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REDUCTION OF BINARY CUBIC AND QUARTIC FORMS
J. E. CREMONA

Abstract

A reduction theory is developed for binary forms (homogeneous
polynomials) of degrees three and four with integer coefficients. The
resulting coefficient bounds simplify and improve on those in the
literature, particularly in the case of negative discriminant. Appli-
cations include systematic enumeration of cubic number fields, and
2-descent on elliptic curves defined ogg@rRemarks are given con-
cerning the extension of these results to forms defined over number
fields.

1. Introduction

Reduction theory for polynomials has a long history and numerous applications, some
which have grown considerably inimportance in recent years with the growth of algorithmi
and computational methods in mathematics. It is therefore quite surprising to find that ev
for the case of binary forms of degree three and four with integral coefficients, the resul
in the existing literature, which are widely used, can be improved. The two basic problen
which we will address for formg (X, Y) in Z[ X, Y] of some fixed degree are as follows
(precise definitions will be given later).

1. Givenf, find a unimodular transform of which is as ‘small’ as possible.

2. Given a fixed value of the discriminant or alternatively fixed values for a complete
set of invariants, find all formg with these invariants up to unimodular equivalence.

It is these two problems for which we will present solutions in degrees three and fou
Our definition of areduced forndiffers from ones in common use in the case of negative
discriminant for both cubics and quartics. We will show that it agrees with the definitior
in Julia’s treatise 12], though this fact is not obvious. Moreover, our definition is better
than Julia’s for computational purposes, and leads to good bounds on the coefficients c
reduced form.

The applications we have in mind are in two areas of number theory: the systemat
tabulation of cubic and quartic algebraic number fields with given discriminant, or givel
bound on the discriminant; and 2-descent on elliptic curves. In the second application, t
bounds we obtain below for quartics have led to considerable improvements in the runni
times of our progranmwrank, which implements 2-descent on elliptic curves defined
over Q (as described in [8], for example), compared with the bounds given in [8] anc
originally in [3]. For the first application in the cubic case, see the pagdérand ] of
Belabas. The quartic case seems to be considerably more difficult.

In this paper we will often restrict to considering forms whose coefficients are ratione
integers, although a large part of the algebra applies to forms defined over arbitrary fiel
of characteristic 0. In future we hope to extend this to general number fields; real quadra
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Reduction of binary cubic and quartic forms

fields have already been treated 1] and [9]. Some remarks on the extension to number
fields are made in the final section of the paper.

We will use a small amount of classical invariant theory in this paper, in the style o
Hilbert’s lecture notes][1], or Elliott’s book [LO], from which we obtained the term ‘sem-
invariant’ which we use repeatedly. The modern term for these is appar&nthyariants’;
however, we have made no attempt to couch our exposition in the language of mode
invariant theory. We have not seen any systematic treatment of the ‘algebraic covarian
which we use extensively. The articlé][contains all the invariant theory that is needed,
together with an explanation of the connection with 2-descent on elliptic curves.

Ourresults for cubics may also be compared with bounds (due to Mordell and Davenpo
which come from the Geometry of Numbers, as in Cassels’ bépihapter 2]. We will
make such comparisons in detail below.

After reviewing the basic ideas underlying the reduction of real binary forms in Sectiol
2, together with a brief summary of Julia’s approach to reduction, we proceed to the tw
main sections of the paper, concerning the reduction of cubics (SeXtiand quartics
(Sectiond).

2. Reduction: basic concepts

Let K be a field, and: a positive integer. Abinary form of degreen over K is a
homogeneous polynomial iki[ X, Y] of degreen. The group Gl2, K) acts onK [X, Y]
via ‘linear substitutions”:

< )O/‘ § ) Cf(X,Y) > f(@X +BY,yX +8Y).
This action clearly preserves the degree, and so restricts to an action on the set of form:
degreer, which is aK -vector space of dimensiord- 1. We will mainly be concerned with
the action of the subgroup $2, K) of unimodular matrices; moreover, for our applications
we will also wish to restrict to forms with integral coefficients: for example, wkiea Q or
a number field the coefficients will lie in the ring of integ&rg and we will only consider
transformations in SI2, Og) or GL(2, Ok).

It will be convenient at times to pass from a forfitX,Y) = Y/, a; X'Y" ! to the
corresponding inhomogeneous polynomial

fX)=fX, D =) aX' eKI[X];

i=0
the group action then becomes

X
FX) > (PX +8) f ("‘ “’?).

yX+46

The ingredients for a reduction theory for such polynomials or forms consist of the
following: a definition of a suitable notion of educed form, such that every form is
equivalent to (at least one) reduced form; together with algorithms for reducing a give
form, and for enumerating all reduced forms up to equivalence. For example, we will s
in Section3 below a definition of ‘reduced’ for real cubics (which will depend on the sign
of the discriminant), an algorithm for reducing any given cubiRfX ], and bounds on the
coefficients of a reduced cubic in terms of the discriminant. This enables us to list easily
reduced cubics with integer coefficients and given discriminant.
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2.1. Reduction of positive definite quadratics

Where the field of definition is a subfield of the real numbers, our definition of reductior
will consist of associating, to a given polynomi&{X), a quadratic with real coefficients
which is positive definite and a covariant 6f and then decreeing thditis reduced if and
only if this quadratic is reduced in the classical sense. The bounds we thereby obtain on
coefficients off will come, directly or indirectly, from the well-known inequalities satisfied
by the coefficients of a reduced positive definite quadratic. Hence we start by recalling ti
necessary facts for such quadratics.

Let f(X,Y) = aX?+bXY +cY? € R[X, Y] be areal quadratic form, with discriminant
A = b2 — 4ac. We say thatf is positive definitéf « > 0 andA < 0; thenf (x, y) > O for
all (x, y) € R2—{(0, 0)}, and the roots of (by which we mean the roots of the polynomial
f(X, 1)) have the form, 7 wherez = (—=b + i+/[A])/2a is in the upper half-plane.

The transform of a positive definite quadrafi¢X, Y) by a real matrix

(1)

with positive determinant is also positive definite. The root the upper half-plane trans-
forms viaM~1 into (5z — B)/(@ — yz), which is also in the upper half-plane, since
Im(M~(z)) = dettM) =1 Im(z)/|a — yz|?.

Definition 1. The form f (X, Y) is reducedif the following inequalities hold:
Ib| <a<c. 1)

Equivalently,f is reduced ifits root in the upper half-plane lies in the standard fundamental
region for the action of the modular grotip= SL(2, Z):

1
IRe@)| < 5 and |z| > 1. (2

Each positive definite form is equivalent to a reduced form. The reduced form is uniqt
unless one of the inequalities ith)(or (2) is an equality, in which case there will be two
equivalent reduced forms (differing only in the sigrb®fThis non-uniqueness, which could
of course be avoided by insisting tHat> 0 when either equality holds, will not be at all
important in the sequel.

To reduce a given form, we may choose to operate directly on the coeffiiemtsc)
oronthe root. In either case, we repeatedignslateby an integek andinvert. Operating
on the coefficients, these steps are:

Step 1.Reduceb modulo 2:: replace(a, b, ¢) by (a, b', ¢') = (a, b+ 2ka, ak® + bk +¢),
wherek is the nearest integer teb/2a.
Step 2.Interchangea andc if a > c: replace(a, b, ¢) by (@', b', ') = (¢, —b, a).

After a finite number of steps the resulting form will be reduced. In the second cas
we operate directly on the roat again using the translations— z — k and inversion
z — —1/z. In either case, we keep track of the elementary transformations used in tt
reduction, so that at the end we can give the unimodular transformation

o p

y 6
which reducesf, as well as the reduced form itself; indeed, often we will only need this
transformation.
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From the inequalities (1) we can easily deduce that

0<a<|Al/3: 3

geometrically, this states that the imaginary part of the rdstat least/3/2. To find all
integer quadratics with given negative integer discrimingwe then merely have to search
the region 0< |b| < a < +/]A[/3, finally testing whether = (52 — A)/4a is integral.

2.2. Julia’s method of reduction

We now give a very brief summary of Julia’s reduction method as it applies to cubic
and quartics defined ov&. For more details, see [12].

Let g(X) € R[X] be a polynomial of degree > 3 with nonzero leading coefficient
and nonzero discriminant. Let the real roots of beq; for 1 < i < r and the pairs of
complex (that is, non-real) roots Bg, ,F, forl < j <s,wherer +2s = n. Julia considers
positive definite quadratics of the form

(X)) =Y (X —a)®+ Y 23X — B)(X — B)). (4)

i=1 j=1

for suitably chosen ‘variables; andu;, definingg to be reduced if and only i is. From
this he derives upper bounds on the absolute value of the leading coefficient and roots c
reduced polynomiat, all expressed in terms of the quantity

_ a? disc(g)/?
H;:l tiz Hj:l u;l

For each signaturg, s) Julia then seeks to minimizeby suitable choice of the coefficients
t;, uj. In each case, he obtains a specific positive definite quagréXiz attached tg (X),
and defineg (X) to be reduced if and only if(X) is. From his discussion, it is clear that
Julia regards the quadratic X) to be ‘optimal’, though no precise claim (or definition of
optimality) is stated. The fact that these ‘optima(’X) are indeed covariants gfis proved
after the optimization, by entirely geometric considerations.

