
under the assumption that the variety was not only locally finite and strongly Abelian, 
but also that there was only one fundamental operation in the language. He also obtained 
a strong structure theory for such varieties. A consequence of his structure theory is that 
every algebra in such a variety is quasi-affine. An algebra is said to be quasi-affine if it is 
a subalgebra of a reduct of an algebra that is polynomially equivalent to a module over 
some ring. 

The situation is much more complicated when we allow more than one fundamental 
operation in the language, we provide examples which demonstrate this. 

2. Definitions. The reader should consult [2] for general background information 
on universal algebra. 

DEFINITION 2.1. 

(1) An algebra is called Abelian if for all terms t(x, y), for all ay b, c and d, 

t(a, c) = t(a, d) —• t(b, c) = t(b, d). 
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(2) An algebra is called strongly Abelian if for all terms t(x, _y), for all a, b, c, d and 

t(a,c) = t(b,d) > t(a,e) = t(b,ë). 

(3) An algebra is called Hamiltonian if every nonempty subuniverse is a block of 
some congruence of the algebra. 

(4) For/(jci,... ,xn) a function on a set A, we say that/ depends on the variable JC, if 
there are elements a\9...,an and b from A such that 

f(au . • . , 0 i - i , a/, fli+i,..., fl„) ^ / ( f l i , • • •, fl,--i, *, fl,-+i,..., fl„). 

Let €(/") equal the essential arity of/, i.e., the number of variables on which/ 
depends. For A an algebra, let 

e (A) = max{ 6(^)1 fis a term of A} 

and for V a variety, let 
e(V) = efaiwj). 

For t(x\,... ,xn) a term of V, let 

e(0 = e(/V(a;)). 

If 1^ is a variety and every algebra in V is (P), where (P) is one of the properties 
defined above, then we say that V is (P). 

The Abelian property is a generalization of what it means for a group to be Abelian, 
i.e., a group is Abelian in the above sense if and only if its multiplication is commuta­
tive. It is easy to see that any module over a ring is Abelian too. Another kind of Abelian 
structure is a multi-unary algebra. This is an algebra where all of the fundamental opera­
tions are unary. In fact such structures are strongly Abelian. An example of a non-unary 
strongly Abelian algebra is a rectangular band, i.e., a semigroup which satisfies the iden­
tity xyx » x. We will provide further examples in a later section. 

It is not hard to see that a group is Hamiltonian if and only if every one of its subgroups 
is normal. While there are examples of non-Abelian, Hamiltonian groups, it turns out that 
a variety of groups is Hamiltonian if and only if it is Abelian. We shall see in this paper 
that for certain kinds of varieties this equivalence holds but that in general not all Abelian 
varieties are Hamiltonian. 

We now state several well known facts about Hamiltonian and strongly Abelian alge­
bras. 

PROPOSITION 2.2. Let A be an algebra and V a variety. Then the following hold: 
(i) If A2 is Hamiltonian, then A is Abelian. 

(ii) Let 1/ be Hamiltonian. Then 1/ is Abelian. 

PROOF. It is not hard to show that an algebra A is Abelian if and only if the diagonal 
subuni verse 0A of A2 is a block of some congruence on A2. Part (i) follows from this 
fact, and (ii) is immediate from (i). • 
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THEOREM 2.3. Let Abe a finite algebra, 
(i) The following are equivalent: 
a) A is strongly Abelian. 
b) For all terms t(x\,..., xn) there exists equivalence relations R\,..., Rn on A such 

that for all â and bfrom A, 
^(â) = t*(b) 

if and only if 
(ahbt) eRt 

for all i < n. 
c) For all terms t(x, y), for all a, b, e, c, and d, 

t(a, c) = t(b, d) —» t(e, c) = t(e, d). 

(ii) Let A be a strongly Abelian algebra. Then e(A) is finite. 
(Hi) Let %? be a locally finite strongly Abelian variety. Then *V is finitely generated. 

Furthermore, e (^ ) is finite. 

PROOF. The proof of (i) is elementary and the equivalence between a) and b) was 
first noted in [6, Lemma 2.6]. The proofs of (ii) and (iii) follow from (i) (see also [9, 
Theorem 0.17]). • 

The following characterization of Hamiltonian varieties is due to Klukovits ([5]). 

THEOREM 2.4. A variety V is Hamiltonian if and only if for all terms t(x\,... ,xn) 
of *V, there is a term rt(x,y, z) such that 

V |= rt(t(xu...,xn\xuz) &t(z,X2,...,xn). 

It is easy to show that if in the above theorem 1/ is also strongly Abelian then the 
term rt does not depend on its second variable. Corollary 3.6 gives us a characterization 
of locally finite strongly Abelian varieties that is similar to the above characterization of 
Hamiltonian varieties. 

