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Abstract

For a cardinal m with o> < m *s 2", no paracompact Af-space of weight m has the universal property
that every paracompact W-space of weight < m is embeddable in it as a closed.subspace. We derive
this result from the corresponding statement for metric spaces.

1980 Mathematics subject classification (Amer. Math. Soc.): 54 E 18, 54 E 35, 54 A 35.

0

The purpose of this note is to give an answer to the following question raised by
J. Nagata (see page 271 in [1]):

(Ql) Does there exist a paracompact Af-space X of weight m with the universal
property that every paracompact Af-space of weight < m is homeomorphic to
some closed subspace of XI

We show that the answer is negative in the case o f m ^ c where c denotes the
cardinal 2" of the continuum. The key idea of the proof is to reduce the above
question to that of only metric spaces (see Theorem 1). It is, indeed, easily
observed that in the special case of w = to the question (Ql) is nothing but the
problem of separable metric spaces.
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We assume that all spaces in this paper are at least Hausdorff and all maps are
continuous. Recall that a paracompact M-space is a paracompact space which
admits a perfect map onto a metric space, or equivalently, is a closed subspace in
the product of a compact space and a metric space (see Nagata [6]). A perfect map
is a closed map with compact fibers. The class of paracompact M-spaces forms
one of most important classes in general topology since it coincides with the class
of paracompact /^-spaces in the sense of Arhangel'skii [2]. In this section we will
establish the next key theorem.

THEOREM 1. Let m be an infinite cardinal. The following statements are equiva-
lent:

(1) There exists a paracompact M-space Z of weight m in which every paracom-
pact M-space of weight < m is embeddable as a closed subspace.

(2) There exists a metric space M of weight m in which every metric space of
weight «s m is embeddable as a closed subspace.

To prove this theorem we need some facts and lemmas. Let us denote by / the
unit interval.

FACT 1 (Nagata [6]). Let X be a paracompact M-space of weight m. Then X
admits a perfect map onto a metric space Tx if and only if X is embeddable in
Im X Tx as a closed subset.

LEMMA 1. For a metric space T of weight m, the following are equivalent:
(a) Every paracompact M-space X of weight < m is embeddable as a closed subset

in the paracompact M-space Im X T.
(b) Every metric space S of weight < m admits a perfect map onto some closed

subset of T.

PROOF, (a) -> (b): Let S be a metric space of weight < m. Since every metric
space is of course a paracompact M-space, we can assume by (a) that 5 is a closed
subset of Im X T. Since the projection IT: Im X T ->• T is perfect, its restriction to
S is a perfect map onto a closed subspace tr[S] of T.

(b) -> (a): Let X be a paracompact M-space of weight < m. By Fact 1 we can
assume that X is a closed subspace of Im X Tx for some metric space Tx of
weight < m. It follows from the assumption (b) that Tx admits a perfect map onto
some closed subspace F of T. So, again by Fact 1, Tx is assumed to be a closed
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subspace of Im X F. Next resulting inclusions show that X is a closed subspace of
lm X T:

X C / m X TXC Im X (Im X F) s Jm X f C / m X r .
cl. cl. cl.

LEMMA 2. Let X and Y be spaces, that is, Hausdorff spaces, and let fbe a perfect
map from a {not necessarily closed) subspace A of X onto Y. Then the graph f is a
closed subspace of X X Y.

PROOF. Let (x, y) be a point of X X Y missing the graph /. Then the compact
space f'\y) misses the point x in the Hausdorff space X, so there exist disjoint
open sets U and U' containing x and f'\y) respectively. Since/is a closed map,
we can choose an open neighborhood Vofyin ysuchthat/"'(F) C U' n A C £/'.
Therefore we have U n f~\V) = 0 , that is, (U X V) n / = 0 . Since £/ X V is a
neighborhood of (x, y), the graph / is proved to be closed in A' X Y.

Now we can give the proof of Theorem 1.

PROOF OF THEOREM 1. (1) -»(2): Let Z be a paracompact M-space as in (1).
We can suppose by Fact 1 that Z is a closed subset of Im X T for some metric
space T of weight m. Notice that this metric space T has the property of Lemma 1
(a), hence also, that of Lemma 1 (b). Consider the metric space H of weight m
called the generalized Hilbert space (see [5]), and put M = H X T. We show this
metric space M is the desired one. Let S be an arbitrary metric space of
weight «£ m. By the property of Tin Lemma 1 (a) there exists a perfect map/of S
onto some closed subspace F of T. Since the Hilbert space H possesses the
universal property that every metric space of weight < m is embeddable in it, we
can think of 5 as a subset of H (see page 207 in [5]). Then, by Lemma 2 the graph
/ is closed in H X F. Therefore we have

S=fCHXFCHXT=M.
cl. cl.

(2) -»(1): Let M be a metric space as in (2). Put Z = T X M . W e show this
paracompact A/-space Z has the property as in (1). Let X be an arbitrary
paracompact A/-space of weight < m. Then we may assume by Fact 1 that A' is a
closed subspace of Im X Sx for some metric space Sx of weight < m. By the
property of M in (2) we can assume that Sx is a closed subspace of M. Hence X is
a closed subspace of Im X M = Z. This completes the proof of Theorem 1.