The coefficients;, u; for Julia’s optimakp are defined in terms of the roots gfin most
cases, Julia states that it is therefore necessary to know these roots before reducing a g
polynomialg. One feature of our reduction scheme is that we can often avoid this explic
dependence on the roots, which is certainly a computational convenience, since otherw
effective reduction requires computation of the rootg té high precision. We will obtain
expressions fop which are defined over a subfield of the splitting fieldzof

Our approach is to find quadratic covariants of cubic and quartic polynomials directl
and define reduction in terms of them. It will turn out that our covariants are in each ca:
the same as Julia’s, up to an unimportant constant factor. We will also derive bounds f
the coefficients of reduced cubics and quartics which are in certain cases better than Jul
bounds, and thus result in greater efficiency in our applications.

For later reference, we now describe Julia’s quadratic covariants for each of the possil
signatures of cubic and quartic polynomials. We express each one both in the form Ju
gives, involving modulus signs in some cases, and where necessary in an alternative fc
(without the modulus signs) which we will use later.
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2.2.1. Signature (3,0): real cubics with three real roots
A real cubic with positive discriminant > 0 has three real rootg;, a2, a3. We set
12 = (ap — a3)?, with £3 andZ defined symmetrically, obtaining

P(X) = (a2 — 03)*(X — a1)® + (a3 — 01)*(X — 2)* + (1 — @2)*(X — 3)”.

As Julia remarks, up to a constant fact@) is just the ‘forme d’Eisenstein’ or Hessian of
g. This is an easy exercise in symmetric polynomials (or see Se@ti@bow). If g(X) =
aX®+bX? + cX +d, then (up to a constant factor)

o(X) = (b*> — 3ac)X? + (bc — 9ad)X + (¢® — 3bd).

This is the only case where we can redycesing a rational covariant quadratic (defined
over the field containing the coefficients 9f.

2.2.2. Signature (1,1): real cubics with one real root
A real cubic with negative discriminat < 0 has one real roat and two non-real roots
B, B. We take
2=1p-F" and WP=(@-pa-p =la—pL
Then
9(X) = 12X —)? + 2u*(X = B)(X — B)
= (8- F)°(X —a)? + 2 — B)(a — BY(X — B)(X — B).

2.2.3. Signature (4,0): real quartics with four real roots
A real quartic with positive discriminamk > 0 has either four or no real roots; these can
be distinguished using certain seminvariants, as explained in Sédhelow. When there
are four real roots;, we order these so that > a3z > a2 > a4, and takexfi2 =g’ (i)Y
for 1 <i < 4, to obtain

P(X) = ¢'(a1) HX —a)® + ¢ (a2) X — a2)? )

—¢' (@) (X — a3)® — ¢ (@) (X — aa)?
= 2(g'(a1) M X — a2)® + ¢ (a2) N (X — a2)?).

2.2.4. Signature (0,2): real quartics with no real roots
Here one takesi& = |p, — f2| and 23 = |B1 — pal, so that
9(X) = B2 — B2l(X — B(X — B1) + |B1 — B1l(X — B2)(X — B2)
= —i(2 — B2)(X — B1)(X — B1) —i(B1 — BD(X — f2)(X — B2).
2.2.5. Signature (2,1): real quartics with two real roots

Real quartics with negative discriminat < 0 have exactly two real roots. Denote these
asay, az With a1 > a2, and the non-real roots #&s 8. Set

12 =B —B|laz— BI7, (6)
13 =|B—B|lor— BI%,
2u? = |ag — ap| ey — Bl laz — B,
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and assume that I¢8) > 0. Then
@(X) = (X — a1)? + 13(X — a2)? + 2u*(X — B)(X — B) @)
= |B—BlIB — azllaz — BI(X — a1)?
+1B — BlIB — eallaz — BI(X — a2)?
+la1 — azllez — BlIB — a1l(X — B)(X — B)
= —i(B—PB)a2— B2 — B)X — a1)?
—i(B = B)(a1 — B)(a1 — B)(X — a2)?

1 — a2 (a2 — )z — B)(@1 — B)ea — BY(X — H)(X — B).

3. Reduction of cubics
3.1. Invariants and covariants
Let
gX)=aX®+bX?>+cX+d
be a cubic. We now regard the coefficieats, ¢, d as indeterminates, and the results
and formulas which we obtain in this subsection will be valid over arbitrary fields whost
characteristic is neither 2 nor 3. So kg denote a prime field other thd# or [F3 and set

K = Ko(a, b, ¢, d), so thatg € K[X]. We will call Ko and K the constant fieldand the
coefficient fieldespectively.

3.1.1. Rational covariants
First we consider ‘rational’ invariants and covariantg pivhich lie in K andK [ X] respec-
tively. The only invariant of is the discriminant

A = b2c? — 4ac® — 4b3d — 27dPd? + 18abcd.

(Strictly speaking, all invariants are constant multiples of powers .pf
There are two seminvariants, in additionsoand the leading coefficient, namely P
andU where

P=b>—3ac and U =2b®+2742d — abc.

Each seminvariant is the leading coefficient of a covariangt @fis said to be the ‘source’
of the covariant (se€’[; the terminology is from10]). The discriminant is a covariant of
degree 0, and is the source of itself. P is the source of the Hessian covariant:

H(X) = (b — 3ac)X? + (bc — 9ad) X + (c? — 3bd).
Finally, U is the source of a cubic covariant:
G(X) =3g(X)H'(X) — 2¢'(X)H (X)
= (2b% + 27d%d — 9abc) X2 + 3(bPc + 9abd — 6ac®) X?
—3(bc? + 9acd — 6b2d) X — (2¢2 + 27ad® — 9bcd).
The seminvariants are related by the following syzygy:

4pP3 = U? + 27AL, (8)
which extends to a syzygy between the covariants:
4H(X)3 = G(X)? + 27 Ag(X). (9)
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The Hessian and cubic covariants have the following discriminants:

disc(H)= —3A,
disc(G)= 729A°.

Note that these are determined up to a constant multiple by the fact that they are clea
also invariants of, hence powers o, and the exponent is determined by their degree in
the coefficients of.

Finally, we may form the covariants of the cubic covariariX ); again, these are deter-
mined up to a scalar multiple by consideration of degrees:

Hg(X) = 2TAH(X),
Gg(X) = —729N%g(X).

Note that the relation betwegiiX ) andG (X) is almost symmetric; this will have interesting
implications later.

3.1.2. Algebraic covariants

When we consider the reduction of real cubics with negative discriminant, and later when v
consider quartics, we will need to make use of covariants whose coefficients are algebr
over the coefficient fiel&k = Ko(a, b, c, d). In the classical literature such covariants are
called ‘irrational covariants’, but we prefer to call them ‘algebraic covariants’. In almost al
cases, the coefficients will lie in the splitting fieldgfX) over K; as with Julia’s quadratic
covariants given above, in the case of quartics with negative discriminant we need to me
a further extension.

Our philosophy will to be use covariants which are defined over as small a field extensic
of K as possible, both for simplicity and for reasons of computational efficiency. For cubic:
we only need to extend the coefficient figkdby adjoining a root of the cubic.

Leta be aroot ofg (X) in some algebraic closure &f, so thatK («) is an extension ok
ofdegree 3. IC(X) € K («x)[X]is an algebraic covariant of degréghen its norm inK [ X ]
will be a rational covariant of degre@ 3and hence can be expressed as a polynomial in the
basic covariantg, H andG (not uniquely, on account of the syzygy relating these three).
For example, ifC(X) is quadratic then its norm must be&kalinear combination og?2, H3
andG?, and even &-linear combination ofAg?, H3 andG? since its coefficients must
be isobaric as polynomials in b, ¢, d. Using the syzygy this may be expressed uniquely
as a linear combination afg? andG?2, say.

We apply this idea to the quadraijg X) which Julia considers for real cubics with
negative discriminant (signatucé, 1)) defined above in Subsecti@®.2. Expresg(X)
in terms of the single roat, and scale for convenience, to obtain

J2(X) = a*o(X) = hoX? + h1X + ha; (10)
a straightforward calculation with symmetric polynomials shows that
ho = 9d%a? + 6aba + 6ac — bz,
hi = 6aba® + 6(b% — ac)a + 2bc, (11)
ho = 3aca® + 3(bc — 3ad)a + 2¢% — 3bd.

Let S(X) be the norm of/>(X) from K («)[X] to K[X]; a calculation shows that
1
S(X) = norm(Jo(X)) = G? — 2H® = 2H® — 27TAg? = E(G2 —27A¢%)
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= J2(X)Ja(X) € K[X],

whereJ4(X) € K(«)[X] has degree 4. This purely symbolic calculation shows that the
degree 6 rational covariarft(X) factorizes overK (@) as the product of two algebraic
covariants/2(X) and J4(X). Moreover, since/o(X) is a factor of the covarianf(X), it
follows immediately that/>(X) is itself a covariant of (X). We may also check thap(X)
and J4(X) are irreducible ovek («¢); the Maple package was used for this and all the
algebraic computations in this paper.

