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REDUCTION OF BINARY CUBIC AND QUARTIC FORMS

J. E. CREMONA

Abstract

A reduction theory is developed for binary forms (homogeneous
polynomials) of degrees three and four with integer coefficients. The
resulting coefficient bounds simplify and improve on those in the
literature, particularly in the case of negative discriminant. Appli-
cations include systematic enumeration of cubic number fields, and
2-descent on elliptic curves defined overQ. Remarks are given con-
cerning the extension of these results to forms defined over number
fields.

1. Introduction

Reduction theory for polynomials has a long history and numerous applications, some of
which have grown considerably in importance in recent years with the growth of algorithmic
and computational methods in mathematics. It is therefore quite surprising to find that even
for the case of binary forms of degree three and four with integral coefficients, the results
in the existing literature, which are widely used, can be improved. The two basic problems
which we will address for formsf (X, Y ) in Z[X, Y ] of some fixed degreen are as follows
(precise definitions will be given later).

1. Givenf , find a unimodular transform off which is as ‘small’ as possible.

2. Given a fixed value of the discriminant1, or alternatively fixed values for a complete
set of invariants, find all formsf with these invariants up to unimodular equivalence.

It is these two problems for which we will present solutions in degrees three and four.
Our definition of areduced formdiffers from ones in common use in the case of negative
discriminant for both cubics and quartics. We will show that it agrees with the definition
in Julia’s treatise [12], though this fact is not obvious. Moreover, our definition is better
than Julia’s for computational purposes, and leads to good bounds on the coefficients of a
reduced form.

The applications we have in mind are in two areas of number theory: the systematic
tabulation of cubic and quartic algebraic number fields with given discriminant, or given
bound on the discriminant; and 2-descent on elliptic curves. In the second application, the
bounds we obtain below for quartics have led to considerable improvements in the running
times of our programmwrank, which implements 2-descent on elliptic curves defined
over Q (as described in [8], for example), compared with the bounds given in [8] and
originally in [3]. For the first application in the cubic case, see the papers [1] and [2] of
Belabas. The quartic case seems to be considerably more difficult.

In this paper we will often restrict to considering forms whose coefficients are rational
integers, although a large part of the algebra applies to forms defined over arbitrary fields
of characteristic 0. In future we hope to extend this to general number fields; real quadratic
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Reduction of binary cubic and quartic forms

fields have already been treated in [14] and [9]. Some remarks on the extension to number
fields are made in the final section of the paper.

We will use a small amount of classical invariant theory in this paper, in the style of
Hilbert’s lecture notes [11], or Elliott’s book [10], from which we obtained the term ‘sem-
invariant’ which we use repeatedly. The modern term for these is apparently ‘U -invariants’;
however, we have made no attempt to couch our exposition in the language of modern
invariant theory. We have not seen any systematic treatment of the ‘algebraic covariants’
which we use extensively. The article [7] contains all the invariant theory that is needed,
together with an explanation of the connection with 2-descent on elliptic curves.

Our results for cubics may also be compared with bounds (due to Mordell and Davenport)
which come from the Geometry of Numbers, as in Cassels’ book [4, Chapter 2]. We will
make such comparisons in detail below.

After reviewing the basic ideas underlying the reduction of real binary forms in Section
2, together with a brief summary of Julia’s approach to reduction, we proceed to the two
main sections of the paper, concerning the reduction of cubics (Section3) and quartics
(Section4).

2. Reduction: basic concepts

Let K be a field, andn a positive integer. Abinary form of degreen over K is a
homogeneous polynomial inK[X, Y ] of degreen. The group GL(2, K) acts onK[X, Y ]
via ‘linear substitutions’:(

α β

γ δ

)
: f (X, Y ) 7→ f (αX + βY, γX + δY ).

This action clearly preserves the degree, and so restricts to an action on the set of forms of
degreen, which is aK-vector space of dimensionn+1. We will mainly be concerned with
the action of the subgroup SL(2, K) of unimodular matrices; moreover, for our applications
we will also wish to restrict to forms with integral coefficients: for example, whenK = Q or
a number field the coefficients will lie in the ring of integersOK and we will only consider
transformations in SL(2, OK) or GL(2, OK).

It will be convenient at times to pass from a formf (X, Y ) = ∑n
i=0 aiX

iY n−i to the
corresponding inhomogeneous polynomial

f (X) = f (X, 1)=
n∑

i=0

aiX
i ∈ K[X];

the group action then becomes

f (X) 7→ (γX + δ)nf

(
αX + β

γX + δ

)
.

The ingredients for a reduction theory for such polynomials or forms consist of the
following: a definition of a suitable notion of areduced form, such that every form is
equivalent to (at least one) reduced form; together with algorithms for reducing a given
form, and for enumerating all reduced forms up to equivalence. For example, we will see
in Section3 below a definition of ‘reduced’ for real cubics (which will depend on the sign
of the discriminant), an algorithm for reducing any given cubic inR[X], and bounds on the
coefficients of a reduced cubic in terms of the discriminant. This enables us to list easily all
reduced cubics with integer coefficients and given discriminant.
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2.1. Reduction of positive definite quadratics
Where the field of definition is a subfield of the real numbers, our definition of reduction

will consist of associating, to a given polynomialf (X), a quadratic with real coefficients
which is positive definite and a covariant off , and then decreeing thatf is reduced if and
only if this quadratic is reduced in the classical sense. The bounds we thereby obtain on the
coefficients off will come, directly or indirectly, from the well-known inequalities satisfied
by the coefficients of a reduced positive definite quadratic. Hence we start by recalling the
necessary facts for such quadratics.

Letf (X, Y ) = aX2+bXY+cY 2 ∈ R[X, Y ] be a real quadratic form, with discriminant
1 = b2− 4ac. We say thatf is positive definiteif a > 0 and1 < 0; thenf (x, y) > 0 for
all (x, y) ∈ R2−{(0, 0)}, and the roots off (by which we mean the roots of the polynomial
f (X, 1)) have the formz, z wherez = (−b + i

√|1|)/2a is in the upper half-plane.
The transform of a positive definite quadraticf (X, Y ) by a real matrix

M =
(

α β

γ δ

)
with positive determinant is also positive definite. The rootz in the upper half-plane trans-
forms via M−1 into (δz − β)/(α − γ z), which is also in the upper half-plane, since
Im(M−1(z)) = det(M)−1 Im(z)/|α − γ z|2.

Definition 1. The formf (X, Y ) is reducedif the following inequalities hold:

|b| 6 a 6 c. (1)

Equivalently,f is reduced if its rootz in the upper half-plane lies in the standard fundamental
region for the action of the modular group0 = SL(2, Z):

|Re(z)| 6 1

2
and |z| > 1. (2)

Each positive definite form is equivalent to a reduced form. The reduced form is unique
unless one of the inequalities in (1) or (2) is an equality, in which case there will be two
equivalent reduced forms (differing only in the sign ofb). This non-uniqueness, which could
of course be avoided by insisting thatb > 0 when either equality holds, will not be at all
important in the sequel.

To reduce a given form, we may choose to operate directly on the coefficients(a, b, c)

or on the rootz. In either case, we repeatedlytranslateby an integerk andinvert. Operating
on the coefficients, these steps are:

Step 1.Reduceb modulo 2a: replace(a, b, c) by (a, b′, c′) = (a, b+2ka, ak2+ bk+ c),
wherek is the nearest integer to−b/2a.

Step 2.Interchangea andc if a > c: replace(a, b, c) by (a′, b′, c′) = (c,−b, a).

After a finite number of steps the resulting form will be reduced. In the second case,
we operate directly on the rootz, again using the translationsz 7→ z − k and inversion
z 7→ −1/z. In either case, we keep track of the elementary transformations used in the
reduction, so that at the end we can give the unimodular transformation(

α β

γ δ

)
which reducesf , as well as the reduced form itself; indeed, often we will only need this
transformation.

64https://doi.org/10.1112/S1461157000000073 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000073


Reduction of binary cubic and quartic forms

From the inequalities (1) we can easily deduce that

0 < a 6
√|1|/3; (3)

geometrically, this states that the imaginary part of the rootz is at least
√

3/2. To find all
integer quadratics with given negative integer discriminant1, we then merely have to search
the region 06 |b| 6 a 6

√|1|/3, finally testing whetherc = (b2−1)/4a is integral.

2.2. Julia’s method of reduction
We now give a very brief summary of Julia’s reduction method as it applies to cubics

and quartics defined overR. For more details, see [12].
Let g(X) ∈ R[X] be a polynomial of degreen > 3 with nonzero leading coefficienta

and nonzero discriminant1. Let the real roots ofg beαi for 1 6 i 6 r and the pairs of
complex (that is, non-real) roots beβj , βj for 1 6 j 6 s, wherer+2s = n. Julia considers
positive definite quadratics of the form

ϕ(X) =
r∑

i=1

t2
i (X − αi)

2+
s∑

j=1

2u2
j (X − βj )(X − βj ), (4)

for suitably chosen ‘variables’ti anduj , definingg to be reduced if and only ifϕ is. From
this he derives upper bounds on the absolute value of the leading coefficient and roots of a
reduced polynomialg, all expressed in terms of the quantity

θ = a2 disc(ϕ)n/2∏r
i=1 t2

i

∏s
j=1 u4

j

.

For each signature(r, s) Julia then seeks to minimizeθ by suitable choice of the coefficients
ti , uj . In each case, he obtains a specific positive definite quadraticϕ(X) attached tog(X),
and definesg(X) to be reduced if and only ifϕ(X) is. From his discussion, it is clear that
Julia regards the quadraticϕ(X) to be ‘optimal’, though no precise claim (or definition of
optimality) is stated. The fact that these ‘optimal’ϕ(X) are indeed covariants ofg is proved
after the optimization, by entirely geometric considerations.

The coefficientsti , uj for Julia’s optimalϕ are defined in terms of the roots ofg; in most
cases, Julia states that it is therefore necessary to know these roots before reducing a given
polynomialg. One feature of our reduction scheme is that we can often avoid this explicit
dependence on the roots, which is certainly a computational convenience, since otherwise
effective reduction requires computation of the roots ofg to high precision. We will obtain
expressions forϕ which are defined over a subfield of the splitting field ofg.

Our approach is to find quadratic covariants of cubic and quartic polynomials directly,
and define reduction in terms of them. It will turn out that our covariants are in each case
the same as Julia’s, up to an unimportant constant factor. We will also derive bounds for
the coefficients of reduced cubics and quartics which are in certain cases better than Julia’s
bounds, and thus result in greater efficiency in our applications.