3. Locally Finite Strongly Abelian Varieties. In this section we will prove that 
every locally finite strongly Abelian variety is Hamiltonian. In fact we will show that if 
V is a strongly Abelian variety with e(V) finite, then V is Hamiltonian. Throughout 
this section, let V be such a variety. 

LEMMA 3.1. For any term t(x,y) of V, there is a term s(z, x,y) such that s depends 
on its first variable and 

V\=s(t(x,y),xj)Ktt(x,f). 

PROOF. Let 9 = Cg?(t(x,y\t{w,yj) in F = F^(JC, w,y,f). Since V is strongly 
Abelian, then 
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It then follows, using Mal'cev's characterization of principal congruences that there is a 
term r(z, x, w,y,yf) such that r depends on its first variable and either 

r(t(x,y),x,w,y,tf) = t(x9y) 

or 
r(t(w9y)9x,w,y,tf) = *(*,/). 

In either case, it follows, since F is strongly Abelian, that the term r does not depend 
on the variables w or y. Let s(z, x, y) be the term obtained from r by disregarding these 
variables. So the first of the above equations implies that 

V\=s(Kx,y),xj)Kit(xJ) 

as required and from the second equation we have 

V \= s(t(w,y),xj) ntixj). 

By identifying the variable w with JC, we get the desired equation. • 

LEMMA 3.2. For every term t(x, y) of rlS, there is a term rt(x, y) such that e(i) — e(rt) 

and 

V \= rt(t(x9y)9f) * t(xj)-

PROOF. We argue by contradiction. Choose a term t(x, y) with e (t) maximal such that 
no term rt as in the statement of the lemma exists. Without loss of generality, assume that t 
depends on all of its variables. By Lemma 3.1, there is a term s(z9 x9 y) such that s depends 
on z and 

V f= s(t(x,y),x,y) « t(xj). 

If s does not depend on the variable JC, we can set rt(x9y) — s(x9 x,y). 
If s does depend on x, then e(s) = e(f)+1 since s must depend on all of the variables in 

y. By our choice of t it follows that there is a term rs which depends on all of its variables 
such that 

V h rs(s(z,x,y),z!,?) » ^(z ,,x,/). 

Setting rt(x,y) = rs(x,x9y)9 it is not hard to show that 

n/^rt(t(xjXyf)^t(xJ) 

as required. • 

DEFINITION 3.3. 

(1) An operation d(x\,... ,xn) on a set A is called a diagonal operation for the oper­
ation t(x\,..., xn) if for all x1

i from A, 
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An operation d is called diagonal if it is a diagonal operation for itself. A term 
d(x) is called a diagonal term for the term t(x) in the variety V if for all A G ^ , 
the operation dA is diagonal for tA. A term d is called diagonal in V if it is a 
diagonal term for itself. 

(2) An operation d on a set A is called diagonal for a subset B if 

d(d(xl...,x\l...,dW,...X)) = d(xl...,4) 

and 

d(x,..., x) = x 

for all JC, JC( in Z?. A term d is called a diagonal term for the subset B of the algebra 
A if the operation dA is diagonal for B. 

(3) An operation d{x\,..., xn) on a set B = B\ x • • • x Bn is called a decomposition 
operation for B if 

d ( f c 1 , . . . A ) = < ^ l , . . . , ^ > 

for all ?i: = (%,...,%) in£. 

LEMMA 3.4. L f̂ £(xi,..., xn) be a term of V\ There is a diagonal term for t. 

PROOF. We define a sequence of terms qt, 1 ^ / ^ n + 1 as follows: let q\ = t and 
given qt, let g/+i be such that 

V ^qi+i(A:I * j_ i , ^ ( y i , . . . , y t - \ , x u y t + i , . . •,}>«), 

X | + i , . . . , *„) & qt(x\,..., xn). 

The existence of such terms is guaranteed by the previous lemma. 
We now prove by induction that for each i ^ n + 1 we have 

qi(t(x\9... ,xl
n),... ,*(**!"\... , 4 - 1 ) , ^ , v / + i , . . . , vn) 

» t(x\,x\,...,jc-li,y,-,yt+u • •. ,?*). 

This is clear for / = 1. Given that the above is true for /, we have, 

qi+\(t(x\,... 9x
l
n),..., t(x\,... ,xl

n),yi+u yi+2, ...,yn) 

&qi+l (t(x\,... ,xl
n),..., fC^T1,... ,x71), 

^ ( / (x j , . . . , 4 ) , . . . , *(*i,... , o , * j , . . . ,4),^i+i» • • • ̂ « ) 

Kqtfal • • • , ^ ) , • • •, r(^_1, • • • . - C 1 ) , ^ , ^ ! , • • • ,yn) 

^t(xl,xj,...,x-_j,x-, j / + i , . . . ,y n ) . 