We note for future reference that

disc(b(X)) = 12A = —4disc(H (X)).

In the case of real cubics, this will mean that eitk&rX) or J>(X) will be positive definite
and can be used for reduction.

We will also later need to consider thig-covariant of the cubi& (X). We first observe
that G (X) itself factorizes oveK («); in fact, G(a') = 0 where

, 3dja+c
o0 = —7".
3aa+b
One can use this to compute thecovariant ofG directly, obtaining-27 A ,(X). However
it is more elegant, and requires considerably less calculation, to proceed as follows.

Starting from the sextic covariaSt X) of g, to compute the corresponding covariant for
G we replacez, A, H by G, 7293 and 27 A Hrespectively, to obtain

227AH)? — 27(7298)G? = —3°A3(G? — 2H®) = —3°A3s.

Hence, up to a constant factoi(X) = G2 — 2H?3 is invariant under the transformation
g — G. SinceJz(X) is the unique quadratic factor of this sextic defined oéw)[X] it
follows that theJ>-covariant ofG is indeed—27A A (X).

3.2. Reduction of real cubics with > 0

This is the simplest case. LgtX) be a real cubic witth > 0 and three real rootg,, a2
andwgz. The HessiarH (X) is real with negative discriminart3A. Moreover, the leading
coefficient of H(X) is P = b? — 3ac = 3a? > j(@ —a;)? and henceP > 0. Hence
H (X) is positive definite, and we make the following definition (following Hermite).

Definition 2. A real cubic with positive discriminant ieducedif and only if its Hessian
is reduced in the usual sense.

We now find that the property of being reduced coincidesfof), its HessianH (X),
and its cubic covarian® (X).

Proposition 1. Letg(X) be a real cubic with positive discriminant. Thg(X) is reduced
if and only if its cubic covarianG (X) is also reduced.

Proof. G(X) has discriminant 729%> 0 and Hessiar-27A H (X), so this is immediate.
O

We now show that the seminvariants of a reduced cubic are bounded in terms of t
discriminant.
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Proposition 2. Every real cubic with positive discriminat is GL(2, Z)-equivalent to
one whose seminvariants are bounded as follows:

2
0<lal < EAIM (12)
0< P < AY2 (13)

Proof. It suffices to bound the seminvariants whgiX) is reduced. Sincé (X) is reduced
we have

0<r < [T /5

as required. Now the seminvariant syzygy (8) gives
27AP < 2TA + U? = 4P3 < 4A%/2,
so thatz is also bounded as stated. Note that we also obtain the bount! G< 2A3%/4. O

A reduction algorithm based on this definition is easy to implement; for integer cubics
only integer arithmetic is required. Both the translation and inversion steps are simp
determined by inspection of the coefficients of the Hessian.

Algorithm 1. Reduction of a real cubic with positive discriminant
Input: a cubicg(X) = aX3+bX? 4+ cX +d € R[X]with A(g) > 0.
Output: a reduced cubic G2, Z)-equivalent tog (X).
1. Letk be the nearest integer to
—(bc — 9ad)
27— 3ac)
if this falls half-way between two integers, either choice will do.
2. Replacg(X) by g(X + k); that is,

(a,b,c,d) < (a,3ak+ b, 3ak? + 2bk + ¢, g(k)).

3. If b2 — 3ac < ¢? — 3bd then outputg(X); else, replacg(X) by X3g(—1/X); that
is,
(a5 b7 c, d) < (d7 —C, b5 _a)‘

4. Goto step 1.

Now we turn to the question of listing all cubics with given positive discriminant. Given
values of the seminvarianisand P, which must satisfy the syzygy condition tha®%—
27Ad? is a squarel/?; the value ofU is determined up to sign, and we may easily write
down a suitable cubic by settibg= 0,c = —P/(3a)andd = U/(274%). If we are seeking
integral cubics with a given positive integer discriminanthowever, it is better to proceed
a little differently. Since the unimodular substitution ¥f+ « for X changes the cubic
coefficients from(a, b, ...) to (a, b + 3aa, ...) we may assume that3a/2 < b < 3a/2
for fixeda; then for fixedz, b the bounds o® give bounds ow. This results in the following
algorithm.
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Algorithm 2. To list all integer cubics with given positive integer discriminantup to
GL(2, Z)-equivalence

Input: a positive integen.

Output: a list of reduced cubicg(X) with discriminantA, including exactly one in each
GL(2, Z)-orhit.

1. Loopona:1<a < %Al/“.

Loop onb: —3a/2 < b < 3a/2.

Loop onc: (b%2 — AY2)/(3a) < ¢ < b?/(3a).

SetP = b2 — 3ac; test if 4P3 — 27 Ad? is a square, salj 2; continue if not.
GivenU, test ifd = (U — 2b3 + 9abc) /(274) is integral; continue if not.

Reduce the cubic with coefficients, b, ¢, d) using Algorithm 1, output the result,
and continue.

o gk wN

Note that we may assume that> 0 sinceg(—X) is GL(2, Z)-equivalent tog(X).
Similarly, we do not have to test both signd6fn step 5, since replacing X) by —g(—X)
changes the signs éf d andU.

The triple loop on(a, b, ¢) can be made very efficient by the use of a quadratic sieve
based on the seminvariant syzy@y.(GivenA one precomputes, for each of a set of suitable
modulim, the pairs(a modm, P modm) for which 4P3 — 27 Ad? is a square modula.

This can be stored as a 2-dimensional array(fl}-valued flagsf,,[i, j1, with indices
running from O ton — 1, such that

fli, j1=1% 43 —27A# is a square modula.

Then we can program the loop in such a way as to skip quickly past triplés c) for
which there exists a modulws such thatf,,[¢ modm, (b°> — 3ac) modm] = 0.

One can also adapt this procedure to list all integer cubics whose discriminant is positi
butless than a given bound. With care, itis possible to ensure that the cubics listed determ
distinct cubic number fields. For details of this, see the paper of Belabas [2].

Next we give a comparison of the bounds in Proposifomith those of Julia in 12].

We have already mentioned that Julia’s covariant quadg@fo is (up to a constant factor)
the Hessiarf (X) in this case. However, Julia obtains the weaker bound

22

lal < =AM
3V/3
for the leading coefficient of a reduced cubic. The reason for this is that Julia applies tl
AGM (Arithmetic-Geometric Mean) inequality to the three positive real numbers

tf = (02 — a3)%, t% = (a3 — a1)?, t% = (a1 — a2)?,
to give
3P < 15+ 15
Now, disc(p)= 1221212 = 12a=*A, and the leading coefficient gf(X) is 12 + 12 + 2.
Hence the assumption thatX) is reduced gives the inequality + 12 + 12 < 2a~2AY/2,

and one obtains the bound arstated above. However, the standard AGM inequality is not
the best possible for three positive real numbl%rfsr whichr + 1, + 3 = 0. Itis possible

to improve it by a factor of/2, as in the following lemma.
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Lemma 1. Letq, r» andrs be real numbers such that+ > + t3 = 0. Then
32223 <12 412 442,
Proof. From#; + t2 4+ 3 = 0 we deduce the identity
(1 + 15 +13)° — B&fi515 = 2(11 — 12)(t2 — 13)*(13 — 11)°
from which the result follows. O

Using this lemma instead of the usual AGM inequality we obtain the bourndadfropo-
sition 2. In fact, one can see that the identity in the proof of the lemma is nothing other tha
the seminvariant syzygy applied to the cup[¢X — 7).

Finally, we compare our bounds with the results givedir§ection 11.5]. A 1943 theorem
of Mordell states (in effect) that given a real cubiavith positive discriminant\, there is
a cubic GL(2, Z)-equivalent tof with leading coefficient satisfying

AN\ /4
< A )
1< (5)

which is best possible sino€® + x2 — 2x — 1 hasA = 49. Now the constant appearing
here is 14/7 = 0.3780, which is slightly smaller than the constayi323 = 0.3849 which
appears in our bound.8). However, Mordell's theorem does not state that the equivalen
cubic which minimizes the leading coefficientis actually reduced, so that one cannot dedut
as we did above, that the seminvarighis simultaneously bounded. A related result of
Davenport (1945) states thatfif X, Y) isareduced cubic form with positive discriminaxt
then

A 1/4

which again implies Mordell's theorem, but is not quite sufficient for our purposes.