For later reference, we now describe Julia’s quadratic covariants for each of the possible
signatures of cubic and quartic polynomials. We express each one both in the form Julia
gives, involving modulus signs in some cases, and where necessary in an alternative form
(without the modulus signs) which we will use later.
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2.2.1. Signature (3,0): real cubics with three real roots
A real cubic with positive discriminant1 > 0 has three real rootsα1, α2, α3. We set
t2
1 = (α2− α3)

2, with t2
2 andt2

3 defined symmetrically, obtaining

ϕ(X) = (α2− α3)
2(X − α1)

2+ (α3− α1)
2(X − α2)

2+ (α1− α2)
2(X − α3)

2.

As Julia remarks, up to a constant factorϕ(X) is just the ‘forme d’Eisenstein’ or Hessian of
g. This is an easy exercise in symmetric polynomials (or see Section3 below). If g(X) =
aX3+ bX2+ cX + d, then (up to a constant factor)

ϕ(X) = (b2− 3ac)X2+ (bc − 9ad)X+ (c2− 3bd).

This is the only case where we can reduceg using a rational covariant quadratic (defined
over the field containing the coefficients ofg).

2.2.2. Signature (1,1): real cubics with one real root
A real cubic with negative discriminant1 < 0 has one real rootα and two non-real roots
β, β. We take

t2 = ∣∣β − β
∣∣2 and u2 = (α − β)(α − β) = |α − β|2.

Then

ϕ(X) = t2(X − α)2+ 2u2(X − β)(X − β)

= −(
β − β

)2
(X − α)2+ 2(α − β)(α − β)(X − β)(X − β).

2.2.3. Signature (4,0): real quartics with four real roots
A real quartic with positive discriminant1 > 0 has either four or no real roots; these can
be distinguished using certain seminvariants, as explained in Section4 below. When there
are four real rootsαi , we order these so thatα1 > α3 > α2 > α4, and taket2

i = |g′(αi)
−1|

for 1 6 i 6 4, to obtain

ϕ(X) = g′(α1)
−1(X − α1)

2+ g′(α2)
−1(X − α2)

2 (5)

−g′(α3)
−1(X − α3)

2− g′(α4)
−1(X − α4)

2

= 2(g′(α1)
−1(X − α1)

2+ g′(α2)
−1(X − α2)

2).

2.2.4. Signature (0,2): real quartics with no real roots
Here one takes 2u2

1 = |β2− β2| and 2u2
2 = |β1− β1|, so that

ϕ(X) = |β2− β2|(X − β1)(X − β1)+ |β1− β1|(X − β2)(X − β2)

= −i(β2− β2)(X − β1)(X − β1)− i(β1− β1)(X − β2)(X − β2).

2.2.5. Signature (2,1): real quartics with two real roots
Real quartics with negative discriminant1 < 0 have exactly two real roots. Denote these
asα1, α2 with α1 > α2, and the non-real roots asβ, β. Set

t2
1 =

∣∣β − β
∣∣ |α2− β|2 , (6)

t2
2 =

∣∣β − β
∣∣ |α1− β|2 ,

2u2 = |α1− α2| |α1− β| |α2− β| ,
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and assume that Im(β) > 0. Then

ϕ(X) = t2
1(X − α1)

2+ t2
2(X − α2)

2+ 2u2(X − β)(X − β) (7)

= |β − β||β − α2||α2− β|(X − α1)
2

+|β − β||β − α1||α1− β|(X − α2)
2

+|α1− α2||α2− β||β − α1|(X − β)(X − β)

= −i(β − β)(α2− β)(α2− β)(X − α1)
2

−i(β − β)(α1− β)(α1− β)(X − α2)
2

+(α1− α2)

√
(α2− β)(α2− β)(α1− β)(α1− β)(X − β)(X − β).

3. Reduction of cubics

3.1. Invariants and covariants
Let

g(X) = aX3+ bX2+ cX + d

be a cubic. We now regard the coefficientsa, b, c, d as indeterminates, and the results
and formulas which we obtain in this subsection will be valid over arbitrary fields whose
characteristic is neither 2 nor 3. So letK0 denote a prime field other thanF2 or F3 and set
K = K0(a, b, c, d), so thatg ∈ K[X]. We will call K0 andK theconstant fieldand the
coefficient fieldrespectively.

3.1.1. Rational covariants
First we consider ‘rational’ invariants and covariants ofg, which lie inK andK[X] respec-
tively. The only invariant ofg is the discriminant

1 = b2c2− 4ac3− 4b3d − 27a2d2+ 18abcd.

(Strictly speaking, all invariants are constant multiples of powers of1.)
There are two seminvariants, in addition to1 and the leading coefficienta, namelyP

andU where

P = b2− 3ac and U = 2b3+ 27a2d − 9abc.

Each seminvariant is the leading coefficient of a covariant ofg: it is said to be the ‘source’
of the covariant (see [7]; the terminology is from [10]). The discriminant is a covariant of
degree 0, anda is the source ofg itself. P is the source of the Hessian covariant:

H(X) = (b2− 3ac)X2+ (bc − 9ad)X+ (c2− 3bd).

Finally, U is the source of a cubic covariant:

G(X) = 3g(X)H ′(X)− 2g′(X)H(X)

= (2b3+ 27a2d − 9abc)X3+ 3(b2c + 9abd − 6ac2)X2

−3(bc2+ 9acd − 6b2d)X − (2c3+ 27ad2− 9bcd).

The seminvariants are related by the following syzygy:

4P 3 = U2+ 271a2, (8)

which extends to a syzygy between the covariants:

4H(X)3 = G(X)2+ 271g(X)2. (9)
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The Hessian and cubic covariants have the following discriminants:

disc(H)= −31,

disc(G)= 72913.

Note that these are determined up to a constant multiple by the fact that they are clearly
also invariants ofg, hence powers of1, and the exponent is determined by their degree in
the coefficients ofg.

Finally, we may form the covariants of the cubic covariantG(X); again, these are deter-
mined up to a scalar multiple by consideration of degrees:

HG(X) = 271H(X),

GG(X) = −72912g(X).

Note that the relation betweeng(X) andG(X) is almost symmetric; this will have interesting
implications later.

3.1.2. Algebraic covariants
When we consider the reduction of real cubics with negative discriminant, and later when we
consider quartics, we will need to make use of covariants whose coefficients are algebraic
over the coefficient fieldK = K0(a, b, c, d). In the classical literature such covariants are
called ‘irrational covariants’, but we prefer to call them ‘algebraic covariants’. In almost all
cases, the coefficients will lie in the splitting field ofg(X) overK; as with Julia’s quadratic
covariants given above, in the case of quartics with negative discriminant we need to make
a further extension.

Our philosophy will to be use covariants which are defined over as small a field extension
of K as possible, both for simplicity and for reasons of computational efficiency. For cubics,
we only need to extend the coefficient fieldK by adjoining a root of the cubic.

Letα be a root ofg(X) in some algebraic closure ofK, so thatK(α) is an extension ofK
of degree 3. IfC(X) ∈ K(α)[X] is an algebraic covariant of degreed, then its norm inK[X]
will be a rational covariant of degree 3d, and hence can be expressed as a polynomial in the
basic covariantsg, H andG (not uniquely, on account of the syzygy relating these three).
For example, ifC(X) is quadratic then its norm must be aK-linear combination ofg2, H 3

andG2, and even aK0-linear combination of1g2, H 3 andG2 since its coefficients must
be isobaric as polynomials ina, b, c, d. Using the syzygy this may be expressed uniquely
as a linear combination of1g2 andG2, say.

We apply this idea to the quadraticϕ(X) which Julia considers for real cubics with
negative discriminant (signature(1,1)) defined above in Subsection2.2.2. Expressϕ(X)

in terms of the single rootα, and scale for convenience, to obtain

J2(X) = a2ϕ(X) = h0X
2+ h1X + h2; (10)

a straightforward calculation with symmetric polynomials shows that

h0 = 9a2α2+ 6abα+ 6ac− b2,

h1 = 6abα2+ 6(b2− ac)α + 2bc, (11)

h2 = 3acα2+ 3(bc− 3ad)α+ 2c2− 3bd.

Let S(X) be the norm ofJ2(X) from K(α)[X] to K[X]; a calculation shows that

S(X) = norm(J2(X)) = G2− 2H 3 = 2H 3− 271g2 = 1

2
(G2− 271g2)
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= J2(X)J4(X) ∈ K[X],
whereJ4(X) ∈ K(α)[X] has degree 4. This purely symbolic calculation shows that the
degree 6 rational covariantS(X) factorizes overK(α) as the product of two algebraic
covariantsJ2(X) andJ4(X). Moreover, sinceJ2(X) is a factor of the covariantS(X), it
follows immediately thatJ2(X) is itself a covariant ofg(X). We may also check thatJ2(X)

andJ4(X) are irreducible overK(α); the Maple package was used for this and all the
algebraic computations in this paper.

We note for future reference that

disc(J2(X)) = 121 = −4 disc(H(X)).

In the case of real cubics, this will mean that eitherH(X) or J2(X) will be positive definite
and can be used for reduction.

We will also later need to consider theJ2-covariant of the cubicG(X). We first observe
thatG(X) itself factorizes overK(α); in fact,G(α′) = 0 where

α′ = 3d/α+ c

3aα+ b
.

One can use this to compute theJ2-covariant ofG directly, obtaining−271J2(X). However
it is more elegant, and requires considerably less calculation, to proceed as follows.

Starting from the sextic covariantS(X) of g, to compute the corresponding covariant for
G we replaceg, 1, H by G, 72913 and 271Hrespectively, to obtain

2(271H)3− 27(72913)G2 = −3913(G2− 2H 3) = −3913S.

Hence, up to a constant factor,S(X) = G2 − 2H 3 is invariant under the transformation
g 7→ G. SinceJ2(X) is the unique quadratic factor of this sextic defined overK(α)[X] it
follows that theJ2-covariant ofG is indeed−271J2(X).

3.2. Reduction of real cubics with1 > 0
This is the simplest case. Letg(X) be a real cubic with1 > 0 and three real rootsα1, α2

andα3. The HessianH(X) is real with negative discriminant−31. Moreover, the leading
coefficient ofH(X) is P = b2 − 3ac = 1

2a2 ∑
i<j (αi − αj )

2, and henceP > 0. Hence
H(X) is positive definite, and we make the following definition (following Hermite).

Definition 2. A real cubic with positive discriminant isreducedif and only if its Hessian
is reduced in the usual sense.

We now find that the property of being reduced coincides forg(X), its HessianH(X),
and its cubic covariantG(X).