Finally it should be clear that the term qn+\ is a diagonal term for t. 
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THEOREM 3.5. Let V be a strongly Abelian variety with e^V) finite. Then V is 
Hamiltonian. 

PROOF. We will use the condition from Theorem 2.4 to prove this theorem. For 
t(x, y) a term of fl/, let 

rt(x,y) = dt(t(y,y,... ,y),x,x9... ,*) , 

where dt is some diagonal term for t. Then 

V\=rt(t(x9y),z) &t(zj) 

as required. • 

COROLLARY 3.6. Let Vbe a locally finite variety (or with t(V) finite). Then V is 
strongly Abelian if and only if for all terms t(x,y) there is a term rt(x,y) such that 

<l/^rt(t(xjlz)nt(z,y). 

PROOF. One direction of this Corollary follows immediately from the proof of The­
orem 3.5. For the other, let t(x,y) be a term of V and let A be a member of V. Suppose 
that we have 

tA(a,c) = £(b9d) 

and e E A. 
Then 

t^(e9c) = rfi^ia.cle) = rfi^ibJle) = ^(ej). 

By Theorem 2.3, this is sufficient to show that A is strongly Abelian. • 

COROLLARY 3.7. Let V bea strongly Abelian variety such that F^(2) is finite. Then 
V is Hamiltonian. Thus if V is strongly Abelian and locally finite, it is Hamiltonian. 

PROOF. The proof of Theorem 0.17 of [9] shows that under the above assumptions 
e (^ ) is finite. • 

4. Diagonal Operations. Diagonal terms were studied by Plonka in f 10] and have 
been used in the investigation of direct decompositions (see [8]). More recently, diago­
nal terms have been used by McKenzie in [6] to analyze the structure of finite minimal 
strongly Abelian algebras having one fundamental operation. Valeriote also used them 
in [16] to uncover the structure of locally finite decidable strongly Abelian varieties. We 
now present some elementary properties of diagonal operations and then use them to 
analyze algebras in locally finite strongly Abelian varieties. 

DEFINITION 4.1. Let A be an algebra. The clone of A, denoted by Clo A is the collec­
tion of all term operations on A. Clo„ A will denote the collection of all rc-ary members 
of Clo A. The clone of A can be characterized as the smallest collection of operations 
on A that contains the projection operations and the fundamental operations of A and is 
closed under composition. 

Recalling Definition 3.3 we will write d ^ / if d is a diagonal operation for the 
operation/. 
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PROPOSITION 4.2. Let A be an algebra and let d andf belong to Clon A. 
(i) Ifd >f then d is a diagonal operation for the range off. 

(ii) Let d be diagonal. Then d >f if and only if 

f{xx,...,xn) = d(fs(x\ ) , . . . , fi(xnj) 

for all xt, where fs (x) is the operation f(x,... ,x). 
(Hi) The relation > is transitive and antisymmetric on Clo A. 
(iv) If d is a diagonal operation, i.e., d 2; d, then d > d(g(x\),... ,gn(Xn)) far all 

unary functions gi on A. 

PROOF. 

(i) Let B be the range of/. If a G B, then a = f(a\,..., an) for some at in A. Thus 

d(a, . . . ,«) = d(f(a\,..., a„),... ,f(au • •., anj) 

= f(ai,...,an) = a. 

If b/t• £ B for i,j < n we must show that 

d(d(bl...,bl\...,d(bl...,bn
n)) = d(bl...,bn

n). 

This easily follows since each of the fy are in the range off and d is diagonal for 

/• 
(ii) Suppose that d^ f. Then 

/ (* ! , . . . ,x„) = d(f(x\,... ,xi) , . . . , /(*„,.. . ,xnj) 

as required. Conversely, suppose that 

/ (* ! , . . . ,xn) = d(fi(x}),... ,fs(xnj). 

Then since d is diagonal 

d(f(X\,...,xl„),...,ftjlrl,...X)) 

= d(d(fi (x| ),... ,fs (x\)),..., d(fi « ) , ...,fs (xj))) 

= / (x | , . . . ,<) 

establishing that d >f. 
(iii) The transitivity of > is not difficult to prove. For antisymmetry, suppose that 

/ > d and d > f. Then/On,...,xn) = d(fi (x\ ) , . . . ,ft (xn)) mdf (xt) = xt yields 
f=d. 