3.3. Reduction of real cubics with < 0

Now the cubicg(X) has a single real roet and complex rootg, £. Since dis¢H) =
—3A > 0, we cannot use the Hessian for reduction. The approach of Belabas, followir
Mathews and Berwick [13] (which predates Julia [12]), and Davenport is to use the positi
definite quadrati¢X — B)(X — B), definingg to be reduced if this quadratic is reduced.
Davenport calls this being ‘Minkowski-reduced’. This leads to the bound

2
lal < oA~ 087711

for a Minkowski-reduced cubic (see [2]). We will instead follow Julia, giving an alternative
definition of reduction using the algebraic quadratic covarigiif) introduced above,
from which we will obtain the improved bound

242
la| < ‘—F|A|1/4w 0.544 A|M/4

3V3
for a Julia-reduced cubic.
As in the previous subsection, we can compare our results with those of Davenport, w
showed in 1945 that for a Minkowski-reduced culficX, Y),
1/4

. A
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So every cubic withA < 0 is equivalent to one whose leading coefficient satisfies
1/4

la] < 73
which again is best possible singg — x — 1 has discriminant-23. The constant here is
0.4566 which is smaller than ours, but again since the form which minimizes the leadir
coefficient is not necessarily the reduced form, we cannot deduce bounds on the otl
seminvariants (and hence on the other coefficients) as we need to.

We use the real roat of g(X) to defineJ2(X) as in (10) and (11). Since is real and
A < 0, we see thaf2(X) is real and positive definite: its discriminantA2s negative, and
its leading coefficientiso = a?(|8 — B2+ 2|a — B]), which is positive. (Alternatively;o
has norm%(U2 —27Ad?) > 0, and the other two conjugates/af are complex conjugates
of each other, and hence their product is positive.)

Hence we make the following definition.

’

Definition 3. A real cubicg(X) with negative discriminant issducedif and only if the
positive definite quadratig, (X) is reduced.

Since the cubic covarian@ (X) has the samd,-covariant asg(X), up to a constant
factor, and its discriminant 729° has the same sign s the following proposition is now
immediate.

Proposition 3. Letg(X) be a real cubic with negative discriminant. Thg¢X) is reduced
if and only if its cubic covarianG (X) is also reduced.

Now we are able to derive bounds on the seminvariants of a reduced cubic with negati
discriminant.

Proposition 4. Letg(X) be a real cubic with negative discriminant which is reduced. Then
the following inequalities hold:

22
0<lal < ‘—f|A|1/4;

3V3
0 < |P| < 2Y3A)12,
Proof. To bounda we follow Julia. Using
a~?ho =B — BI* + 2la — BI?
and
Al = a*|B — Bl — BI%,
the AGM inequality givesa=#|A])Y/3 < 2a=2ho, so that 274|A| < h3. On the other
hand, since/>(X) is reduced, we haveh% < |disc(h(X))| = 12|A|, so thath% < 4|A.
Combining these gives the stated inequalityzon

Now G (X) is also reduced, by the preceding proposition, so applying what we have ju:
proved toG (X) we obtain

‘1/2

8
U? < > ‘729A3 N

The syzygy now gives
4P3 = U? + 2TALP < U?
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(sinceA < 0), so we obtain
P? < 21AP2,

which is the upper bound faP. For the lower bound,
8
AP% = U? + 27TAP > 27TAL > 27A2—7|A|1/2 = -8|A]F?,
so thatP3 > —2|A|3/2, O

Remark 1. Note that Julia’s bound on is the same in both cases (positive and negative
discriminant); we improved the bound by a factorn@2 in the positive case, but the same
trick does not work in the negative case, as the non-real roots prevent us from applying t
improved form of the AGM inequality.

The algorithm for listing all integral cubics with given negative discriminantup
to GL(2, Z)-equivalence, is almost identical to Algorithm 2 for the positive case. We
merely have to replace the upper bound on the loop dry an upper bound ofu| of
((2v/2)/(3v/3))|A[Y4, and the lower bound on the loop ety (b2 — 21/3|A|Y/2)/(3a).

To adapt Algorithm 1 requires more work, since we first compute the reabrobthe
given cubic. Then we definky, 21 andiz as in (11). In the translation step we use the
nearest integer te-h1/2hg ask, and must remember to replageby o — k as well as
changing the coefficients. The inversion step takes plakg i 2, and we then replace
a by —1/a. If several steps are needed in the reduction, we will gradually lose precisio
in our (necessarily approximate) value of the real aothis should be avoided, either by
recomputing the root from the new coefficients every few steps, or by refining the root t
replacinga by a — g(a) /g’ ().

Itis possible to express the reduction criterion in terms which do not require knowing a
explicit value for the real roat. The cubic is reduced if and only#hg < h1 < ho < h2,
which is if and only if the three quantitiés — hg, ho — h1 andhg + h1 are non-negative.
Now each of these quantities has two other conjugates, which are complex conjuga
and hence whose product is positive; so an equivalent condition is that the three nori
N (ha2 — hg), N(hg — h1) and N (ho + h1) should be non-negative. These norms are the
following polynomials:

C1 = N(hy — ho) = —108Fa%d — 3b*c? + 54a%c* + 18b°d + 243£d*b? — 54b°cad
—162c%a’d — 54a°c® + 4864a°dch + 3¢*h? — 18°a
—243a’c? + 54c3abd + 1624°ab’c + 2¢8 — 208 — 7294 d?
+729d%a? + 54b°d° + 181 ac — 274°b%c? + 1083d%a
—18*db + 27d%c?b? — 486dPach — 54d%b*;

Cy = N(ho — h1) = (108Fa?d — 12b%¢? + 2164c*
+72b°d + 9722°d?b? — 216F°cad — 648bFa’d + 54a°c>
—486cPdch + 2b8 + 7294*d? — 18b%ac + 2742b%c?)
+2(—108b3%a + 45aPb® + 243dPc?d — 1354°¢%b
—81ab’d — 7294°bd? — 3b°c + 8¢°b° + 324a°b%dc
—36db*c — 36¢*ba — 108dPa? + 216dFac?);

https://doi.org/10.1112/51461157000000073 Published online by Caglridge University Press


https://doi.org/10.1112/S1461157000000073

Reduction of binary cubic and quartic forms

C3 = N(hg + h1) = (1085a’d — 12b*c? + 2164c*
+72b%d + 9724°d%b? — 216FPcad — 648bPa’d + 54a°c®
—486a3dch + 2b8 + 7294 d? — 18b%ac + 274%b%c?)
—2(—108&b%a + 45aPb° + 243d°c%d — 1354 ¢
—8lab*d — 7294°bd? — 3b°c + 8c3b° + 324a%b%dc
—36db*c — 36¢*ba — 108dPa? + 216dFac?).

Use of these formulas does give us exact integral conditions for an integer cubic to |
reduced, and even a possible reduction procedure: invert it 0, replaceg(X) by
g(X +1)until C3 > 0, replacez (X) by g(X — 1) until C2 > 0, then repeat. Apart from the
complicated nature of these expressions, however, there is a more serious drawback h
we cannot compute directly from the initial values@fandCs the integer value of such
thatg(X + k) has positiveC, andCs, only its sign. Since in practice we may require a very
large value ok, it is clearly most inefficient to carry out the shift in unit steps. (M. Stoll has
pointed out to us that one can in fact reduce the number of steps to the ordej (&} log
repeatedly doubling the step size until overshooting, and then reversing direction. We lee
the details as an exercise to the reader.) Hence it is more efficient in practice to compute
real rootx, so that we can computedirectly.

A similar criticism can be applied to the reduction procedure proposed by Mathews i
[13]: the condition that the covarianX — 8)(X — p) is reduced is expressed there as
equivalent to the three inequalities

Ci=dd—-b)+a(c—a) >0
Cr=ad—(a+b)a+b+c) <0
Ci3=ad+(a—-b)Yla—b+c)=>0.

While this is simple to use in practice, we encounter the same drawback when a large st
is required.

Finally, we present some comparisons between the reduction defined here, followil
Julia, and the reduction of Mathews/Belabas.

Experiment shows that in many cases the only difference between the Julia reduction
an integer cubic and its Mathews reduction is a shift in the variable. For example, cubi
of the formg(X) = X3+ d, which have negative discriminant274?, are always Julia-
reduced, while their Mathews reductiongéX + k) wherek = [(1 + /d)/2], since we
then shift so that the non-real roots have real part less th2anFbr instance, the Mathews
reduction ofX® + 1000 isX® + 15X? + 75X + 1125.

In [2], a report is given of an enumeration of all cubic fields with discriminant less thar
101 in absolute value. In the complex cage & 0), the bound on the leading coefficient
used there was

[ /16- 1040\ 4]

<62—701> _ 493,
By comparison, our bound feris

[ /64 101\ 4]

<%> = 306.
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It would be interesting to compare the running time of approximatel$ 8ays given in

[2] with the time needed using this lower bound. Belabas estimates (as stated in a persc
communication to the author) that the difference would not be very great, since most of tl
running time in his program is accounted for by the small values sihce for larger values

of a the inner loops are very short. Full references to the Davenport (1945) and Morde
(1943) results are given in Cassels’ book [4].

4. Reduction of quartics

As with cubics, we start by a purely algebraic account of the invariants and covarian
of a quartic, including algebraic covariants. S&¢fpr a brief summary of the relevant
classical invariant theory for quartics.