Proposition 1. Letg(X) be a real cubic with positive discriminant. Theng(X) is reduced
if and only if its cubic covariantG(X) is also reduced.

Proof. G(X) has discriminant 72913 > 0 and Hessian−271H(X), so this is immediate.

We now show that the seminvariants of a reduced cubic are bounded in terms of the
discriminant.
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Proposition 2. Every real cubic with positive discriminant1 is GL(2, Z)-equivalent to
one whose seminvariants are bounded as follows:

0 < |a| 6 2

3
√

3
11/4 (12)

0 < P 6 11/2. (13)

Proof. It suffices to bound the seminvariants wheng(X) is reduced. SinceH(X) is reduced
we have

0 < P 6
√ | disc(H)|

3
= √1

as required. Now the seminvariant syzygy (8) gives

271a2 6 271a2+ U2 = 4P 3 6 413/2,

so thata is also bounded as stated. Note that we also obtain the bound 0< U 6 213/4.

A reduction algorithm based on this definition is easy to implement; for integer cubics,
only integer arithmetic is required. Both the translation and inversion steps are simply
determined by inspection of the coefficients of the Hessian.

Algorithm 1. Reduction of a real cubic with positive discriminant

Input: a cubicg(X) = aX3+ bX2+ cX + d ∈ R[X] with 1(g) > 0.
Output: a reduced cubic GL(2, Z)-equivalent tog(X).

1. Letk be the nearest integer to

−(bc − 9ad)

2(b2− 3ac)
;

if this falls half-way between two integers, either choice will do.

2. Replaceg(X) by g(X + k); that is,

(a, b, c, d)← (a, 3ak+ b, 3ak2+ 2bk + c, g(k)).

3. If b2 − 3ac 6 c2 − 3bd then outputg(X); else, replaceg(X) by X3g(−1/X); that
is,

(a, b, c, d)← (d,−c, b,−a).

4. Go to step 1.

Now we turn to the question of listing all cubics with given positive discriminant. Given
values of the seminvariantsa andP , which must satisfy the syzygy condition that 4P 3 −
271a2 is a square,U2; the value ofU is determined up to sign, and we may easily write
down a suitable cubic by settingb = 0,c = −P/(3a)andd = U/(27a2). If we are seeking
integral cubics with a given positive integer discriminant1, however, it is better to proceed
a little differently. Since the unimodular substitution ofX + α for X changes the cubic
coefficients from(a, b, . . .) to (a, b + 3αa, . . .) we may assume that−3a/2 < b 6 3a/2
for fixeda; then for fixeda,b the bounds onP give bounds onc. This results in the following
algorithm.
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Algorithm 2. To list all integer cubics with given positive integer discriminant1, up to
GL(2, Z)-equivalence

Input: a positive integer1.
Output: a list of reduced cubicsg(X) with discriminant1, including exactly one in each
GL(2, Z)-orbit.

1. Loop ona: 1 6 a 6 2
3
√

3
11/4.

2. Loop onb: −3a/2 < b 6 3a/2.

3. Loop onc: (b2−11/2)/(3a) < c 6 b2/(3a).

4. SetP = b2− 3ac; test if 4P 3− 271a2 is a square, sayU2; continue if not.

5. GivenU , test ifd = (U − 2b3+ 9abc)/(27a2) is integral; continue if not.

6. Reduce the cubic with coefficients(a, b, c, d) using Algorithm 1, output the result,
and continue.

Note that we may assume thata > 0 sinceg(−X) is GL(2, Z)-equivalent tog(X).
Similarly, we do not have to test both signs ofU in step 5, since replacingg(X) by−g(−X)

changes the signs ofb, d andU .
The triple loop on(a, b, c) can be made very efficient by the use of a quadratic sieve

based on the seminvariant syzygy (8). Given1 one precomputes, for each of a set of suitable
modulim, the pairs(a modm, P modm) for which 4P 3− 271a2 is a square modulom.
This can be stored as a 2-dimensional array of{0, 1}-valued flagsfm[i, j ], with indices
running from 0 tom− 1, such that

fm[i, j ] = 1⇔ 4j3− 271i2 is a square modulom.

Then we can program the loop in such a way as to skip quickly past triples(a, b, c) for
which there exists a modulusm such thatfm[a modm, (b2− 3ac) modm] = 0.

One can also adapt this procedure to list all integer cubics whose discriminant is positive
but less than a given bound. With care, it is possible to ensure that the cubics listed determine
distinct cubic number fields. For details of this, see the paper of Belabas [2].

Next we give a comparison of the bounds in Proposition2 with those of Julia in [12].
We have already mentioned that Julia’s covariant quadraticϕ(X) is (up to a constant factor)
the HessianH(X) in this case. However, Julia obtains the weaker bound

|a| 6 2
√

2

3
√

3
|1|1/4

for the leading coefficient of a reduced cubic. The reason for this is that Julia applies the
AGM (Arithmetic-Geometric Mean) inequality to the three positive real numbers

t2
1 = (α2− α3)

2, t2
2 = (α3− α1)

2, t2
3 = (α1− α2)

2,

to give

3(t21 t2
2 t2

3)1/3 6 t2
1 + t2

2 + t2
3 .

Now, disc(ϕ)= 12t2
1 t2

2 t2
3 = 12a−41, and the leading coefficient ofϕ(X) is t2

1 + t2
2 + t2

3.
Hence the assumption thatϕ(X) is reduced gives the inequalityt2

1 + t2
2 + t2

3 6 2a−211/2,
and one obtains the bound ona stated above. However, the standard AGM inequality is not
the best possible for three positive real numberst2

i for which t1+ t2+ t3 = 0. It is possible
to improve it by a factor of3

√
2, as in the following lemma.
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Lemma 1. Let t1, t2 andt3 be real numbers such thatt1+ t2+ t3 = 0. Then

3(2t2
1 t2

2 t2
3)1/3 6 t2

1 + t2
2 + t2

3 .

Proof. From t1+ t2+ t3 = 0 we deduce the identity

(t2
1 + t2

2 + t2
3)3− 54t2

1 t2
2 t2

3 = 2(t1− t2)
2(t2− t3)

2(t3− t1)
2

from which the result follows.

Using this lemma instead of the usual AGM inequality we obtain the bound ona of Propo-
sition2. In fact, one can see that the identity in the proof of the lemma is nothing other than
the seminvariant syzygy applied to the cubic

∏
(X − ti ).

Finally, we compare our bounds with the results given in [4, Section II.5]. A 1943 theorem
of Mordell states (in effect) that given a real cubicf with positive discriminant1, there is
a cubic GL(2, Z)-equivalent tof with leading coefficienta satisfying

|a| 6
(

1

49

)1/4

,

which is best possible sincex3 + x2 − 2x − 1 has1 = 49. Now the constant appearing
here is 1/

√
7= 0.3780, which is slightly smaller than the constant 2/3

√
3= 0.3849 which

appears in our bound (13). However, Mordell’s theorem does not state that the equivalent
cubic which minimizes the leading coefficient is actually reduced, so that one cannot deduce,
as we did above, that the seminvariantP is simultaneously bounded. A related result of
Davenport (1945) states that iff (X, Y ) is a reduced cubic form with positive discriminant1,
then

min{f (1,0), f (0, 1), f (1,1), f (1,−1)}6
(

1

49

)1/4

which again implies Mordell’s theorem, but is not quite sufficient for our purposes.

3.3. Reduction of real cubics with1 < 0
Now the cubicg(X) has a single real rootα and complex rootsβ, β. Since disc(H) =

−31 > 0, we cannot use the Hessian for reduction. The approach of Belabas, following
Mathews and Berwick [13] (which predates Julia [12]), and Davenport is to use the positive
definite quadratic(X − β)(X − β), definingg to be reduced if this quadratic is reduced.
Davenport calls this being ‘Minkowski-reduced’. This leads to the bound

|a| 6 2

33/4
|1|1/4 ≈ 0.877|1|1/4

for a Minkowski-reduced cubic (see [2]). We will instead follow Julia, giving an alternative
definition of reduction using the algebraic quadratic covariantJ2(X) introduced above,
from which we will obtain the improved bound

|a| 6 2
√

2

3
√

3
|1|1/4 ≈ 0.544|1|1/4

for a Julia-reduced cubic.
As in the previous subsection, we can compare our results with those of Davenport, who

showed in 1945 that for a Minkowski-reduced cubicf (X, Y ),

min{f (1,0), f (0, 1), f (1,1), f (1,−1)}6
∣∣∣∣ 1

23

∣∣∣∣
1/4

.
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So every cubic with1 < 0 is equivalent to one whose leading coefficient satisfies

|a| 6
∣∣∣∣ 1

23

∣∣∣∣
1/4

,

which again is best possible sincex3 − x − 1 has discriminant−23. The constant here is
0.4566 which is smaller than ours, but again since the form which minimizes the leading
coefficient is not necessarily the reduced form, we cannot deduce bounds on the other
seminvariants (and hence on the other coefficients) as we need to.

We use the real rootα of g(X) to defineJ2(X) as in (10) and (11). Sinceα is real and
1 < 0, we see thatJ2(X) is real and positive definite: its discriminant 121 is negative, and
its leading coefficient ish0 = a2(|β−β|2+2|α−β|2), which is positive. (Alternatively,h0
has norm1

2(U2− 271a2) > 0, and the other two conjugates ofh0 are complex conjugates
of each other, and hence their product is positive.)

Hence we make the following definition.

Definition 3. A real cubicg(X) with negative discriminant isreducedif and only if the
positive definite quadraticJ2(X) is reduced.

Since the cubic covariantG(X) has the sameJ2-covariant asg(X), up to a constant
factor, and its discriminant 72913 has the same sign as1, the following proposition is now
immediate.

Proposition 3. Letg(X) be a real cubic with negative discriminant. Theng(X) is reduced
if and only if its cubic covariantG(X) is also reduced.

Now we are able to derive bounds on the seminvariants of a reduced cubic with negative
discriminant.

Proposition 4. Letg(X) be a real cubic with negative discriminant which is reduced. Then
the following inequalities hold:

0 < |a| 6 2
√

2

3
√

3
|1|1/4;

0 < |P | 6 21/3|1|1/2.

Proof. To bounda we follow Julia. Using

a−2h0 = |β − β|2+ 2|α − β|2
and

|1| = a4|β − β|2|α − β|4,
the AGM inequality gives(a−4|1|)1/3 6 1

3a−2h0, so that 27a2|1| 6 h3
0. On the other

hand, sinceJ2(X) is reduced, we have 3h2
0 6 | disc(J2(X))| = 12|1|, so thath2

0 6 4|1|.
Combining these gives the stated inequality ona.