(iv) We leave this as an exercise. • 
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COROLLARY 4.3. Let V be a strongly Abelian variety with e(1^) finite and let A 

belong to V. Then Clo A is generated by a set of diagonal operations along with a set 

of unary functions. If V is locally finite, then we can choose these generating sets to be 

finite. 

PROOF. The first part of this corollary follows from Lemma 3.4 and the previous 

proposition. If V is locally finite, then being strongly Abelian it is in fact finitely gen­

erated, say by the finite algebra F. It will suffice to show that Clo F is generated by a 

finite number of diagonal operations and unary functions. This follows easily from the 

first part of this corollary and from e(F) being finite. • 

It is conceivable that one could completely characterize those finite algebras that gen­

erate strongly Abelian varieties by describing how the finitely many diagonal and unary 

operations provided by the previous corollary must "fit together". Certainly these oper­

ations must be highly compatible. We do not pursue this possibility in this paper. 

A significant feature of diagonal terms is stated in the following lemma whose proof 

can be found in [9, Lemma 11.4]. 

LEMMA 4.4. Let d(x\,... ,xn) be a diagonal term for the subset B of the strongly 

Abelian algebra A. Then there is an algebra Af isomorphic to A such that the image of 

B, call it B', under this isomorphism is equal to the cartesian product 

B\ x • • • x Bn 

for some sets B\,..., Bn and such that 

for all bl = ( b\,..., bl
n) in B', i.e., dA \& is a decomposition operation for B\ x • • • x Bn. 

Furthermore, the set B( will have more than one element if and only if the function dA |# 

depends on its ith variable. 

We now show that if V is strongly Abelian with e(l/) finite, then locally the members 

of Clo A can be regarded as sequences of unary operations, for any algebra A in V. 

DEFINITION 4.5. 

(1) Le t / ( ; c i , . . . ,x m ) be an operation from a set ^ i x • • • x Bk to a set C\ x • • • x Cn. 

We say t h a t / factors (into unary functions) if there is a (not necessarily unique) 

sequence of unary functions 

f\ 'Bi{ —> C\,... ,fn\ Bin —-> Cn 

such that 

f(a\..., 3") =</ , (<) , . . . , /«(<)) 
for some // < k andy^ < m, where for q <m,7iq = (a\,aq

2,...,a
q
k). 

(2) Let d\(x\,... ,Xk) and tfeOti,... ,JCW) be diagonal operations for the sets B and C 

respectively and le t / ( j c i , . . . , jcm) be a map from Bm to C. We say that / factors 

with respect to d\ and d^ iff factors when considered as a map from B\ x • • • x Bk 

to Ci x • •• x C„, where these cartesian products are those induced (as in Lemma 

4.4) by the operations d\ and d^ on B and C respectively. 
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THEOREM 4.6. Let V be a strongly Abelian variety with e ( ̂ finite and let A belong 
to V. Iff(x\,... ,xm) G Clo A and d is a diagonal term operation for the subset B of A, 
then there is some term operation d' of A that is diagonal for the setf(Bm) and such that 
f\B: B —> f(Bm) factors with respect to d\B and d'\f(Bmy 

PROOF. We may assume that/ and d depend on all of their variables. Choose d' in 
Clo A depending on all of its variables such that d! is diagonal on the set f(Bm) and of 
maximal arity. 

Consider the term 

4/(^!,i,-..^U).....d(<i....,0).---. 
( 1 ) / x\ 

where the arity of d is k and the arity of d' is n. Since d' is diagonal for f(Bm) then it 
is not hard to see that the range of term (1) contains/(Z?m). Thus by our choice of d' it 
follows that term (1) can depend on at most n variables. (Otherwise by Lemma 3.4 we 
would have some diagonal term of higher essential arity for the set f(Bm).) 

In fact, it can be shown that for each / < n there is at most one {j, r} such that the 
above term depends on the variable jtj[r. If, for example, the above term depends on Xjr 

and xx
u v where {j, r} and { u, v} are different, then the following term would depend on 

at least n + 1 variables and have range containing f(Bm), contrary to our choice of d'. 

d'(f(d(x\x,... ,x\kl...,d(xl
mU... , ^ ) ) , y 2 , •. • ,yn) 