4.1. Invariants and covariants
Let

g(X)=aX*+bX3+cX?+dX +e (14)
be a quartic. As with cubics, we regard the coefficients, c, d, e as indeterminates, and
the results and formulas which we obtain in this subsection will be valid over arbitrary field

whose characteristic is neither 2 nor 3. lk&t again denote a prime field other th&p or
F3 and setk = Ko(a, b, ¢, d, e), so thatg € K[X].

4.1.1. Rational invariants and covariants
We first consider rational invariants and covariantg.ofhe invariants form a graded ring,
generated by two invariants of weights 4 and 6 which are conventionally dehetedl/ :
I = 12ae — 3bd + ¢2, (15)
J = T2ace + 9bcd — 2Tad® — 27el — 2¢°. (16)
These are algebraically independent, and every invariant is an isobaric polynonhial in
andJ. We will denote the invariant® — J2 by A, and refer to it as the discriminant; this
is in fact 27 times the usual discriminaftg of g:
A =413~ J?=27A0, 17)
Ao = 256a%¢> — 4b3d° — 128 c?e® — 192°bde® — 6ab’d?e — 80abc’de (18)
+16ac*e 4+ b?c2d? — 27(d2d* + b*e?) + 2¢(9bd + T2ae — 2¢?)(ad? + b2e).
The seminvariants of (which are just the leading coefficients of covariants) are the
invariants/ andJ, and the leading coefficient together with the following:
H = 8ac — 3b%; (19)
R = b3+ 84%d — dabc; (20)

1
0= §(H2 —164°1) = 3b* — 16al’c + 16¢°c? 4+ 164°bd — 64a>e. (21)

These are denoted p andr respectively in [7]; the notation fof and J is classical and
standard, whilé{ is used in [3]. The seminvarianks/, a, H, R are related by the following

syzygy:
H3 — 4814°H + 64Ja° = —27R2. (22)
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The (non-constant) rational covariantsgodireg (X) itself, with leading coefficient, a
quartic covariang4(X) with leading coefficient-H:

ga(X) = (3b* — 8ac)X* + 4(bc — 6ad) X3 + 2(2¢? — 24ae — 3bd) X?
+4(cd — 6be)X + (3d® — 8ce), (23)
and a sextic covarianfs(X) with leading coefficieniR:
26(X) = (b° + 8a%d — 4abc)X® + 2(16d%¢ + 2abd — 4ac? + b2c)X°
+5(8abe+ b%d — dacd)X* + 20(b%e — ad®) X°
—5(8ade+ bd? — 4bce) X? — 2(16aé + 2bde — Ac?e + cd®) X

—(d® + 8be? — 4cde). (24)
The syzygy between the seminvariants extends to a syzygy between the covariants:
g3 — 48Iggy — 647 g% = 2Tg2. (25)

All rational covariants are polynomials ih J, g, g4 andgg with constant coefficients; in
particular, there is no rational quadratic covariant of a quartic, as there was for a cub
We will therefore always need to extend the base field in order to find a suitable quadra
covariant for reduction purposes.

Since g4(X) is again a quartic, we may look at its invariants and covariants. Thes
are easily identifiable, as they are also covariants ib$elf. We summarize the results in
Proposition5, which is trivial to verify using algebraic manipulation. We include some
algebraic in- and covariants which will be defined in the next subsection.

Proposition 5. Theinvariants, seminvariants and covariants of the quartic covagaiiX)
are as follows.

g(X) 8a(X)
I 2472
J 26218 — J?)
A 21227
a —-H
H 2%(4aJ — HI)
R 26JR
ga(X)  —2%(I ga(X) +4J g(X))
g6(X) 2°7 g6(X)
@ A(g* —2I)
z 16(¢? — 31)z

H(X) 4,/¢? — 31 H(X)
G(X) —16¢/ 92 — 31 G(X)

4.1.2. Algebraic invariants and covariants
For fixedI andJ, every quartic with these invariants has a splitting field which contains
the splitting field of the so-callesolvent cubiequationF (X) = 0, where

F(X)=X3-3IX+J, (26)

which has discriminant 27 A= 27(413 — J2). We will denote byy a generic root of (X),
so thaty® = 3I¢ — J. This quantityy is an algebraic invariant of: if g is transformed
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by a linear substitution of determinadjtso that/ andJ are transformed inté*7 ands®J
respectively, then clearly is transformed inté2¢; thus,¢ has weight 2.

Note thaty is absolutely invariant under unimodular transformations (with determinan
+1), and that the cubic resolvent fiekl(p) is itself invariant. It will therefore be advanta-
geous to use covariants defined o¥&ly) where possible; we will see, in fact, that this is
possible for real quartics with positive discriminant, while reduction of real quartics witf
negative discriminant will require a further extension of the coefficient field.

We note in passing that there is a close connection between the three vapescothe
four roots ofg(X). This is the basis for one classical method of solving quartics by radicals
Denote the roots 0 (X) by x; for 1 < i < 4, and set = (dagp — H)/3. Lettinge run
through the three roots d@f(X) we obtain three values af sayz; for 1 < j < 3. Then we
have

21 = a®(x1 + x2 — x3 — x4)%, (27)
with similar expressions far, andzs, and conversely,
Aax; + b = +/71 £ /22 £ /73, (28)

where the four values are obtained by taking any choice of signs such that the three squ
roots multiply to+R as opposed te- R. Note that the seminvariant syzygy (22) gives

212223 = | [(4ag — H)/3 = R?. (29)

WhenR = 0, one of the values a# is rational, and one value afis zero; thenZ8) only
gives four values.
This quantity; is an algebraic seminvariant, and will appear repeatedly below; its minima

polynomial is
4a\® (3Z+H
(-) F( + )=Z3+H22+QZ—R2,

3 4a

whose coefficients are rational seminvariants. Moreavisrthe leading coefficient of the
algebraic covarian%(g4(X) + 4pg(X)), of degree 4. This quartic is in fact the square of
a quadratic, a property which characterizeas a root of the resolvent cubic. (Seel]
pp.73-76] for how to use this to give an alternative method of solving quartic equation:
noting that Hilbert’s notation is not quite the same as ours.)

It is more convenient for us to approach the quadratic algebraic covariants, which v
have just seen arise as the square roo@gx{()() +4pg(X)), in a different way. If there is
a quadratic covariant defined over the cubic resolvent fgld), then its norm (fronk (¢)
to K) is a rational sextic covariant, and hence must eggi@() up to a constant factor. So
we are led to consider the factorization @f(X) in K (¢)[X]. Using Maple, we find the
following factorization:

g6(X) = H(X)G(X) = z TH1(X)G1(X), (30)

whereH1(X) = \/zH(X) andG1(X) = /zG(X) are irreducible polynomials ik (¢)[ X]
of degrees 2 and 4 respectively. Explicitly,

1
HL(X) = 2 (8400 + 45" (09 +8(1 - 0 (31)

and 1
G1(X) = 55 (208'(X)9? = g (X)p + 3g4(X) — 401'(X)) (32)
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The polynomialsH;(X) andG1(X) are simpler to use thaH (X) andG(X), since they
are defined over the cubic extensifi{y) instead of the degree 6 extensi&(,/z), but
they suffer two disadvantages. First, they are not truly covariant, although we will se
that this does not matter greatly in practice. Secondly, it may happen (WherD) that
one value of is zero, in which case botH1(X) andG1(X) are identically zero. In fact,
for real quartics with positive discriminant we will see that we can avoid this case, sinc
then H(X) is positive definite for a unique choice gfwhich is not the value for which
7z = (4ap — H)/3 = 0. Then we could usé/;(X) just as well asH (X) for reduction
purposes. But for real quartics with negative discriminant, when we will need tG (Usg
the case; = 0 can occur and must be allowed for.

An alternative expression faif (X) and its other two conjugates may be obtained by
factorizingge(X) over the splitting fieldk (x1, x2, x3, x4) of g(X). One finds

g6(X) = HYX)HP (X)H® (X)
whereH M (X) is given by
a((x1 4 x2 — x3 — x2) X2 4 2(x3xg — x1x02) X + (x1x2(x3 + X4) — x3x54(x1 4 x2)))

and H@ (X) and H®(X) are defined similarly. Comparing wit{), we see thal (X)
has leading coefficienyz, and it is easy to verify thati V(X) is the same a#l (X).

We will occasionally use the notatioH,(X) instead of H(X), in order to make the
dependence op explicit.

For future reference, we note the following formulas, which are all proved easily b
algebraic manipulation.

Proposition 6. Lety be a root of F(X) = X3 — 31X + J, with ¢’ and¢” its conjugates.
Then the following hold.

() ¢*=31=¢'¢" =~J/p.
(i) ¢?>—1=3(—¢)p—9¢".
(i) ¢?—4I = —3(¢' — ¢")2.
(iv) —A = (p?—4D@?* - D)2
(V) 27A=[(g — (@ —¢")(@" — )I%.
The algebraic covarianH (X) has the following properties.
(Vi) H(X)? = §(ga(X) + dgg(X)).
(i) HX)H@(X)H®(X) = go(X).
(vii) The leading coefficient df (X) is /z.
(ix) disc(H(X))=3(p?—1) =50 — )@ —¢").