Now G(X) is also reduced, by the preceding proposition, so applying what we have just
proved toG(X) we obtain

U2 6 8

27

∣∣∣72913
∣∣∣1/2 = 8|1|3/2.

The syzygy now gives

4P 3 = U2+ 271a2 6 U2
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(since1 < 0), so we obtain

P 3 6 2|1|3/2,

which is the upper bound forP . For the lower bound,

4P 3 = U2+ 271a2 > 271a2 > 271
8

27
|1|1/2 = −8|1|3/2,

so thatP 3 > −2|1|3/2.

Remark 1. Note that Julia’s bound ona is the same in both cases (positive and negative
discriminant); we improved the bound by a factor of

√
2 in the positive case, but the same

trick does not work in the negative case, as the non-real roots prevent us from applying the
improved form of the AGM inequality.

The algorithm for listing all integral cubics with given negative discriminant1, up
to GL(2, Z)-equivalence, is almost identical to Algorithm 2 for the positive case. We
merely have to replace the upper bound on the loop ona by an upper bound on|a| of
((2
√

2)/(3
√

3))|1|1/4, and the lower bound on the loop onc by (b2− 21/3|1|1/2)/(3a).
To adapt Algorithm 1 requires more work, since we first compute the real rootα of the

given cubic. Then we defineh0, h1 andh2 as in (11). In the translation step we use the
nearest integer to−h1/2h0 ask, and must remember to replaceα by α − k as well as
changing the coefficients. The inversion step takes place ifh0 > h2, and we then replace
α by −1/α. If several steps are needed in the reduction, we will gradually lose precision
in our (necessarily approximate) value of the real rootα. This should be avoided, either by
recomputing the root from the new coefficients every few steps, or by refining the root by
replacingα by α − g(α)/g′(α).

It is possible to express the reduction criterion in terms which do not require knowing an
explicit value for the real rootα. The cubic is reduced if and only if−h0 6 h1 6 h0 6 h2,
which is if and only if the three quantitiesh2− h0, h0− h1 andh0+ h1 are non-negative.
Now each of these quantities has two other conjugates, which are complex conjugates
and hence whose product is positive; so an equivalent condition is that the three norms
N(h2 − h0), N(h0 − h1) andN(h0 + h1) should be non-negative. These norms are the
following polynomials:

C1 = N(h2− h0) = −108b3a2d − 3b4c2+ 54a2c4+ 18b5d + 243a2d2b2− 54b3cad

−162bc2a2d − 54a3c3+ 486a3dcb + 3c4b2− 18c5a

−243d2a2c2+ 54c3abd + 162d2ab2c + 2c6− 2b6− 729a4d2

+729d4a2+ 54b3d3+ 18b4ac − 27a2b2c2+ 108c3d2a

−18c4db + 27d2c2b2− 486d3acb − 54d2b4;

C2 = N(h0 − h1) = (108b3a2d − 12b4c2+ 216a2c4

+72b5d + 972a2d2b2− 216b3cad − 648bc2a2d + 54a3c3

−486a3dcb + 2b6+ 729a4d2− 18b4ac + 27a2b2c2)

+2(−108d2b3a + 45ac2b3+ 243a3c2d − 135a2c3b

−81ab4d − 729a3bd2− 3b5c + 8c3b3+ 324a2b2dc

−36db4c − 36c4ba − 108dc3a2+ 216db2ac2);
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C3 = N(h0 + h1) = (108b3a2d − 12b4c2+ 216a2c4

+72b5d + 972a2d2b2− 216b3cad − 648bc2a2d + 54a3c3

−486a3dcb + 2b6+ 729a4d2− 18b4ac + 27a2b2c2)

−2(−108d2b3a + 45ac2b3+ 243a3c2d − 135a2c3b

−81ab4d − 729a3bd2− 3b5c + 8c3b3+ 324a2b2dc

−36db4c − 36c4ba − 108dc3a2+ 216db2ac2).

Use of these formulas does give us exact integral conditions for an integer cubic to be
reduced, and even a possible reduction procedure: invert ifC1 < 0, replaceg(X) by
g(X+1) until C3 > 0, replaceg(X) by g(X−1) until C2 > 0, then repeat. Apart from the
complicated nature of these expressions, however, there is a more serious drawback here:
we cannot compute directly from the initial values ofC2 andC3 the integer value ofk such
thatg(X+ k) has positiveC2 andC3, only its sign. Since in practice we may require a very
large value ofk, it is clearly most inefficient to carry out the shift in unit steps. (M. Stoll has
pointed out to us that one can in fact reduce the number of steps to the order of log2(k) by
repeatedly doubling the step size until overshooting, and then reversing direction. We leave
the details as an exercise to the reader.) Hence it is more efficient in practice to compute the
real rootα, so that we can computek directly.

A similar criticism can be applied to the reduction procedure proposed by Mathews in
[13]: the condition that the covariant(X − β)(X − β) is reduced is expressed there as
equivalent to the three inequalities

C1 = d(d − b)+ a(c − a) > 0;
C2 = ad − (a + b)(a + b + c) 6 0;
C3 = ad + (a − b)(a − b + c) > 0.

While this is simple to use in practice, we encounter the same drawback when a large shift
is required.

Finally, we present some comparisons between the reduction defined here, following
Julia, and the reduction of Mathews/Belabas.

Experiment shows that in many cases the only difference between the Julia reduction of
an integer cubic and its Mathews reduction is a shift in the variable. For example, cubics
of the formg(X) = X3 + d, which have negative discriminant−27d2, are always Julia-
reduced, while their Mathews reduction isg(X + k) wherek = [(1+ 3

√
d)/2], since we

then shift so that the non-real roots have real part less than 1/2. For instance, the Mathews
reduction ofX3+ 1000 isX3+ 15X2+ 75X+ 1125.

In [2], a report is given of an enumeration of all cubic fields with discriminant less than
1011 in absolute value. In the complex case (1 < 0), the bound on the leading coefficienta

used there was [(
16 · 1011

27

)1/4]
= 493.

By comparison, our bound fora is[(
64 · 1011

729

)1/4]
= 306.
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It would be interesting to compare the running time of approximately 25.5 days given in
[2] with the time needed using this lower bound. Belabas estimates (as stated in a personal
communication to the author) that the difference would not be very great, since most of the
running time in his program is accounted for by the small values ofa, since for larger values
of a the inner loops are very short. Full references to the Davenport (1945) and Mordell
(1943) results are given in Cassels’ book [4].

4. Reduction of quartics

As with cubics, we start by a purely algebraic account of the invariants and covariants
of a quartic, including algebraic covariants. See [7] for a brief summary of the relevant
classical invariant theory for quartics.

4.1. Invariants and covariants
Let

g(X) = aX4+ bX3+ cX2+ dX + e (14)

be a quartic. As with cubics, we regard the coefficientsa, b, c, d, e as indeterminates, and
the results and formulas which we obtain in this subsection will be valid over arbitrary fields
whose characteristic is neither 2 nor 3. LetK0 again denote a prime field other thanF2 or
F3 and setK = K0(a, b, c, d, e), so thatg ∈ K[X].

4.1.1. Rational invariants and covariants
We first consider rational invariants and covariants ofg. The invariants form a graded ring,
generated by two invariants of weights 4 and 6 which are conventionally denotedI andJ :

I = 12ae − 3bd + c2, (15)

J = 72ace + 9bcd − 27ad2− 27eb2− 2c3. (16)

These are algebraically independent, and every invariant is an isobaric polynomial inI

andJ . We will denote the invariant 4I3− J 2 by 1, and refer to it as the discriminant; this
is in fact 27 times the usual discriminant10 of g:

1 = 4I3− J 2 = 2710, (17)

10 = 256a3e3− 4b3d3− 128a2c2e2− 192a2bde2− 6ab2d2e − 80abc2de (18)

+16ac4e + b2c2d2− 27(a2d4+ b4e2)+ 2c(9bd + 72ae − 2c2)(ad2+ b2e).

The seminvariants ofg (which are just the leading coefficients of covariants) are the
invariantsI andJ , and the leading coefficienta, together with the following:

H = 8ac− 3b2; (19)

R = b3+ 8a2d − 4abc; (20)

Q = 1

3
(H 2− 16a2I ) = 3b4− 16ab2c + 16a2c2+ 16a2bd − 64a3e. (21)

These are denoted−p andr respectively in [7]; the notation forI andJ is classical and
standard, whileH is used in [3]. The seminvariantsI ,J ,a,H ,R are related by the following
syzygy:

H 3− 48Ia2H + 64Ja3 = −27R2. (22)
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The (non-constant) rational covariants ofg areg(X) itself, with leading coefficienta, a
quartic covariantg4(X) with leading coefficient−H :

g4(X) = (3b2− 8ac)X4+ 4(bc − 6ad)X3+ 2(2c2− 24ae − 3bd)X2

+4(cd − 6be)X+ (3d2− 8ce), (23)

and a sextic covariantg6(X) with leading coefficientR:

g6(X) = (b3+ 8a2d − 4abc)X6+ 2(16a2e + 2abd − 4ac2+ b2c)X5

+5(8abe+ b2d − 4acd)X4+ 20(b2e − ad2)X3

−5(8ade+ bd2− 4bce)X2− 2(16ae2+ 2bde − 4c2e + cd2)X

−(d3+ 8be2− 4cde). (24)

The syzygy between the seminvariants extends to a syzygy between the covariants:

g3
4 − 48Ig2g4− 64Jg3 = 27g2

6. (25)

All rational covariants are polynomials inI , J , g, g4 andg6 with constant coefficients; in
particular, there is no rational quadratic covariant of a quartic, as there was for a cubic.
We will therefore always need to extend the base field in order to find a suitable quadratic
covariant for reduction purposes.

Sinceg4(X) is again a quartic, we may look at its invariants and covariants. These
are easily identifiable, as they are also covariants ofg itself. We summarize the results in
Proposition5, which is trivial to verify using algebraic manipulation. We include some
algebraic in- and covariants which will be defined in the next subsection.