Now, in view of Theorem 1, Nagata's question (Ql) is equivalently converted
into the following question about metric spaces:
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(Q2) Does there exist a metric space X of weight m with the universal property
that every metric space of weight < m is homeomorphic to some closed subspace
of XI

The above question (Q2) seems to be a very fundamental one about metric
spaces, and so we are wondering why this question was not raised before
explicitly by general topologists. Here we give a partial, negative answer to (Q2)
by computing the cardinality of homeomorphic images of closed subsets. Note
that the negative answer to (Q2) in the special case m = w is also derivable from
Section 35, Theorem 5 in Kuratowski [4]. For the number of closed sets in a
metric space, consult the paper of Stone [7J.

THEOREM 2. Let m be an infinite cardinal such that

(*) K *£ m < 2" for some cardinal K satisfying K" = 2".

Then, for every metric space X of weight < m we can find a metric space Sx of

weight < m which is not homeomorphic with any closed subspace of X.

PROOF. Let X be an arbitrary metric space of weight < m, and K be a cardinal
with the property (*) above. Let M be any metric space of weight K and of
cardinal K"1 (for example think of the Baire space Da where D is a discrete space
of cardinal K). Denote by P{M) the power set of M and define its subfamily
H(M)hy

H{M) = { S e P(M): Sis homeomorphic with some closed subspace of X}.

Clearly it suffices to show that P(M)\H(M) is nonempty; we will prove more,
namely, |i*(M)| > \H(M% Since \P(My > \M\ = KU, our condition KU = 2" im-
plies that \P(M)\ > 2\ So need only prove that \H{MJ < 2". Let FK(X) be a
family of all closed subspaces of X having weight < K and for each member E of
FK(X)pnt

H(E, M) = {S G P{M): S is homeomorphic with E).

Then, since the weight of M does not exceed K, we have

H{M) = U {H(E, M): E G FK(X)}.

Hence we are done if we show that FK(X) and H(E, M) are both of cardinals *£ 2".
The cardinal of X is < m" since X is first countable and of weight < m. Notice
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that each member of FK(X) has densi ty a t most K and a closed subset is
completely determined by its dense subset; so we have

|F.(*)l< 1*1" <("»")"< 2".

To compute the cardinal of H(E, M), observe that \H(E, M)\ *£ \C(E, M)\ where
C(E, M) denotes the sets of all continuous functions from E to M. Since each
E EL FK(X) contains a dense subset of cardinaK K, we have \C(E, M)\ <
\M\K = (*")" = 2\ Hence \H(E, M)\ < 2", completing the proof.

The condition (*) is quite restricted and a bit nuisance, but it is clearly satisfied
if m < 2" and K = w. Thus we come up to the next negative answer to (Q2) as
well as Nagata's question (Ql).

COROLLARY 1. The answer to (Q2) as well as (Ql) is negative in the case
« < m < 2".

We believe that the assertion in Theorem 2 remains true for every cardinal m
without the condition (*). In other words,

Conjecture: the answer to (Q2) is negative for every cardinal m.

In connection with this conjecture, we note here that each of the next
statements is consistent with ZFC:

(1) There are arbitrarily large cardinals m for which the answer to (Q2) is
negative.

(2) Let m = 2C where c = 2"; then for this m the answer to (Q2) is negative.
In fact, let us denote by % the class of all cardinals m for which the answer to

(Q2) is negative. Then GCH implies that K and K+ = 2" belong to % for every
cardinal K with countable cofinality, since such cardinal K satisfies the equality
Ka = 2" in (*) of Theorem 2. Hence the statement (1) is consistent with ZFC. To
show the consistency of (2), it will be sufficient to point out that one can build, by
Easton's method, a model of ZFC satisfying

2u = <o, and 2 - = 2"- = «u + 1

(see Theorems 46, 18 in Jech [3]), hence the equality K" = 2" for K — uu.

https://doi.org/10.1017/S1446788700025775 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700025775


286 AkioKato [*1

References

[1] R. A. A16 and H. L. Shapiro, Normal topological spaces (Cambridge Univ. Press, 1974).
[2] A. V. Arhangel'skii, 'On a class of spaces containing all metric and all locally bicompact

spaces', Soviet Math. 4 (1963), 751-754.
[3] T. Jech, Set theory (Academic Press, 1978).
[4] K. Kuratowski, Topology, vol. I (Academic Press, 1966).
[5] J. Nagata, Modern general topology (North-Holland, 1968).
[6] J. Nagata, 'A note on A/-spaces and topologically complete spaces', Proc. Japan Acad. 45

(1969), 541-543.
[7] A. H. Stone, 'Cardinals of closed sets', Mathematika 6 (1959), 99-107.

Department of Mathematics
National Defence Academy
Yokosuka
Japan

https://doi.org/10.1017/S1446788700025775 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700025775