4.2. Classification of real quartics

Letg(X) = aX*+bX3+cX?%+dX +e denote a quartic with real coefficients. Following
[3], we classify real quartics into three ‘types’ according to their signatyte-), wherery
is the number of real roots anglis the number of conjugate pairs of non-real complex roots,
so thatr; + 2rp = 4. These types can be distinguished by the signs of the discriminant
and of the seminvariantd and Q. We summarize this in the following proposition, which
also serves as the definition of the three types.
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Proposition 7. Letg(X) = aX* + bX3 + cX? + dX + ¢ € R[X] be a real quartic with
distinct roots.
Type 1.1f A > 0 and eitherH > 0or Q < 0, theng(X) has no real roots,
signature(0, 2).
Type 2.If A > 0, H < 0and Q > 0, theng(X) has4 real roots, signaturé4, 0).
Type 3.If A < 0, theng(X) has2 real roots, signaturg?, 1).

Proof. This is a standard exercise (s€e [Exercise 1 on page 217], but note that the result
there is not stated correctly). In the case- 0, all cases are covered, since it is impossible
to have eithetH = 0 andQ > 0, or H < 0 andQ = 0. This follows from the following
identity:
4096 Ao = —27R* + 4H3R?> — 18R°HQ + H?Q? — 40°.
Ul

Consider further the caseé > 0 (Types 1 and 2). Since the resolvent cubicX) has
discriminantA, it has three real roots in this case, which we degptior 1 < i < 3. We
will always order these so that

dapr > dagy > dags. (33)

Since[](H — 4ap) = —27R? < 0, we can distinguish between Types 1 and 2 according
to the interval in whichH lies. For Type 1, we have

dapr > H > 4apy > dags, (34)
(orz1 = 0 > z2 > z3), while for Type 2 we have
dapy > dagy > dagpsz > H (35)

(orz1 > z2 > z3 = 0).
Similarly, whenA < 0 (Type 3) there is only one real value @fand the same syzygy
now gives

dap > H (36)
(orz > 0).

Remark 2. For fixed values of the invarianfsandJ, if A > 0 then the real quartics with
invariants/ and J lie in three orbits under the action of &, R): Type 1 witha > 0
(positive definite), Type 1 with < 0 (negative definite), and Type 2 (indefinite) Af< 0
there is just one orbit.

Remark 3. Inapplications to 2-descent on elliptic curves, we are only interested in quartic
g(X) forwhich the equatioi? = g(X) has real solutions. We then ignore quartics of Type 1
with a < 0, and SI2, R) acts transitively on the remaining quartics of each relevant type.

4.3. Reduction of real quartics withh > 0

For real quartics with positive discriminant, we will be able to use the algebraic covariar
quadraticH,, (X) for reduction, provided that we can choose the value s thatH, (X) is
definite. We are able to treat simultaneously here both the relevant types of quartic (Type
and 2), in contrast with JulidP] and Birch and Swinnerton-DyeB], who deal with these
quite separately.
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Let ¢ denote any of the three roots Bf X), which are all real, and denote the other two
roots byy’ andy”. As before, we set = (4ag — H)/3. Recall thatd (X) = H,(X) is the
quadratic factor ofs(X) in K (1/z)[X], with leading coefficien{/z and discriminang (p%—

D =3—¢)p—¢".

If H = 4ag, thenz = 0 andH (X) degenerates to a linear polynomial (proportional
to 4a X + b) which is certainly not positive definite.

If H < 4ag, so thatz; > 0, thenH (X) has a positive leading coefficient, and will have
negative discriminant provided thatlies betweeny’ andg”. This implies thag (X) must
be a Type 2 quartic, withddp1 > dagr > daps > H andg = ¢s.

On the other hand, if > 4ag thenz < 0 so thatH (X) is not real, but in this case
H1(X) = \/zH (X) is real and will be positive definite provided that— ¢") (¢ — ¢”) > 0.
For this,¢ must be one of the outer roots. Theny4d > H > dag, > dagps, with ¢ = @3,
andg(X) has Type 1.

We have thus proved the following proposition. Observe that in each case, there is
unique choice of which gives a positive definite quadratic.

Proposition 8. Letg(X) be areal quartic with positive discriminat and leading coeffi-
cienta. Order the roots; of the resolvent cubif (X) as before, witdlap1 > 4ago > dags.
Set

() ¢ =¢3, andh(X) = —H1(X) = —/zH,(X), if g(X) has Typel,
(i) @ =2, andh(X) = Hi(X) = /zH,(X), if g(X) has Type.
Thenk(X) is a positive definite real quadratic, which is a covariang ¢X) up to the positive

constantfactok/|z|. Itis the unique positive definite quadratic factor of the covarigyii )
in each case.

This proposition enables us to define a reduced quartic in the positive discriminant ca:

Definition 4. A real quarticg(X) with positive discriminant iseducedif and only if the
positive definite quadratik(X), defined in Propositio8, is reduced.

Before we proceed to derive bounds on the coefficients of a reduced quartic, we recc
the fact that these covariant quadratics are in fact the same as those used by bothlR]lia in
and Birch and Swinnerton-Dyer i3] (see SubsectioR.2.4), up to unimportant constant
factors. Note that we have been able to give essentiallgahedefinition of the covariant
guadratioz(X) in these two cases, while the expressions used by the previous authors lo
totally different for quartics of Types 1 and 2.

Proposition 9. The positive definite quadratic covariants associated to a real quartic with
positive discriminant in Propositio8 are equal to those defined by Julia and also used by
Birch and Swinnerton-Dyer, both for Tydeand Type2 quartics. Hence our definition of
‘reduced’ agrees with theirs in both these cases.

Proof. This is a straightforward calculation in each case, using the expressiah(foyin
terms of the roots of (X). It is necessary to order the correctly. For Type 1 quartics, one
must take the conjugate pairs to g8, B1} = {x1, x3} and{Ba, B2} = {x2, x4}, while for
Type 2 one takes; > x3 > x2 > x4. We leave the remaining details to the reader. O

We next observe that, as was the case for cubics, a real qyasicwith positive
discriminant is reduced if and only if its quartic covarigatX) is also reduced.
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Proposition 10. Let g(X) be a real quartic with positive discriminant and nonzeran-
variant. Theng(X) is reduced if and only if its quartic covariagh(X) is reduced.

Proof. The condition on thd invariant is included merely becausg X) is singular when
J(g) = 0, sinceA(gs) = 212J2A, and we have only defined the notion of ‘reduced’ for
nonsingular quartics. The same relation shows th@t) > 0 whenA > 0 andJ # 0, so
we have defined what it means fgy to be reduced.

Above we showed thatg(X) factorizes over the splitting field of the cubic resolvent
F(X) as a product of three real quadratics, exactly one of which is definite. Hgke
has exactly one pair of complex roots, of which exactly one is in the upper half-plane, ar
g(X) is reduced if and only if this root lies in the usual fundamental regg)nSince the
g6 covariant ofg4(X) is 22J ge(X), the result is now immediate. O

Remark 4. Itis not true thafg (X) andg4(X) have the same type. In fact, a rather tedious
examination of cases shows that X) has Type 1 wheg(X) has Type 2 or wheg(X)
has Type 1 andJ > 0, butgs(X) has Type 2 wheg(X) has Type 1 andJ < 0.

We now derive the important inequalities satisfied by a reduced quartic in the positiv
discriminant case.

Proposition 11. Let g(X) be a reduced real quartic with positive discriminait leading
coefficientz and seminvarianf. Order the three real roots of the resolvent cubic so that
dap1 > dagr > dags.

(@) If g(X) has Typel, then

lal < %Wl — @3l; (37)
dago < H < min{daps, dags + 343 — D). (38)
(i) If g¢(X) has Type2, then
lal < ékﬂl—fpzk (39)
dagr + S4B~ 1) < H < dags (40)

Remark 5. Inthe Type 1 case, the rangeofiaturally divides up into two subranges: when
la| < %|(/)2 — @3/, the relevant upper bound di is

H < dags + 5@E—1) (< dap),

while for §|¢2 — @3l < lal < §le1 — ¢sl, the relevant upper bound is
Hé%m(éM%+;%—m.

Remark 6. With slightly different notation, these are in fact the same bounds as stated i

[3], though this is by no means apparent: our expressiahfor the upper bound o | for
Type 1 quartics is much simpler than the expression given in [3].
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Remark 7. In applying these bounds, one must not forget that our convention is to orde
the rootsy; differently for positive and negative If we instead fixp1 > g2 > ¢3, then the
range ofa in the Type 2 case becomes

1 1
§(<p3 —¢2) <a< 5(901 - @2). (41)

Remark 8. One can attempt to obtain alternative boundgbhy noting that it is (minus)

the leading coefficient of4(X), so that we may apply the bounds arto g4, which is
reduced wherm is. This is quite delicate, as we have to consider carefully the ordering o
the three roots 2 — 41) of the resolvent cubic qfs. In the end one obtains bounds which
are always weaker (or at least no stronger) than the bounds stated here. We omit the det

Proof of Propositiorl1. First consider the Type 1 case, where= g3 and g1 > H >
dagps > dags. The positive definite quadratic covariantX) defined above has leading
coefficient—9z = 3(H — 4ag3) and discriminant 108z &-— 1) = 36(dagz — H) (3 — I).
Applying the basic reduction inequality (3) gives

4
H—%%<§%—&

which combined with d¢> < H < 4ag1 gives the stated bounds @h. Then

1 1
am—m<§%4ﬁ@m—wm—m,

which gives the stated upper bound faf.