Proposition 5. The invariants, seminvariants and covariants of the quartic covariantg4(X)

are as follows.

g(X) g4(X)

I 24I2

J 26(2I3− J 2)

1 212J 21

a −H

H 24(4aJ −HI)

R 26JR

g4(X) −24(I g4(X)+ 4J g(X))

g6(X) 26J g6(X)

ϕ 4(ϕ2− 2I )

z 16(ϕ2− 3I )z

H(X) 4
√

ϕ2− 3I H(X)

G(X) −16ϕ
√

ϕ2− 3I G(X)

4.1.2. Algebraic invariants and covariants
For fixedI andJ , every quartic with these invariants has a splitting field which contains
the splitting field of the so-calledresolvent cubicequationF(X) = 0, where

F(X) = X3− 3IX+ J, (26)

which has discriminant 271= 27(4I3− J 2). We will denote byϕ a generic root ofF(X),
so thatϕ3 = 3Iϕ − J . This quantityϕ is an algebraic invariant ofg: if g is transformed
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by a linear substitution of determinantδ, so thatI andJ are transformed intoδ4I andδ6J

respectively, then clearlyϕ is transformed intoδ2ϕ; thus,ϕ has weight 2.
Note thatϕ is absolutely invariant under unimodular transformations (with determinant

±1), and that the cubic resolvent fieldK(ϕ) is itself invariant. It will therefore be advanta-
geous to use covariants defined overK(ϕ) where possible; we will see, in fact, that this is
possible for real quartics with positive discriminant, while reduction of real quartics with
negative discriminant will require a further extension of the coefficient field.

We note in passing that there is a close connection between the three values ofϕ and the
four roots ofg(X). This is the basis for one classical method of solving quartics by radicals.
Denote the roots ofg(X) by xi for 1 6 i 6 4, and setz = (4aϕ − H)/3. Lettingϕ run
through the three roots ofF(X) we obtain three values ofz, sayzj for 1 6 j 6 3. Then we
have

z1 = a2(x1+ x2− x3− x4)
2, (27)

with similar expressions forz2 andz3, and conversely,

4axi + b = ±√z1±√z2±√z3, (28)

where the four values are obtained by taking any choice of signs such that the three square
roots multiply to+R as opposed to−R. Note that the seminvariant syzygy (22) gives

z1z2z3 =
∏

(4aϕ −H)/3= R2. (29)

WhenR = 0, one of the values ofϕ is rational, and one value ofz is zero; then (28) only
gives four values.

This quantityz is an algebraic seminvariant, and will appear repeatedly below; its minimal
polynomial is (

4a

3

)3

F

(
3Z+H

4a

)
= Z3+HZ2+QZ − R2,

whose coefficients are rational seminvariants. Moreover,z is the leading coefficient of the
algebraic covariant13(g4(X) + 4ϕg(X)), of degree 4. This quartic is in fact the square of
a quadratic, a property which characterizesϕ as a root of the resolvent cubic. (See [11,
pp.73–76] for how to use this to give an alternative method of solving quartic equations,
noting that Hilbert’s notation is not quite the same as ours.)

It is more convenient for us to approach the quadratic algebraic covariants, which we
have just seen arise as the square roots of1

3(g4(X)+4ϕg(X)), in a different way. If there is
a quadratic covariant defined over the cubic resolvent fieldK(ϕ), then its norm (fromK(ϕ)

to K) is a rational sextic covariant, and hence must equalg6(X) up to a constant factor. So
we are led to consider the factorization ofg6(X) in K(ϕ)[X]. Using Maple, we find the
following factorization:

g6(X) = H(X)G(X) = z−1H1(X)G1(X), (30)

whereH1(X) = √zH(X) andG1(X) = √zG(X) are irreducible polynomials inK(ϕ)[X]
of degrees 2 and 4 respectively. Explicitly,

H1(X) = 1

36

(
g′′4(X)+ 4g′′(X)ϕ + 8(I − ϕ2)

)
(31)

and

G1(X) = 1

90

(
20g′(X)ϕ2− 5g′4(X)ϕ + 3g′′6(X)− 40Ig′(X)

)
. (32)
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The polynomialsH1(X) andG1(X) are simpler to use thanH(X) andG(X), since they
are defined over the cubic extensionK(ϕ) instead of the degree 6 extensionK(

√
z), but

they suffer two disadvantages. First, they are not truly covariant, although we will see
that this does not matter greatly in practice. Secondly, it may happen (whenR = 0) that
one value ofz is zero, in which case bothH1(X) andG1(X) are identically zero. In fact,
for real quartics with positive discriminant we will see that we can avoid this case, since
thenH(X) is positive definite for a unique choice ofϕ which is not the value for which
z = (4aϕ − H)/3 = 0. Then we could useH1(X) just as well asH(X) for reduction
purposes. But for real quartics with negative discriminant, when we will need to useG(X),
the casez = 0 can occur and must be allowed for.

An alternative expression forH(X) and its other two conjugates may be obtained by
factorizingg6(X) over the splitting fieldK(x1, x2, x3, x4) of g(X). One finds

g6(X) = H(1)(X)H(2)(X)H(3)(X)

whereH(1)(X) is given by

a((x1+ x2− x3− x4)X
2+ 2(x3x4− x1x2)X + (x1x2(x3+ x4)− x3x4(x1+ x2)))

andH(2)(X) andH(3)(X) are defined similarly. Comparing with (27), we see thatH(X)

has leading coefficient
√

z, and it is easy to verify thatH(1)(X) is the same asH(X).
We will occasionally use the notationHϕ(X) instead ofH(X), in order to make the

dependence onϕ explicit.
For future reference, we note the following formulas, which are all proved easily by

algebraic manipulation.

Proposition 6. Letϕ be a root ofF(X) = X3− 3IX+ J , with ϕ′ andϕ′′ its conjugates.
Then the following hold.

(i) ϕ2− 3I = ϕ′ϕ′′ = −J/ϕ.

(ii) ϕ2− I = 1
3(ϕ − ϕ′)(ϕ − ϕ′′).

(iii) ϕ2− 4I = −1
3(ϕ′ − ϕ′′)2.

(iv) −1 = (ϕ2− 4I )(ϕ2− I )2.

(v) 271= [(ϕ − ϕ′)(ϕ′ − ϕ′′)(ϕ′′ − ϕ)]2.

The algebraic covariantH(X) has the following properties.

(vi) H(X)2 = 1
3(g4(X)+ 4ϕg(X)).

(vii) H(X)H(2)(X)H(3)(X) = g6(X).

(viii) The leading coefficient ofH(X) is
√

z.

(ix) disc(H(X))= 4
3(ϕ2− I ) = 4

9(ϕ − ϕ′)(ϕ − ϕ′′).

4.2. Classification of real quartics
Letg(X) = aX4+bX3+cX2+dX+e denote a quartic with real coefficients. Following

[3], we classify real quartics into three ‘types’ according to their signature(r1, r2), wherer1
is the number of real roots andr2 is the number of conjugate pairs of non-real complex roots,
so thatr1 + 2r2 = 4. These types can be distinguished by the signs of the discriminant1

and of the seminvariantsH andQ. We summarize this in the following proposition, which
also serves as the definition of the three types.
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Proposition 7. Let g(X) = aX4 + bX3 + cX2 + dX + e ∈ R[X] be a real quartic with
distinct roots.

Type 1. If 1 > 0 and eitherH > 0 or Q < 0, theng(X) has no real roots,
signature(0, 2).

Type 2.If 1 > 0, H < 0 andQ > 0, theng(X) has4 real roots, signature(4, 0).

Type 3.If 1 < 0, theng(X) has2 real roots, signature(2, 1).

Proof. This is a standard exercise (see [6, Exercise 1 on page 217], but note that the result
there is not stated correctly). In the case1 > 0, all cases are covered, since it is impossible
to have eitherH = 0 andQ > 0, orH < 0 andQ = 0. This follows from the following
identity:

4096a610 = −27R4+ 4H 3R2− 18R2HQ+H 2Q2− 4Q3.

Consider further the case1 > 0 (Types 1 and 2). Since the resolvent cubicF(X) has
discriminant1, it has three real roots in this case, which we denoteϕi for 1 6 i 6 3. We
will always order these so that

4aϕ1 > 4aϕ2 > 4aϕ3. (33)

Since
∏

(H − 4aϕ) = −27R2 6 0, we can distinguish between Types 1 and 2 according
to the interval in whichH lies. For Type 1, we have

4aϕ1 > H > 4aϕ2 > 4aϕ3, (34)

(or z1 > 0 > z2 > z3), while for Type 2 we have

4aϕ1 > 4aϕ2 > 4aϕ3 > H (35)

(or z1 > z2 > z3 > 0).
Similarly, when1 < 0 (Type 3) there is only one real value ofϕ, and the same syzygy

now gives

4aϕ > H (36)

(or z > 0).

Remark 2. For fixed values of the invariantsI andJ , if 1 > 0 then the real quartics with
invariantsI andJ lie in three orbits under the action of SL(2, R): Type 1 witha > 0
(positive definite), Type 1 witha < 0 (negative definite), and Type 2 (indefinite). If1 < 0
there is just one orbit.

Remark 3. In applications to 2-descent on elliptic curves, we are only interested in quartics
g(X) for which the equationY 2 = g(X) has real solutions. We then ignore quartics of Type 1
with a < 0, and SL(2, R) acts transitively on the remaining quartics of each relevant type.

4.3. Reduction of real quartics with1 > 0
For real quartics with positive discriminant, we will be able to use the algebraic covariant

quadraticHϕ(X) for reduction, provided that we can choose the value ofϕ so thatHϕ(X) is
definite. We are able to treat simultaneously here both the relevant types of quartic (Types 1
and 2), in contrast with Julia [12] and Birch and Swinnerton-Dyer [3], who deal with these
quite separately.
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Let ϕ denote any of the three roots ofF(X), which are all real, and denote the other two
roots byϕ′ andϕ′′. As before, we setz = (4aϕ−H)/3. Recall thatH(X) = Hϕ(X) is the
quadratic factor ofg6(X) inK(

√
z)[X], with leading coefficient

√
z and discriminant43(ϕ2−

I ) = 4
9(ϕ − ϕ′)(ϕ − ϕ′′).

If H = 4aϕ, thenz = 0 andH(X) degenerates to a linear polynomial (proportional
to 4aX + b) which is certainly not positive definite.

If H < 4aϕ, so thatz > 0, thenH(X) has a positive leading coefficient, and will have
negative discriminant provided thatϕ liesbetweenϕ′ andϕ′′. This implies thatg(X) must
be a Type 2 quartic, with 4aϕ1 > 4aϕ2 > 4aϕ3 > H andϕ = ϕ2.

On the other hand, ifH > 4aϕ thenz < 0 so thatH(X) is not real, but in this case
H1(X) = √zH(X) is real and will be positive definite provided that(ϕ−ϕ′)(ϕ−ϕ′′) > 0.
For this,ϕ must be one of the outer roots. Then 4aϕ1 > H > 4aϕ2 > 4aϕ3, with ϕ = ϕ3,
andg(X) has Type 1.