So there is a function < J :{1 , . . . ,AI} —• { 1, . . . , m} x { 1, . . . , &} such that the term 
(1) depends on at most the variables {xl

a^,...,x^^}. 
We have seen in Lemma 4.4 that the terms d and d' can be used to decompose the 

sets B and/(#m) into factors B\ x • • • x Bk and B\ x • • • x B'n so that d and d' act as 
decomposition operations when restricted to these sets. If we regard f\s now as a map 
from (#i x • • • x Bk)

m into B\ x • • • x B'n, then we have 

f\BQ>\ ,...,bm)= ( / i ( * i , i , . . •, bmjk\... , / „ ( & i , i , . . . , bmJù) 

where/: (B\ x • • • x Bk)
m —» B\ is the projection of/|# onto B\, and 

hi = (fc,-,i,...,fca) 

for / < n. 
From our observations in the previous paragraphs, it follows that the function 

fi(x\,\, • • • ,Xm,k) can depend on at most the variable xa^. But then we have shown that 
f\s factors with respect to d\B and d\f(B

m) as required. • 

https://doi.org/10.4153/CJM-1991-019-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1991-019-6


340 E. KISS AND M. VALERIOTE 

5. A non-Hamiltonian example. In this section we present an algebra A such that 
the variety generated by A is strongly Abelian, but not Hamiltonian. We shall define an 
appropriate commutative ring R, and A will be a reduct of the R-module M = RR. Thus 
our first aim is to find strongly Abelian reducts of modules. 

DEFINITION 5.1. 

(1) Let R be a commutative ring with identity. A family {a\,...,an} Ç R is called 
orthogonal with respect to â\ . . . , ân G R if âtcij = ëy-dj holds for all 1 < i,j < n, 
where6 y is the Kronecker-delta symbol. The family {a\,...,an} of R is called 
orthogonal if it is orthogonal with respect to suitable elements of R. Note that if 
{a\,... ,an} is orthogonal, then aidj = 0 for / ^ j . 

(2) Let M be a left R-module. Define Ort(M) to be the set 

J2 A/*/ E C 1° M I { Ai . . . , A„} ÇR orthogonal, n G UJ 

LEMMA 5.2. Let Hbe a commutative ring with identity and let Mbe a left R-module. 
Then Ort(M) is a strongly Abelian clone on M. 

PROOF. Let C — Ort(M). The projections are contained in C, since the family 
{ 0 , . . . , 0 ,1 ,0 , . . . , 0} is orthogonal (with respect to itself). To prove that C is closed 
under composition, let/(jci,... ,xn) = Y%=\ A/*/ and for 1 < i < n let gi(x\,... ,Xk) = 
E L I PijXj- Then for h = f(g\,..., gn) we have h(x\,..., JC*) = Ey=1 VjXj, where 

n 

Vj = Z^Ai/Xy (1 <j <k). 
i=\ 

If { Ai, . . . , Xn} is orthogonal with respect to { X\..., Xn} and {/in,..., fiik} is orthog­
onal with respect to { fin,..., fi^}, then an easy calculation shows that { v\,..., i/^} is 
orthogonal with respect to {i7],. . . , i7k}, where 

n 

i=\ 

Thus C is a clone indeed. 
To prove that C is strongly Abelian, l e t / G C, f{x\,... ,xn) — £"=1 A/JC,, where 

{ Ai, . . . , Xn} is orthogonal with respect to { Ai, . . . , Xn}. Suppose that/(<2i,... ,an) — 
f(b\,... ,bn). Multiplying by A, we obtain that \tai = Az-£,- for 1 < i < n. Hence for 
every x we have/(x, «2, . . . , an) — f(x, /?2, • • •, ̂ «)» so C is indeed strongly Abelian. • 

For the actual construction of A we need a clone that is smaller than the full orthogonal 
clone on M. 

LEMMA 5.3. Let R be a commutative ring with identity, M a left R-module, and j / a 
set of ideals ofK. Then 

Cj(M) Y, XiXt e Clo M I (31 e MX\,..., Aw e I) \ U { all projections} 
1=1 
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is a clone on M. 

PROOF. Assume f,g\,...,gn £ C — Cj(M), where / is rc-ary, and let h = 

f(g\,... ,gn)- We have to prove that h G C Iff is a projection, then this is obvious. 

If not, then/(jci,. ..,xn) = £"= 1 A;*;, where A i , . . . , Xn G / G _7. Now it is straightfor­

ward to see (by looking at the formulas in the previous proof) that the coefficients of h 

are also contained in /. • 

We now have a technique of finding strongly Abelian clones. We need, however, al­

gebras that generate strongly Abelian varieties. 

LEMMA 5.4. Let A be an algebra such that for every f G Cloi+^A there exist 

Po,...,pn G C104+2A: A satisfying the following identities: 

po(x, y, z, û, v,/(x, û)) = f(z, u) 

Pi(x, v,z, a, v , / ( j , v)) = pi+\(x,y,z, û, v9f(x9 û)) (0 ^ i < n) 

pn (x, y9z,û9 v,/(y, v)) = / (z , v). 

Then A generates a strongly Abelian variety. 