In the Type 2 case, we haye= ¢, and &igp1 > 4dagy > 4agsz > H. Now h(X) has
leading coefficient 9= 3(dag2 — H) and discriminant 36 @2 — H)(go% — 1), soreduction
implies thatH — 4aqgy > %‘(<p§ — I). The bounds oa and H are obtained as before.[

4.4. Reduction of real quartics withh < 0

We turn to the case of real quartics with negative discriminant (Type 3). Here there is
unigue real roop of the resolvent cubié (X), using which we may define a real quadratic
H(X) overK (/7). Butnow H < 4ag, so thatz > 0, and the discriminant off (X) is
30— g —¢") = §lo — ¢'|?> > 0. SOH(X) is indefinite, and cannot be used for
reduction.

The approach used by Birch and Swinnerton-Dyegirbfears a strong resemblance to
the idea used by Mathews for cubics with negative discriminant. They define reduction
terms of the real positive definite quadratic faatsir— 8)(X — B) of g(X) itself, ignoring
the two real rootg; anda,. This leads to the following bounds on the leading coefficient
and seminvarianié/ of a reduced quartic of Type 3:

1\* 4 ,
—Zo) < =@?-1I; 42
(a 3</>> 27(<p ) (42)
1
94° — 2a¢ + 5(41 —¢%) < H < 4agp. (43)

Later, we will compare these bounds with the ones obtained by our alternative definition
Instead we consider the real quartic faatiX) of ge(X) defined ovelk (,/z), defined
in (32).
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Proposition 12. Let g be a real quartic with negative discriminant (TyBe Then the real
algebraic covarianiG (X) has Type 1.

Proof. We can show directly tha® (X) has no real roots. A real roet of G(X) would
be a root ofgs(X) + 4¢’g(X) for one of the complex rootg’ of F(X), and hence by
conjugation for both the complex roots. But thelis a common root 0f(X) andga(X),
which is impossible since their resultantja? # 0.

Alternatively, we see from Lemmabelow thatA; > 0 andHg > 0, from which the
result follows by Propositiof. O

As we have already defined what it means for a Type 1 real quartic to be reduced, \
may now make the following definition.

Definition 5. Let g be a real quartic with negative discriminant (Type 3). Then we say tha
g isreducedif and only if its real algebraic covariadt(X) is reduced.

It is not at all clear that this definition will give useful results, or how it compares with
earlier alternative definitions of Julia or Birch and Swinnerton-Dyer. In fact it turns out to be
equivalent to Julia’s definition in [12], though we are able to obtain better bounds than Jul
fromit; and itis certainly different from the definition of Birch and Swinnerton-Dyer, giving
considerably better bounds. Obtaining boundsi@and H from our definition, however,
will involve some work.

As in all earlier cases, we find thatX) is again reduced if and only #,(X) is reduced.

Proposition 13. Let g be a real quartic with negative discriminant (TyBgand nonzero
J invariant. Then

(i) The quartic covariang4(X) also has Typ&;

(i) The quartic covariant&; (X) associated t@ and g4 are the same, up to a constant
factor;

(i) The quarticg is reduced if and only if4 is reduced.

Proof. The first two parts follow from the explicit formulas given in Propositinand
then the last statement is immediate. O

In order to apply the results of the previous sectionGtX), we must examine its
invariants and covariants. The basic inequalities for a Type 1 quartic, from which we derive
the bounds (37) and (38) farand H stated in Propositiofl, were

3(H — 4ap3) < g5 — 1) (44)

and
dagy < H < dagr. (45)

We therefore compute the quantities appearing in these expressions associated to the ¢
tic G(X), obtaining the values shown in Lemr@aNote that; = %(4ag0 — H) > 0. We
also set

2
<I>=§|<p—<0/||<p/—<p”|- (46)
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Lemma 2. Letg(X) be a real quartic with negative discriminant (Tye Denote the real
root of the resolvent cubic hy, and the complex conjugate rootsgy ¢”. Then the values
of the invariants and seminvariants 6fX) are as follows.

g(X) G(X)
I 3% —D(@? =4l = Hlo — ¢'PPlo' — ¢
J 0
A 283_3((,02 _ 1)3«02 _ 41)3 — 283—9|(p _ (p/|6 |(,0/ _ (p//|6
a |Z/|
H dz(9? — 4I) = 2zl¢’ — ¢"|?
1 [}
©2 0
»3 )

H —4ags 2o — "1zl — ¢"| + 22|l — ¢'])
95— 1 2 = 3(9*> = D(9?> = 4) = Ll — ¢'12l¢’ — ¢"|?

Proof. That the leading coefficient af (X) is 9R is immediate from its definition32).

The values ofi, J5, Ag and Hg are obtained by direct calculation. These quantities are
all positive, except fot/, which is zero, anddg, which is zero wherR = 0 (since then

z = 0). The cubic resolvent polynomial f@r(X) is thus

X3 -3IX + Jg = X(X? - 3Ig),
whose roots are 0 anti®, since®? = 3];. The rest is straightforward, using identities
we derived earlier. O

Lemma 3. Let g(X) be a real quartic of Typ&. With the same notation as above, the
following inequality holds:

0< l¢' — ¢"|(4ap — H) < 2|l¢ — ¢'||4ag’ — H|. (47)

If g is reduced, then also
8
¢ — ¢"|(4ap — H) +2lg — ¢/| |4ag’ — H| < Slo' = ¢l 1o — o2 (48)

Proof. These are the inequalities (45) and (44) appliedt& ), using the formulas of the
preceding lemma. In fact (47) just comes from the seminvariant syzygy, following directl
(sinceH < 4ag) from the identity

Ag — ¢/ Pldag’ — HI? — ¢ — ¢"|?(dap — H)*> = 9(Hyp + 8al *.
OJ

Lemma 4. Letg(X) be a reduced real quartic of Ty@® Then its leading coefficieatand
seminvariantd satisfy the following inequalities.

1
al < ——=(2y/ 92 — I + /92 — 4I); 49
al eﬁ,(\/"’ Jo2—an (49)
4
4ap — §(¢2— I) < H < 4ag; (50)
2
= 2 _ 2 _ _ 2
|H—|—2ag0|<3\/(p 41\/4((,0 1) —27a%. (51)
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Proof. Substitute (47) into (48) to get

8
0< 2y’ —¢"I(ag — H) < glo/ = ¢"llp - 9’12,

so that

4 2

which is (50). Also, sincedp — H > 0, (48) implies that

4
Oé%w—Hégw—¢F=

o4
IH—4w|<§w—wﬂ¢—wﬂ (53)

To ease notation, write = |¢ — ¢'| andy = |¢’ — ¢”|; these satisfy0< y < 2x, since
by the triangle inequalityly” — <p”| <l —ol+ ¢ —¢| = 2|(p ¢'| (recall thaty is

real, whileg” = ’) Sincep + ¢’ + ¢” = 0, we havap = 2( ¢ + yi). The identities
x? =3(¢? — 1), y? = 3(¢? — 4I) and 42 = 9¢? + y? will also be used; they follow from
Propositiong.
In this notation, (52) and (53) become
4
0< dap — H < g x?, (54)
and
4
|H —4ag’| < 2 (55)

Now H — 4a¢’ = (H + 2a¢) — 2ayi, S0 65) |mpI|es that 42 > 8142 and then
4
(H + 2a¢)? < a1 y2(4x? — 81d%). (56)

This implies (51), using the identities stated above.
Note that this calculation already implies that < éx; we now strengthen this to give

la] < f5(2x+ y) which is @9). Writeu = || = 3|H — 4a¢’|. Now (48) and 47) become
vz + 2xu < x 2y and 0< yz < 2xu. Together withy > 0 these determine a triangle in
the(z, u) plane with vertices at0, 0), (O, 27xy) and(27x , 27xy) Usingy < 2x one sees
that the maximum value af+ u is attained at the last vertex, so that u < 7x(2x + ),
which implies the desired result| < 18(2>c + y), since

dalx = |da(p — ¢")| < |4ap — H| + |4a¢’ — H| = 3(z + u).

Remark 9. The bound ona| in the preceding Lemma may be written in the form

1
1_82|‘Pi_‘ﬂj

i<j
This has exactly the same form as the bound we obtained for Type 1 quarticsipwien
@2 > @3 this expression equa&wl — @3], justasin 87). The same is also true for Type 2
reduced quartics, if one compares the form of the bounds givéri )nl¢ was this symmetry
which led us to seek to prove the inequality (49), instead of the weaker form

a1 < grt gy =glo— @1+ gl 'l = = (Jo? — 147~ a1)
9 97 9 9 3.3 ’
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which is somewhat easier to derive from (48) and (47).

