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1. Introduction. Let A be a matrix of finite order n and finite degree d, 
whose characteristic roots are certain nth roots of unity ai, a2. . . , a<*. We wish 
to prove a congruence (6) between the traces (tr) of certain powers of A, which 
is suggested by two somewhat simpler congruences (1) and (3). 

First, if tr (A) is a rational integer, it is easy to establish the familiar con­
gruence 

(1) tr(A) s tr(Ap) (mod p), p prime, 

even though tr(Ap) may not itself be rational. For we have 

(2) MA)]' = [ E a, T= Z a/+ p(. . .) = trU") + p(. . .) 

where (. . .) denotes an algebraic integer. The left-hand members of (1) and 
(2) are rational integers which are congruent (mod p) by Fermat's theorem. 
The right-hand members are explicitly congruent (mod p). Hence (1) follows 
from (2). 

Secondly, for any integer a, we have 

(3) ap = a9 (mod pP), if pP is a prime power > 1. 

Equation (3) is trivial if a is divisible by p. Otherwise it can be established 
easily by setting m = pfi in the well-known Euler congruence 

(4) a*(w) s 1 (mod m), for (a, m) = 1, 

where <j>(rn) is the Euler ^-function, and <j>(pp) = pP— p^"1. 
It is our purpose to prove a congruence relation (mod pP)t which generalizes 

(1) and is similar to (3), between the traces of certain powers of a matrix A 
of finite order—or, in other words, between certain sums of powers of roots 
of unity. 

THEOREM. Let S(m) denote the trace of the mth power of a matrix A of finite 
order n and finite degree S{0), and assume that A is such that 

(5) S(k) = S(l),for all k such that (fe, n) = 1. 
Then 

(6) Sip") m Sip*-1) (mod p"). 

We note that condition (5) implies that A has a rational integral trace, but 
that not every matrix with rational integral trace satisfies (5). 
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2. Proof of the theorem.1 Let us define a "pP-set" to be a set of roots of 
unity such that the sum of its pPih powers are congruent to the sum of its pp~lth 

powers mod pP as in (6). We note that the negative of any root of unity is 
also a root of unity. 

LEMMA 1. The set of all the n distinct nth roots of unity is a p^-set. 

Proof. Denoting the sum of mth powers by Sn{m) we have 

(7) Sn(pP) = », if » divides pP, 
= 0, if n does not divide pP. 

Hence 

(8) Sn(p
0) - Sntf-1) = pPiin = pP, 

= 0 otherwise. 

LEMMA 2. If one pP-set is included as a subset of a larger pP-set, the 
difference of the two pP-sets is also a p^-set. Furthermore, any set of roots of 
unity which is made up of two or more p^-sets is also a pP-set. 

Proof. If each of two or more quantities S(pP) — SipP"1) is congruent to 0, 
so is their sum or difference. 

LEMMA 3. The set of <j>(n) primitive nih roots of unity is a pp-set. 

For prime n the lemma is a special case of Lemma 2. Assuming as induction 
hypothesis that the lemma is true for all v with a smaller number of prime fac­
tors than », we show that it is also true for n by applying Lemmas 1 and 2, and 
eliminating from the complete set of n nth roots all sets of primitive vth roots 
for each v which is a proper divisor of ». Only the primitive » t h roots remain. 
They form a pP-set. 

We observe that condition (5) implies that for any factor n of » the primitive 
/xth roots occur as roots of the matrix A with equal multiplicity. Hence by 
Lemmas 2 and 3 the roots of A are a pP-set, so the theorem is established. 

3. Applications of the theorem. In constructing the table of characters 
for a finite group, our theorem may be applied to determine many of the entries. 
For example, the symmetric group of degree 5 and order 120 has irreducible 
representations of degrees 1, 1, 4, 4, 5, 5, 6. There are 15 conjugate elements 
of order 2 which are squares of elements of order 4. Hence their traces form 
a vector of unitary squared length 120/15 which is unitary orthogonal to the 
vector (1, 1, 4, 4, 5, 5, 6) and congruent to it (mod 4). The only integral solu­
tion is (1 ,1 ,0 ,0 ,1 ,1 , —2). Similarly for the traces of the 24 elements of order 5 
we have the vector (1 ,1 , — 1, — 1, 0, 0,1) as is known by the ordinary modular 
theory (mod 5). Given the numbers of elements in the classes of conjugates, 
the table is completely determined by these congruences. 
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*I am indebted to Professor R. Brauer for some suggestions for shortening my original proof. 
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