PROOF. These identities hold in the variety generated by A as well, and if f(a, c) = 

f(b, d) holds in any algebra satisfying these identities, then by substituting a, b9 e, c, d 

for JC, y, z, w, v they clearly imply f(e, c) = f(e, d). m 

Next we investigate the meaning of the above identities in clones of modules. In order 

to avoid messy formulas we introduce some abbreviations. The symbols Â, x9 and so on, 

abbreviate (A i , . . . , A*), (*i , . . . ,**), etc. Scalar multiplication is denoted by juxtaposi­

tion, thus 
k 

Xx — ^XiXi and /iA = (/xAi,... ,/xA*). 

Finally, Ô stands for ( 0 , . . . , 0). 

Recall that an R-module M is called faithful if A m = 0 for all m G M implies that 

A = 0. Suppose that the identity f(x) = g(x) is satisfied in a faithful module, where 

f(x) = Xx and g(x) = fix. Then by substituting zeros we obtain that X = /I. Using 

this observation, the proof of the next lemma is an easy calculation, which is left to the 

reader. 

LEMMA 5.5. Let M be a faithful R-module, 

f(x, u) — Xx + flû G Cloi+fc M and 

Pi(x9 y, z, w, v, w) — atx + fry + 7/Z + fy« + <T,-V + ptw G Clo4+2fc M 

for 0 < / < n. Then the identities in the previous lemma are satisfied if and only if the 
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following equations hold in R/or 0 < / < n: 

= (pi+\ + • • • + pn)\ (in particular an = 0) 

= (po + * * * + P/-i)A (in particular po = 0) 

= A 

= (pi+\ + • • • + pn)jl (in particular fn = Ô) 

= (po + • * * + P/-i)P (in particular GQ — 0), 

and for p = po + - • • + pn we have pX — 0 am/ p/2 = /I. 

Notice that the above lemma makes it possible to actually construct the terms 
po,...,pn if f(x, U) is given. We have to find elements po,. . . , pn such that their sum, 
denoted by p, satisfies pX = 0 and p/ï = /ï, and then define/?o, ...,/?„ by the equations 
above. Since our algebra A will be a reduct of a module, we have to investigate whether 
these newly constructed polynomials belong to particular subclones of Clo M. We shall 
denote by I(fj) the ideal of R generated by 771,... ,r]k and for a term/(x) = £*=1 rjixi 
we put 1(f) — I(fj). This definition is meaningful, since in a faithful module every term 
determines its coefficients. 

LEMMA 5.6. Let R, M, / be as in the previous lemma and po, . . . , pn elements ofK 
such that their sum, denoted by p, satisfies pX — 0 and pp — p. Define po,...,pn by 
the equations above. 

(i) For every 0 < i < n we have I(pi) Ç I(X, /I, pf). 
(ii) If{ X, po,.. •, pn} is orthogonal andf G Ort(M), then p( G Ort(M)/<9r 0 < 1 < 

n. 

PROOF. The first statement is obvious. For the second, observe first that a, = (3i — 
0, since {A,po,...,p«} is orthogonal. Now let this orthogonality be with respect to 
{ X, po» • • • » Pn}, and let { A, p} be orthogonal with respect to { A°, /I0} . Then it is left 
to the reader to verify that 

{7,-,7V,â/,p/} 

is orthogonal with respect to 

{ A A °, (p/+i + • • • + pn)p°, (po + • • • 4- pi_i )/2°, pit} . 

Since zeros do not count in orthogonality, we indeed have pt G Ort(M) for 0 < i < n. m 
Before presenting our ring, we perform the analogous computation for the Hamiltoni-

an property. Recall that a strongly Abelian variety is Hamiltonian iff for every term/(;c, u) 
there exists a binary term r such that the variety satisfies the identity/(j, Û) — r(y,f(x, U)). 
The straightforward proof of the following lemma is also left to the reader. 

LEMMA 5.7. Let M be a faithful R-module, 

f(x, u) = Xx + pu G Cloi+fcM and 

r(z, w) = lz + pw G Clo2 M. 
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Then the identity f{y,u) = r{y,f{x, U)) is satisfied if and only ifl — \, p\ — 0, and 
pfi = fi. m 

Consider a set { w, w\,..., wn,...} of different symbols and let H be the set of all 
finite subsets of this set. Let £ denote the singleton { w} and for each / > 1, let £/ denote 
{ W(} . Then H = (//, U ) is a monoid, moreover, a semilattice. Let S be the ring of all 
formal linear combinations of the elements of //, with the coefficients taken from the 
ring of integers. Let M = s S be the module obtained by the ring S considered as a left 
module over itself. Since S has an identity element, M is faithful. 