We have thus proved the following proposition. Observe that in each case, there is a
unique choice ofϕ which gives a positive definite quadratic.

Proposition 8. Letg(X) be a real quartic with positive discriminant1 and leading coeffi-
cienta. Order the rootsϕi of the resolvent cubicF(X) as before, with4aϕ1 > 4aϕ2 > 4aϕ3.
Set

(i) ϕ = ϕ3, andh(X) = −H1(X) = −√zHϕ(X), if g(X) has Type1;

(ii) ϕ = ϕ2, andh(X) = H1(X) = √zHϕ(X), if g(X) has Type2.

Thenh(X) is a positive definite real quadratic, which is a covariant ofg(X) up to the positive
constant factor

√|z|. It is the unique positive definite quadratic factor of the covariantg6(X)

in each case.

This proposition enables us to define a reduced quartic in the positive discriminant case.

Definition 4. A real quarticg(X) with positive discriminant isreducedif and only if the
positive definite quadratich(X), defined in Proposition8, is reduced.

Before we proceed to derive bounds on the coefficients of a reduced quartic, we record
the fact that these covariant quadratics are in fact the same as those used by both Julia in [12]
and Birch and Swinnerton-Dyer in [3] (see Subsection2.2.4), up to unimportant constant
factors. Note that we have been able to give essentially thesamedefinition of the covariant
quadratich(X) in these two cases, while the expressions used by the previous authors look
totally different for quartics of Types 1 and 2.

Proposition 9. The positive definite quadratic covariants associated to a real quartic with
positive discriminant in Proposition8 are equal to those defined by Julia and also used by
Birch and Swinnerton-Dyer, both for Type1 and Type2 quartics. Hence our definition of
‘reduced’ agrees with theirs in both these cases.

Proof. This is a straightforward calculation in each case, using the expression forH(X) in
terms of the roots ofg(X). It is necessary to order thexi correctly. For Type 1 quartics, one
must take the conjugate pairs to be{β1, β1} = {x1, x3} and{β2, β2} = {x2, x4}, while for
Type 2 one takesx1 > x3 > x2 > x4. We leave the remaining details to the reader.

We next observe that, as was the case for cubics, a real quarticg(X) with positive
discriminant is reduced if and only if its quartic covariantg4(X) is also reduced.
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Proposition 10. Let g(X) be a real quartic with positive discriminant and nonzeroJ in-
variant. Theng(X) is reduced if and only if its quartic covariantg4(X) is reduced.

Proof. The condition on theJ invariant is included merely becauseg4(X) is singular when
J (g) = 0, since1(g4) = 212J 21, and we have only defined the notion of ‘reduced’ for
nonsingular quartics. The same relation shows that1(g4) > 0 when1 > 0 andJ 6= 0, so
we have defined what it means forg4 to be reduced.

Above we showed thatg6(X) factorizes over the splitting field of the cubic resolvent
F(X) as a product of three real quadratics, exactly one of which is definite. Henceg6(X)

has exactly one pair of complex roots, of which exactly one is in the upper half-plane, and
g(X) is reduced if and only if this root lies in the usual fundamental region (2). Since the
g6 covariant ofg4(X) is 26J g6(X), the result is now immediate.

Remark 4. It is not true thatg(X) andg4(X) have the same type. In fact, a rather tedious
examination of cases shows thatg4(X) has Type 1 wheng(X) has Type 2 or wheng(X)

has Type 1 andaJ > 0, butg4(X) has Type 2 wheng(X) has Type 1 andaJ < 0.

We now derive the important inequalities satisfied by a reduced quartic in the positive
discriminant case.

Proposition 11. Letg(X) be a reduced real quartic with positive discriminant1, leading
coefficienta and seminvariantH . Order the three real roots of the resolvent cubic so that
4aϕ1 > 4aϕ2 > 4aϕ3.

(i) If g(X) has Type1, then

|a| 6 1

9
|ϕ1− ϕ3|; (37)

4aϕ2 6 H 6 min{4aϕ1, 4aϕ3+ 4

3
(ϕ2

3 − I )}. (38)

(ii) If g(X) has Type2, then

|a| 6 1

9
|ϕ1− ϕ2|; (39)

4aϕ2+ 4

3
(ϕ2

2 − I ) 6 H 6 4aϕ3. (40)

Remark 5. In the Type 1 case, the range ofa naturally divides up into two subranges: when
|a| 6 1

9|ϕ2− ϕ3|, the relevant upper bound onH is

H 6 4aϕ3+ 4

3
(ϕ2

3 − I ) ( 6 4aϕ1),

while for 1
9|ϕ2− ϕ3| 6 |a| 6 1

9|ϕ1− ϕ3|, the relevant upper bound is

H 6 4aϕ1 ( 6 4aϕ3+ 4

3
(ϕ2

3 − I )).

Remark 6. With slightly different notation, these are in fact the same bounds as stated in
[3], though this is by no means apparent: our expression (37) for the upper bound on|a| for
Type 1 quartics is much simpler than the expression given in [3].
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Remark 7. In applying these bounds, one must not forget that our convention is to order
the rootsϕi differently for positive and negativea. If we instead fixϕ1 > ϕ2 > ϕ3, then the
range ofa in the Type 2 case becomes

1

9
(ϕ3− ϕ2) 6 a 6 1

9
(ϕ1− ϕ2). (41)

Remark 8. One can attempt to obtain alternative bounds onH by noting that it is (minus)
the leading coefficient ofg4(X), so that we may apply the bounds ona to g4, which is
reduced wheng is. This is quite delicate, as we have to consider carefully the ordering of
the three roots 4(ϕ2−4I ) of the resolvent cubic ofg4. In the end one obtains bounds which
are always weaker (or at least no stronger) than the bounds stated here. We omit the details.

Proof of Proposition11. First consider the Type 1 case, whereϕ = ϕ3 and 4aϕ1 > H >
4aϕ2 > 4aϕ3. The positive definite quadratic covarianth(X) defined above has leading
coefficient−9z= 3(H−4aϕ3) and discriminant 108z(ϕ23− I ) = 36(4aϕ3−H)(ϕ2

3− I ).
Applying the basic reduction inequality (3) gives

H − 4aϕ3 6 4

3
(ϕ2

3 − I ),

which combined with 4aϕ2 6 H 6 4aϕ1 gives the stated bounds onH . Then

a(ϕ2− ϕ3) 6 1

3
(ϕ2

3 − I ) = 1

9
(ϕ1− ϕ3)(ϕ2− ϕ3),

which gives the stated upper bound for|a|.
In the Type 2 case, we haveϕ = ϕ2 and 4aϕ1 > 4aϕ2 > 4aϕ3 > H . Now h(X) has

leading coefficient 9z= 3(4aϕ2−H) and discriminant 36(4aϕ2−H)(ϕ2
2−I ), so reduction

implies thatH − 4aϕ2 > 4
3(ϕ2

2 − I ). The bounds ona andH are obtained as before.

4.4. Reduction of real quartics with1 < 0
We turn to the case of real quartics with negative discriminant (Type 3). Here there is a

unique real rootϕ of the resolvent cubicF(X), using which we may define a real quadratic
H(X) overK(

√
z). But nowH 6 4aϕ, so thatz > 0, and the discriminant ofH(X) is

4
9(ϕ − ϕ′)(ϕ − ϕ′′) = 4

9|ϕ − ϕ′|2 > 0. SoH(X) is indefinite, and cannot be used for
reduction.

The approach used by Birch and Swinnerton-Dyer in [3] bears a strong resemblance to
the idea used by Mathews for cubics with negative discriminant. They define reduction in
terms of the real positive definite quadratic factor(X− β)(X− β) of g(X) itself, ignoring
the two real rootsα1 andα2. This leads to the following bounds on the leading coefficienta

and seminvariantH of a reduced quartic of Type 3:(
a − 1

3
ϕ

)2

6 4

27
(ϕ2− I ); (42)

9a2− 2aϕ + 1

3
(4I − ϕ2) 6 H 6 4aϕ. (43)

Later, we will compare these bounds with the ones obtained by our alternative definition.
Instead we consider the real quartic factorG(X) of g6(X) defined overK(

√
z), defined

in (32).

83https://doi.org/10.1112/S1461157000000073 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000073


Reduction of binary cubic and quartic forms

Proposition 12. Letg be a real quartic with negative discriminant (Type3). Then the real
algebraic covariantG(X) has Type 1.

Proof. We can show directly thatG(X) has no real roots. A real rootα of G(X) would
be a root ofg4(X) + 4ϕ′g(X) for one of the complex rootsϕ′ of F(X), and hence by
conjugation for both the complex roots. But thenα is a common root ofg(X) andg4(X),
which is impossible since their resultant is1

912 6= 0.
Alternatively, we see from Lemma2 below that1G > 0 andHG > 0, from which the

result follows by Proposition7.

As we have already defined what it means for a Type 1 real quartic to be reduced, we
may now make the following definition.

Definition 5. Let g be a real quartic with negative discriminant (Type 3). Then we say that
g is reducedif and only if its real algebraic covariantG(X) is reduced.

It is not at all clear that this definition will give useful results, or how it compares with
earlier alternative definitions of Julia or Birch and Swinnerton-Dyer. In fact it turns out to be
equivalent to Julia’s definition in [12], though we are able to obtain better bounds than Julia
from it; and it is certainly different from the definition of Birch and Swinnerton-Dyer, giving
considerably better bounds. Obtaining bounds ona andH from our definition, however,
will involve some work.

As in all earlier cases, we find thatg(X) is again reduced if and only ifg4(X) is reduced.

Proposition 13. Let g be a real quartic with negative discriminant (Type3) and nonzero
J invariant. Then

(i) The quartic covariantg4(X) also has Type3;

(ii) The quartic covariantsG(X) associated tog andg4 are the same, up to a constant
factor;

(iii) The quarticg is reduced if and only ifg4 is reduced.

Proof. The first two parts follow from the explicit formulas given in Proposition5, and
then the last statement is immediate.