Let J be the set of all ideals of S that do not contain £ and let C be the clone C = 
Ort(M)n Cy(M). Finally let A be the algebra with underlying set M and basic operations 
the elements of C. 

THEOREM 5.8. The variety generated by the algebra A defined above is strongly 
Abelian, but does not have the Hamiltonian property. 

Before commencing with the proof let us summarize some elementary properties of 
the ring S. Recall that an element e of a ring is called idempotent if e2 — e. It is obvious 
to see that a family e\,..., e^ of idempotents is orthogonal iff eiej = 0 for all i ^ j . 

LEMMA 5.9. Let S be the ring defined above. 
(i) Let <j> : { £, £ i , . . . , £n,...} —• S be any mapping such that <j> (£ ), <j> (£/) are all 

idempotent. Then (j) can be extended to an endomorphism ofS. 
(ii) Every element rjofS can be written as n\e\ + • • • + n^k, where e\,...,ek is an 

orthogonal family of idempotents. 
(Hi) Let r] = n\ e\ + • • •+«*£*, where e\,..., e^ is an orthogonal family of idempotents, 

andn\,..., n* ^ 0. Define e{r\) = e\ +• • •+£*. Then e(r\) is idempotent, satisfying 
that e(r\)j] — r\ and ifr\6 = 0 then e(r\)Q = 0 and e(r])e(6) = 0. (Although not 
needed, it is not hard to prove that e(rj) is uniquely determined by rj.) 

(iv) A family r / i , . . . , ?% in S is orthogonal iffr\iT]j — Ofor all i ^ j . 

PROOF. Since all elements of H can be written uniquely as products of elements of 
{ £, £ i , . . . , £„ , . . .} , (j) can be extended to a mapping from H to S. This extension pre­
serves multiplication, since the range of </> consists of idempotent elements. Now extend 
(j) to S by linearity. It is an easy calculation to show that we get a ring-homomorphism. 

Let 77 = m\h\ + • • - + m^hi, where h\,...,ht G H. We prove that 77 is a linear 
combination of orthogonal idempotents by induction on I. For I — 1 the statement is 
trivial. Now suppose that m\h\ + • • • + mi-\ht-\ — n\e\ + • • • + n^, where e\,...,ek 
are orthogonal and idempotent. Then 

k k k 

i= 1 i= 1 1= 1 

and the k + k + 1 idempotents occurring in this decomposition are clearly orthogonal. 
Thus rj is indeed a linear combination of orthogonal idempotents. 
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Let 77 = n\e\ + • • • + n ^ with n\,...,rik ^ 0, where e\,..., e^ is an orthogonal family 
of idempotents, and 2(77) = e\ + • • • + e^ Then it is clear that e(r]) is idempotent, and 
satisfies that 2(77)77 = 77. Now let r]9 = 0. Then 0 = e^O = rtiefi. As the additive 
group of S is torsion free, this implies efi — 0. Summing up we get e{j])Q — 0. The 
same argument shows, that since 6 e(r]) — 0, we get e(6 )e(r]) = 0. 

Finally, let 771,..., 77̂  in S satisfy 77,77/ = 0 for all / ^ j . Then the family 77/ = 2(77,) 
shows that 771,..., 77̂  is orthogonal. • 

Now we prove the Theorem. First we show that the variety generated by A is strongly 
Abelian. We apply Lemma 5.4 with n = 2. So let/(x, u) — Xx + flû G Cloi+^A be 
given. Iff is a projection, we can define po andpi to be projections. Otherwise we have 
£ ^ I(X, /Ï). In order to construct the terms po and/?i in this case, we have to find elements 
of S such that the equations of Lemma 5.5 are satisfied. By the remark following this 
lemma, it is sufficient to find po and p\ in S such that their sum, denoted by p, satisfies 
p X = 0 and pfi = /Ï. However, we have to ensure that our newly defined polynomials /?o 
and/?i are contained in the clone of A. By Lemma 5.6 this will follow if £ ^ I(X, /Ï, p/) 
for / = 0,1, and if { À, po, p\} is an orthogonal family. 

Define p = e{p,\) + • • • + e(fik)- Since /I is orthogonal, Lemma 5.9 shows that p is 
an idempotent, pX = 0 and p/ï = fi is satisfied. Consider the elements £, p, À, /ï of S. 
These can all be expressed by using finitely many of the generators, say £ and £ 1 , . . . , £„, 
of S. Let x = £„+i and define p0 = px and pi = p(l — x). We show that these elements 
satisfy the above conditions. 