In order to apply the results of the previous section toG(X), we must examine its
invariants and covariants. The basic inequalities for a Type 1 quartic, from which we derived
the bounds (37) and (38) fora andH stated in Proposition11, were

3(H − 4aϕ3) 6 4(ϕ2
3 − I ) (44)

and
4aϕ2 6 H 6 4aϕ1. (45)

We therefore compute the quantities appearing in these expressions associated to the quar-
tic G(X), obtaining the values shown in Lemma2. Note thatz = 1

3(4aϕ − H) > 0. We
also set

8 = 2

3
|ϕ − ϕ′| |ϕ′ − ϕ′′|. (46)
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Lemma 2. Letg(X) be a real quartic with negative discriminant (Type3). Denote the real
root of the resolvent cubic byϕ, and the complex conjugate roots byϕ′, ϕ′′. Then the values
of the invariants and seminvariants ofG(X) are as follows.

g(X) G(X)

I 4
3(ϕ2− I )(ϕ2− 4I ) = 4

27|ϕ − ϕ′|2|ϕ′ − ϕ′′|2
J 0
1 283−3(ϕ2− I )3(ϕ2− 4I )3 = 283−9|ϕ − ϕ′|6 |ϕ′ − ϕ′′|6
a |z′|
H 4z(ϕ2− 4I ) = 4

3z|ϕ′ − ϕ′′|2
ϕ1 8

ϕ2 0
ϕ3 −8

H − 4aϕ3
4
3|ϕ′ − ϕ′′| (z|ϕ′ − ϕ′′| + 2|z′| |ϕ − ϕ′|)

ϕ2
3 − I 2IG = 8

3(ϕ2− I )(ϕ2− 4I ) = 8
27|ϕ − ϕ′|2|ϕ′ − ϕ′′|2

Proof. That the leading coefficient ofG(X) is 9R is immediate from its definition (32).
The values ofIG, JG, 1G andHG are obtained by direct calculation. These quantities are
all positive, except forJG, which is zero, andHG, which is zero whenR = 0 (since then
z = 0). The cubic resolvent polynomial forG(X) is thus

X3− 3IGX + JG = X(X2− 3IG),

whose roots are 0 and±8, since82 = 3IG. The rest is straightforward, using identities
we derived earlier.

Lemma 3. Let g(X) be a real quartic of Type3. With the same notation as above, the
following inequality holds:

0 6 |ϕ′ − ϕ′′|(4aϕ −H) 6 2|ϕ − ϕ′| |4aϕ′ −H |. (47)

If g is reduced, then also

|ϕ′ − ϕ′′|(4aϕ −H)+ 2|ϕ − ϕ′| |4aϕ′ −H | 6 8

9
|ϕ′ − ϕ′′| |ϕ − ϕ′|2. (48)

Proof. These are the inequalities (45) and (44) applied toG(X), using the formulas of the
preceding lemma. In fact (47) just comes from the seminvariant syzygy, following directly
(sinceH 6 4aϕ) from the identity

4|ϕ − ϕ′|2|4aϕ′ −H |2− |ϕ′ − ϕ′′|2(4aϕ −H)2 = 9(Hϕ+ 8aI)2.

Lemma 4. Letg(X) be a reduced real quartic of Type3. Then its leading coefficienta and
seminvariantH satisfy the following inequalities.

|a| 6 1

6
√

3
(2

√
ϕ2− I +

√
ϕ2− 4I ); (49)

4aϕ − 4

3
(ϕ2− I ) 6 H 6 4aϕ; (50)

|H + 2aϕ| 6 2

3

√
ϕ2− 4I

√
4(ϕ2− I )− 27a2. (51)
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Proof. Substitute (47) into (48) to get

0 6 2|ϕ′ − ϕ′′|(4aϕ −H) 6 8

9
|ϕ′ − ϕ′′| |ϕ − ϕ′|2,

so that

0 6 4aϕ −H 6 4

9
|ϕ − ϕ′|2 = 4

3
(ϕ2− I ), (52)

which is (50). Also, since 4aϕ −H > 0, (48) implies that

|H − 4aϕ′| 6 4

9
|ϕ − ϕ′| |ϕ′ − ϕ′′|. (53)

To ease notation, writex = |ϕ − ϕ′| andy = |ϕ′ − ϕ′′|; these satisfy 0< y 6 2x, since
by the triangle inequality,|ϕ′ − ϕ′′| 6 |ϕ′ − ϕ| + |ϕ′′ − ϕ| = 2 |ϕ − ϕ′| (recall thatϕ is
real, whileϕ′′ = ϕ′). Sinceϕ + ϕ′ + ϕ′′ = 0, we haveϕ′ = 1

2(−ϕ + yi). The identities
x2 = 3(ϕ2− I ), y2 = 3(ϕ2− 4I ) and 4x2 = 9ϕ2+ y2 will also be used; they follow from
Proposition6.

In this notation, (52) and (53) become

0 6 4aϕ −H 6 4

9
x2, (54)

and

|H − 4aϕ′| 6 4

9
xy. (55)

Now H − 4aϕ′ = (H + 2aϕ)− 2ayi, so (55) implies that 4x2 > 81a2 and then

(H + 2aϕ)2 6 4

81
y2(4x2− 81a2). (56)

This implies (51), using the identities stated above.
Note that this calculation already implies that|a| 6 2

9x; we now strengthen this to give
|a| 6 1

18(2x+y), which is (49). Writeu = |z′| = 1
3|H −4aϕ′|. Now (48) and (47) become

yz + 2xu 6 8
27x

2y and 06 yz 6 2xu. Together withz > 0 these determine a triangle in
the(z, u) plane with vertices at(0, 0), (0, 4

27xy) and( 4
27x

2, 2
27xy). Usingy 6 2x one sees

that the maximum value ofz+ u is attained at the last vertex, so thatz+ u 6 2
27x(2x+ y),

which implies the desired result|a| 6 1
18(2x + y), since

4|a|x = |4a(ϕ − ϕ′)| 6 |4aϕ −H | + |4aϕ′ −H | = 3(z+ u).

Remark 9. The bound on|a| in the preceding Lemma may be written in the form

1

18

∑
i<j

|ϕi − ϕj |.

This has exactly the same form as the bound we obtained for Type 1 quartics: whenϕ1 >

ϕ2 > ϕ3 this expression equals19|ϕ1− ϕ3|, just as in (37). The same is also true for Type 2
reduced quartics, if one compares the form of the bounds given in (41). It was this symmetry
which led us to seek to prove the inequality (49), instead of the weaker form

|a| 6 1

9
x + 1

9
y = 1

9
|ϕ − ϕ′| + 1

9
|ϕ′ − ϕ′′| = 1

3
√

3
(

√
ϕ2− I +

√
ϕ2− 4I ),
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which is somewhat easier to derive from (48) and (47).

Remark 10. The bounds (42) ona given in [3] determine an interval of length49x, whereas
our bound (49) gives an interval of length19(2x + y); the latter is at least as good, since
y 6 2x.

We now further tighten the bounds just obtained fora andH . The final result is as
follows.

Proposition 14. Let g(X) be a reduced real quartic of Type 3, with (negative) discrimi-
nant1, leading coefficienta and seminvariantH , and letϕ be the real root of the resolvent
cubic. Set

A = 1

6
√

3
(2

√
ϕ2− I +

√
ϕ2− 4I )

(which depends only on the invariantsI andJ ), and

Ba = 2

3

√
ϕ2− 4I

√
4(ϕ2− 4I )− 27a2

(which also depends ona).
If J < 0 (equivalently,ϕ > 0), thena satisfies

− 1

3
√

3

√
ϕ2− 4I 6 a 6 min

{
A , max

{
1

6

(
ϕ +

√
ϕ2− 4I

)
,

2

9

(ϕ2− I )

ϕ

} }
(57)

while if J > 0 (equivalently,ϕ < 0), thena satisfies

1

3
√

3

√
ϕ2− 4I > a > max

{
−A , min

{
1

6

(
ϕ −

√
ϕ2− 4I

)
,

2

9

(ϕ2− I )

ϕ

} }
. (58)

If J = 0 thenϕ = 0 andI < 0, anda satisfies

|a| 6 2

3
√

3

√−I . (59)

For eacha, H satisfies the inequalities

max

{
4aϕ − 4

3
(ϕ2− I ) , −2aϕ − Ba

}
6 H 6 min { 4aϕ , −2aϕ + Ba } . (60)

Proof. The relation between the signs ofJ andϕ follows fromϕϕ′ϕ′′ = −J .
The inequalities (50) and (51) each determine an interval in whichH lies, given the

value ofa. Recall the notation introduced above:x = |ϕ − ϕ′| andy = |ϕ′ − ϕ′′|; then the
relevant inequalities onH are (55) and (56). We now impose the conditions that these are
not disjoint, in order to further restricta. First we have

−2aϕ − 2

9
y
√

4x2− 81a2 6 H 6 4aϕ

(where 4x2 − 81a2 > 0), so that−y
√

4x2− 81a2 6 27aϕ. This is trivially satisfied if
aϕ > 0, but if aϕ < 0 it givesy2(4x2− 81a2) > 729a2ϕ2, which simplifies toy2 > 81a2

on using the identity 4x2 = 9ϕ2+ y2. Hence

|a| 6 1

9
y = 1

3
√

3

√
ϕ2− 4I .
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Note that this is always at least as strong as (49), sincey 6 2x, so we can replace the upper
or lower bounds ona whenϕ < 0 orϕ > 0 respectively by± 1

3
√

3

√
ϕ2− 4I .

Secondly, we have

4aϕ − 4

9
x2 6 H 6 −2aϕ + 2

9
y
√

4x2− 81a2,

which simplifies to 27aϕ − 2x2 6 y
√

4x2− 81a2. This time we obtain no further in-
formation whenaϕ < 0, or even whenaϕ 6 2

27x
2. But whenaϕ > 2

27x
2 we have

(27aϕ− 2x2)2 6 y2(4x2− 81a2), which simplifies to

(6a− ϕ)2 6 1

3
y2.

Now 4x2 = 9ϕ2+ y2 > 9ϕ2, so 2
27x

2 > 1
6ϕ2; hence the conditionaϕ > 2

27x
2 implies that

|a| > 1
6|ϕ| > 0. First suppose thatϕ > 0; thena > ϕ/6, so the extra condition ona is

2

27

x2

ϕ
<

1

6
ϕ 6 a 6 1

6
ϕ + 1

6
√

3
y.

Thus whenϕ > 0, an upper bound on positivea is

a 6 max

{
1

6
ϕ + 1

6
√

3
y ,

2

27

x2

ϕ

}
= max

{
1

6

(
ϕ +

√
ϕ2− 4I

)
,

2

9

(ϕ2− I )

ϕ

}
;

the bound2
27

x2

ϕ
is stronger (smaller than16ϕ + 1

6
√

3
y) if and only if I + 2ϕ2 > 0.

The analysis fora < 0 whenϕ < 0 is similar. Finally, the caseϕ = 0 is easy, as here
we just restate the bound obtained earlier.

We end this section by sketching a proof that our definition of reduction for quartics with
negative discriminant does coincide with Julia’s. Note that we have not yet written down
explicitly the associated positive definite real quadratic in this case. Ignoring an irrelevant
constant factor, this is

H8(X) = G′′4(X)+ 4G′′(X)8− 16IG,

whereG(X) is the quartic defined above, with invariantIG = 4
3(ϕ2 − I )(ϕ2 − 4I ) and

quartic covariantG4(X), and8 = √3IG.
Since82 has a lower algebraic degree than8, it is easier to work with

H8(X)H−8(X) = (G′′4(X)− 16IG)2− 48IGG′′(X)2.

which is a quartic defined overQ(a, b, c, d, e)(ϕ). We now replaceb, c, d, e andϕ by
their expressions in terms ofa and the rootsα1, α2, β andβ of the original quarticg(X).
Computer algebra then shows that the resulting expression is equal, up to a constant factor,
to

(t2
1(X − α1)

2+ t2
2(X − α2)

2)2− 4u4(X − β)2(X − β)2,

where t2
1, t2

2 andu2 are as defined in (6). The latter is the product of Julia’s quadratic
t2
1(X − α1)

2 + t2
2(X − α2)

2 + 2u2(X − β)(X − β) and the conjugate quadratict2
1(X −

α1)
2+ t2

2(X−α2)
2− 2u2(X−β)(X− β). Since on both sides we have a real quartic with

a unique positive definite quadratic factor, these quadratic factors must themselves be equal
(up to a constant factor). HenceH8(X) is equal to Julia’s quadratic, as claimed.
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4.5. Algorithm for reducing real quartics
The algorithm for reducing a given real quarticg(X) is straightforward. We compute the

invariantsI andJ , the discriminant1 and the seminvariantsH andQ, to determine the
type using Proposition7. We then solve the cubic resolvent equation to find its rootsϕ.

If 1 > 0 then we choose one of the three real rootsϕ as in Proposition8: we take the
smallest for Type 1 quartics witha > 0, the largest for Type 1 quartics witha < 0, and the
middle root for Type 2 quartics. (Note that with Type 1 quartics the sign ofa will remain
constant during reduction, sinceg(X) has no real roots and so is itself positive or negative
definite according to the sign ofa.) Given this value ofϕ, we define the quadraticH1(X)

by (31), ignoring the constant factor, and reduceH1(X) using the general procedure given
in Section2.1.

If 1 < 0 we find it simplest to use Julia’s expression for the positive definite covariant
quadratic given above in (6) and (7). This does require us to compute the roots ofg(X) before
reducing it. However, since we already have the roots of the resolvent cubic, we may easily
write down these roots, rather than use a general-purpose procedure. Letϕ andϕ′ denote
the real and one of the complex roots of the cubic resolvent, as above. Setw = ±√z ∈ R,
where as before,z = 1

3(4aϕ −H) > 0, and the sign ofw is chosen to agree with the sign
of the seminvariantR. Also setw′ = √z′ ∈ C, wherez′ = 1

3(4aϕ′ − H). (The choice of
sign ensures thatR = ww′w′ = w|w′|2.) Then the real roots ofG(X) are

α1, α2 = 1

4a

(−b − w ± 2 Re(w′)
)
,

and the complex conjugate roots are

β, β = 1

4a

(−b + w ± 2 Im(w′)i
)
.

Now the quadratic used for reduction ist2
1(X−α1)

2+ t2
2(X−α2)

2+2u2(X−β)(X−β),

wheret2
1 = | Im(w′)||w + w′|2, t2

2 = | Im(w′)||w − w′|2, andu2 = |Re(w′)||w′2 − w2|.
(These are 8|a|3 times the values given in (6) and (7).)

4.6. Algorithm for finding all integer quartics with given invariants
It is clear from much of the discussion in the preceding sections that we regard bounding

the seminvariants of a reduced quartic with given invariants as more important than bounding
all the coefficients directly, as one might perhaps expecta priori would be more natural.
The only coefficient that we bound explicitly is the leading coefficienta, which is also
seminvariant. In fact this is quite natural, since knowledge of the seminvariantsa, H andR

(as well asI andJ ) determines the quarticg(X) up to a translation of the variableX,
and hence up to SL(2, Z)-equivalence. We can even ignore the seminvariantR, which is
determined up to sign by the seminvariant syzygy (22) givena andH , since the seminvariants
of g(−X) are(a, H,−R). Similar remarks apply in the cubic case.

It would appear, therefore, that our search for inequivalent integer quartics with given
invariantsI , J should consist essentially of a double loop overa (the outer loop) andH
(the inner loop). But this approach has one major drawback, that a given integer pair(a, H)

does not necessarily come from an integer quartic, since the equationH = 8ac− 3b2 does
not necessarily have integer solutions forb andc. Instead, we proceed as follows: the outer
loop ona contains an inner loop onb in the range−2|a| < b 6 2|a|; for each pair(a, b)

we determine bounds onc from the bounds given above onH and use a third loop onc
between these bounds. This ensures that all the inequalities are satisfied, and thata, b andc
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are all integral. (The same method was used in [3], for the same reason, though of course
with different bounds when1 < 0.)

Just as with cubics, we can make this triple loop very much more efficient by using a
quadratic sieve based on the syzygy (22). For each(a, b, c) triple processed, we computeH ,
and look up in precomputed tables the values(a modm, H modm) for various carefully
chosen auxiliary modulim, so that we only proceed with the triple if the left-hand side of
the syzygy has the form−27R2 modm for eachm. Note that although we have a triple
loop, the precomputed arrays are indexed by(a, H) and so are only two-dimensional.

Given a triple(a, b, c) which passes the sieve, we test whether the the left-hand side of
the syzygy really does have the form−27R2 for some integerR. If so, we use the definition
of R in (20) to solve ford (discarding the triple if this value is not integral), and then the
definition ofI gives the value of the last coefficiente, which again we check to be integral.

This is the procedure we have implemented as part of our programmwrank for 2-
descent on general elliptic curves defined overQ. For more details of this algorithm, see the
description in [8, Section 3.6] and also the original paper [3]. Note that in [3], the syzygy is
not used and there is no quadratic sieving. Also, the computation ofd ande there is done
using the cubic quantitiesϕi , which are only known approximately, to a certain precision.
This results in a practical problem, of how to decide whether the computed values ofd ande

are in fact integers when they are close to integers. By contrast, our approach uses exact
integer arithmetic throughout, apart from the computation of the bounds ona andH .

4.6.1. Examples
We give here two examples to show how the bounds just obtained improve substantially on
those used in [3], given above in (42) and (43), which we call the BSD bounds.

Example 1.First consider integer quartics withI = 3792 andJ = −591408. These arise
on doing 2-descent on the elliptic curve

E : y2+ y = x3− 79x+ 342

which has rank 5. The discriminant here is1 = −131658746112= 28331E . The real
value ofϕ is ϕ = 126.6686 and the complex values areϕ′ = −63.3343+ 25.5457iand its
conjugate. The BSD bound fora leads us to consider the range

1 6 a 6 84,

and for eacha we consider integer values ofH satisfying (43). The number of(a, H) pairs
satisfying these is 927 806.

Now the bound on|a|given in Lemma4in (49) is 24.15; fora in the range−24 6 a 6 24,
the inequalities (50), (51) on Hare incompatible unless−5 6 a 6 24. As expected, the
refined bounds fora in Proposition14give precisely this range fora. The number of(a, H)

pairs which satisfy (57), (60) is only 177 176, or approximately one fifth of the earlier
number. This leads to a saving of almost 81 percent in the time to find all inequivalent
integer quartics with these invariants. The number we find is in fact 58; under the weaker
equivalence between quartics which is relevant for classifying homogeneous spaces for a
2-descent, this number reduces to 32 and hence to the conclusion that the curveE has
rank 5. (We omit fuller details of the 2-descent, which is described in [8].)

Example 2.For an even more impressive example, we consider the invariantsI = 721812
andJ = −1236714912, which come from the elliptic curve

E : y2 = x3− 240604x + 45804256
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of rank 7. The BSD bounds give the range 16 a 6 1134 fora, and a total of 2 188 507 643
(a, H) pairs satisfy the BSD inequalities. Using our bounds we find the range−14 6 a 6
290 fora, and a total of 77 752 191(a, H) pairs. The saving here is nearly 96.5%.

5. Remarks on reduction over number fields

In extending our results to the reduction of polynomials over number fields, two important
matters arise. Firstly, reduction of integer polynomials uses the real embeddingQ ↪→ R. For
a number fieldK, we must use all the real embeddings ofK, as well as the complex (non-
real) embeddingsK ↪→ C if K is not totally real. Secondly, we must somehow combine
the bounds coming from the various embeddings ofK to obtain usable bounds, and a finite
search region, for the coefficients of reduced polynomials inOK [X].

We consider first totally real fields. The only case which has been worked out in detail
to date is that of a real quadratic field of class number 1: see [9], and [14] for fuller details.
One finds that the correct approach is not to consider the real embeddings separately, but to
work with them simultaneously. The basic reduction theory of Section2, which was based
on the action of the modular group SL(2, Z) on the upper half-planeH , must be replaced by
a theory based on the action of the Hilbert modular group SL(2, OK) onH2. This leads to
bounds on thenormof the leading coefficient of a reduced totally positive definite quadratic
in K[X], and this is sufficient to produce a finite search region since the action of units can
easily be controlled.

For the case of fields which are not totally real, we only consider here an imaginary
quadratic fieldK. Instead of reduction by means of positive definite real quadratics (or
equivalently, points in the upper half-planeH ), one is led to reduction by means of so-
called ‘Hermitian quadratics’. These have the form

h(z, w) = azz+ bzw + bzw + cww,

wherea andc are real,b is complex, and we considerz andw to be complex indeterminates.
In place of points on the upper half-plane, we have points in hyperbolic 3-spaceH3. The
modular group SL(2, OK) is here usually called a Bianchi group, and acts both on the set of
Hermitian quadratics and onH3. This theory is quite classical, originating in the late 19th
century with the work of Bianchi, Humbert and others. The application to the reduction of
polynomials with complex coefficients forms the second part of Julia’s treatise [12], whose
first part we have referred to repeatedly in this paper. In a future paper, we hope to show
how to use Julia’s methods to find all quartics with givenK-integral invariantsI andJ ,
up to SL(2, OK)-equivalence, over an imaginary quadratic fieldK of class number 1. This
will form part of a planned implementation of an explicit 2-descent algorithm for elliptic
curves defined over such fields. It is not yet clear whether the approach via classical invariant
theory, which we have exploited in this paper, has an analogue in the complex case. Some
preliminary work on such a theory is in progress, but it is too early to tell whether the results
will have practical applications to reduction.
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