It is clear that { À, po, p\} is an orthogonal family. Suppose, to get a contradiction, that 
£ G /(À, /Ï, po), that is, £ is a linear combination of these elements using coefficients from 
S. Construct an endomorphism 0 of S that fixes £ and £1 , . . . , £n> but maps x to 0. This 
will take this linear combination into another one which shows that £ G /(À, /ï), which 
contradicts/ being in the clone of A. To show that £ ^ 7(A,/I,pi) construct another 
<j>, which maps x to 1. Thus we have proved that A indeed generates a strongly Abelian 
variety. 

Finally suppose that this variety is Hamiltonian. Define the operation /(JC, u) — (2 — 
2£ )x + 2£ w. Then / is in the clone of A, since the ideal 2S of S does not contain £. 
Applying Lemma 5.7 we obtain that the clone of A contains a binary operation r(z, w) = 
(2 — 2£ )z + p w, where p(2 — 2£ ) = 0 and p2£ = 2£. Adding up the last two equalities 
we get that 2p = 2£, hence p = £. This is a contradiction, since r is not a projection, and 
the ideal generated by its coefficients does not contain £. Thus the proof of the theorem 
is complete. • 

6. A non quasi-affine example. We present an example of a five element algebra 
A that generates a strongly Abelian variety, but which is not quasi-affine. Hence the 
structure theorem of Shapiro [12] of strongly Abelian varieties with one basic operation 
cannot be generalized in a straightforward manner. 

Quasi affine algebras have been characterized by Quackenbush [11] via a series of 
implications (universal Horn formulae). We shall exhibit the failure in A of one of these 
implications. 
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DEFINITION 6.1. An algebra is said to satisfy the Two Terms Condition (TTC) if for 
every two ttvms f(x,y) and g{x,y) and elements <â, à', b, /?', c, c*, d, and d\ the first three 
of the equations 

f(à,b) = g(c,d) 

ftf,b) = g(<?,d) 

f(at,b') = g{<?,dr) 

mb') = g(c,3') 

implies the fourth one. 
It is a very easy exercise for the reader to show that quasi-affine algebras satisfy the 

two terms condition. To define the algebra A, consider the elements p = (0,0), q = (0,1), 
r = (1,0), s — (1,1), and define multiplication by (x,y) * (w, v) = (JC, v). This algebra is 
a well-known semigroup, we denote it by S. Consider now two copies of S, on the sets 
{p, q, r, s\} and {p, q, r, s2}, respectively, with operations *i and *2- The underlying set 
of A is defined to be A = {/?, q, r, s\, ^2} • Define the mappings et (i = 1,2) to be the 
identity map on {p,q,r} and let e\(s\) = eifa) — s\9 and ^2(̂ 1) = ^2fe) = $2- The 
binary operation e\(u) */^-(v) on {/?, q, r, s\, s2} is clearly an extension of*/, let us denote 
it also by */. Finally, let the basic operations of A be *i and *2-

To show that A fails the two terms condition observe that 

r*\p — r — r*2p 

P*\P = P = P*iP 

p*xq = q = p*2q, 

but r *i q = s\ ^ s2 = r *2 g. 
To prove that A generates a strongly Abelian variety we will use the characterization 

given in Corollary 3.6. One can check that for any / and j < 2, A satisfies the identities 

Ol */*2)*/-*3 teXi *jX3 

and 
Xi *i(x2 *jX3) &Xi *,-X3. 

From this it follows that every term operation of A is essentially equal to either a projec­
tion or one of the operations x *i x, x *2 x, x *i y or x *2 y. 

Thus by Corollary 3.6 it will suffice to find terms U(x,y) and n(x,y) for i < 2 such 
that 

A |= lt(x */ y, z) w z *,- j 

and 
A |= r/(x*/)>,z) w^*,-z. 

Setting U(x,y) = y*(x and r/(x,_y) = x*ty works. 
An interesting feature of the algebra A is that its clone is the set-theoretic union of the 

clones of the algebras ( A, *i ) and ( A, *2). This follows from the preceding discussion. 
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7. Conclusion. We have seen that locally finite strongly Abelian varieties are 
Hamiltonian and in some sense can be regarded as generalized unary algebras. Under 
further assumptions it can be established that these varieties are actually equivalent to 
varieties of multi-sorted unary algebras. If the variety is assumed have a decidable the­
ory ([9]), or if it fails to have the maximum number of nonisomorphic models in some 
infinite cardinality ([3]) or if the isomorphism problem for the variety is computable in 
polynomial time ([15]) then such a "nice" structure theory is obtained. 

The question of whether or not all locally finite Abelian varieties are Hamiltonian is 
still open, but recently the second author has made some progress towards settling this 
problem ([14]). He has shown that every finite simple Abelian algebra is Hamiltonian 
i.e., such an algebra has no nontrivial subalgebras. In [7] McKenzie has proved some 
interesting results in this area. 
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