Remark 10. The bounds42) ona given in [3] determine an interval of Iengglx, whereas

our bound (49) gives an interval of Ieng§62x + y); the latter is at least as good, since
y < 2x.

We now further tighten the bounds just obtained doand H. The final result is as
follows.

Proposition 14. Let g(X) be a reduced real quartic of Type 3, with (negative) discrimi-
nantA, leading coefficient and seminvariantl, and lety be the real root of the resolvent
cubic. Set

A= 6—55)(2/¢2 -1+ \/<p2 —4I)

(which depends only on the invariantand J), and

2
— 2 2 2

(which also depends an).
If J < 0 (equivalentlyp > 0), thena satisfies

2 _
—3—\2 <p2—41<a<min{A, max{%(<p+,/<p2—4l) , g(w p I)” (57)

while if J > 0 (equivalentlyp < 0), thena satisfies

1 (1 / 2(p*—1)
= Jp?2— — Z — 2 _ =
3\/§¢ 4I>a>max{ A,mln{6(¢ 0] 4I>,9 - ” (58)

If J = 0thengp = 0andl < 0, anda satisfies

la| < 3—\2@)\/—_1 (59)

For eacha, H satisfies the inequalities

4
maX{4a<ﬂ—§(<p2—I), —Zafﬂ—Ba} < H <min{dap, —2a¢p + B,}.  (60)

Proof. The relation between the signs ffandg follows from pg’'¢” = —J.

The inequalities §0) and b1) each determine an interval in whi¢h lies, given the
value ofa. Recall the notation introduced abowe= |¢ — ¢’'| andy = |¢’ — ¢”|; then the
relevant inequalities o are (55) and (56). We now impose the conditions that these are
not disjoint, in order to further restriet First we have

2
—2a¢p — §y\/4x2 —81a?2 < H < dayp

(where 42 — 8142 > 0), so that—y+/4x2 — 8142 < 27ag. This is trivially satisfied if
ap >0, butifap < 0 it givesy?(4x? — 814%) > 7294 ¢?, which simplifies toy? > 814°
on using the identity 42 = 9¢2 + y2. Hence

1 1
la] < 2y = ——=/9? — 4l

9" 33
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Note that this is always at least as strong4® (sincey < 2x, So we can replace the upper
or lower bounds o wheng < 0 org > 0 respectively by:i:wg\/(p —41.
Secondly, we have

4,
dap — —x*> < H < —2a¢ + - y\/ 4x2 — 8142,

9

which simplifies to 2@ — 2x2 < y+/4x? — 8142. This time we obtain no further in-

formation whenag < 0, or even whemgp < £x2. But whenap > £x2 we have

(27ap — 2x?)? < y?(4x? — 814%), which simplifies to
1
(6a— )2 < 2y2.
3
Now 4x? = 9¢? + y? > 9¢?, s04x? > 1¢?; hence the conditionp > Zx2 implies that
la| > 6|go| > 0. First suppose that > 0; thena > ¢/6, so the extra condition anis

2x%2 1 1 L
27¢) 6‘0\11\ =9

Thus wheny > 0, an upper bound on positiveis
1 1 2 x?2 1 22 -1
< max{ = ——y, ——— { = max] = 2-41), - —-—1;
‘ X{6‘”+ef3y 27¢} 46(““’) )9 0 }

the boundz%%f is stronger (smaller thagp + G—%y) if and only if 7 + 292 > 0.
The analysis fou < 0 wheng < 0 is similar. Finally, the case = 0 is easy, as here
we just restate the bound obtained earlier. O

1
6V3

We end this section by sketching a proof that our definition of reduction for quartics witt
negative discriminant does coincide with Julia’s. Note that we have not yet written dow
explicitly the associated positive definite real quadratic in this case. Ignoring an irreleva
constant factor, this is

Ho(X) = G4(X) +4G"(X)® — 1615,

whereG(X) is the quartic defined above, with invariakit = 4(¢? — I)(¢? — 41) and
quartic covarianG 4(X), and® = /31;.
Since®? has a lower algebraic degree th&nit is easier to work with

Ho(X)H_o(X) = (G4(X) — 1615)* — 4815G" (X)?.

which is a quartic defined ove(a, b, c, d, e)(¢). We now replace, ¢, d, e andg by
their expressions in terms afand the rootsvq, 2, 8 andg of the original quartigg (X).
Computer algebra then shows that the resulting expression is equal, up to a constant fac
to

(X — a0 + 15X — a))? — 4 (X — (X = B)°,
Wheretlz, t22 andu? are as defined in6). The latter is the product of Julia’s quadratic
£2(X — 1) + t5(X — a2)? + 2u?(X — B)(X — B) and the conjugate quadratif(X —
a1)?+12(X —a2)? — 2u?(X — B)(X — B). Since on both sides we have a real quartic with

a unique positive definite quadratic factor, these quadratic factors must themselves be ec
(up to a constant factor). Henégy (X) is equal to Julia’s quadratic, as claimed.
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4.5. Algorithm for reducing real quartics

The algorithm for reducing a given real quargicX) is straightforward. We compute the
invariants/ andJ, the discriminantA and the seminvariantd and Q, to determine the
type using Propositior. We then solve the cubic resolvent equation to find its rgots

If A > 0then we choose one of the three real rgotss in Propositior8: we take the
smallest for Type 1 quartics with > 0, the largest for Type 1 quartics with< 0, and the
middle root for Type 2 quartics. (Note that with Type 1 quartics the signwill remain
constant during reduction, sing¢X) has no real roots and so is itself positive or negative
definite according to the sign af) Given this value ofp, we define the quadratifl; (X)
by (31), ignoring the constant factor, and redétg X) using the general procedure given
in Section2.1.

If A < 0 we find it simplest to use Julia’s expression for the positive definite covarian
quadratic given above itt] and {). This does require us to compute the rootg(af) before
reducing it. However, since we already have the roots of the resolvent cubic, we may eas
write down these roots, rather than use a general-purpose procedugeahét’ denote
the real and one of the complex roots of the cubic resolvent, as above.Set,/z € R,
where as before, = %(4agp — H) > 0, and the sign ofv is chosen to agree with the sign
of the seminvarianrk. Also setw’ = /7 € C, wherez’ = %(441(// — H). (The choice of

sign ensures that = ww'w’ = w|w’|2.) Then the real roots af (X) are
1
Jap = — (=b — w + 2Rew)),
o1, 02 10 ( w ew ))
and the complex conjugate roots are
— 1
B, B = ™ (=b+w £ 2Imwi).

Now the quadratic used for reductionf&X — a1)? +12(X — a2)? + 2u?(X — B)(X — ),
wherer? = | Im(w)||w + w'[?, 13 = | Im(w)[|w — w’|?, andu? = | Re(w’)||w'? — w?.
(These are 8|7 times the values given in (6) and (7).)

4.6. Algorithm for finding all integer quartics with given invariants

Itis clear from much of the discussion in the preceding sections that we regard boundi
the seminvariants of areduced quartic with given invariants as more important than boundi
all the coefficients directly, as one might perhaps exjpggtiori would be more natural.
The only coefficient that we bound explicitly is the leading coefficientvhich is also
seminvariant. In fact this is quite natural, since knowledge of the seminvagiaitand R
(as well asl and J) determines the quartig(X) up to a translation of the variablg,
and hence up to SR, Z)-equivalence. We can even ignore the seminvarianivhich is
determined up to sign by the seminvariant syzy&) Qiveru andH , since the seminvariants
of g(—X) are(a, H, —R). Similar remarks apply in the cubic case.

It would appear, therefore, that our search for inequivalent integer quartics with give
invariants/, J should consist essentially of a double loop owethe outer loop) and{
(the inner loop). But this approach has one major drawback, that a given integer, prair
does not necessarily come from an integer quartic, since the equitatio8ac — 3b° does
not necessarily have integer solutionsfa@ndc. Instead, we proceed as follows: the outer
loop ona contains an inner loop ohin the range—-2|a| < b < 2|a|; for each paina, b)
we determine bounds anfrom the bounds given above dif and use a third loop on
between these bounds. This ensures that all the inequalities are satisfied, and dmatc
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are all integral. (The same method was usedinfpr the same reason, though of course
with different bounds wher < 0.)

Just as with cubics, we can make this triple loop very much more efficient by using
quadratic sieve based on the syzyg9). For eaclia, b, ¢) triple processed, we computg,
and look up in precomputed tables the valgesnodm, H modm) for various carefully
chosen auxiliary moduliz, so that we only proceed with the triple if the left-hand side of
the syzygy has the form-27R? modm for eachm. Note that although we have a triple
loop, the precomputed arrays are indexeddyH ) and so are only two-dimensional.

Given a triple(a, b, ¢) which passes the sieve, we test whether the the left-hand side c
the syzygy really does have the fora27 R? for some integeR. If so, we use the definition
of R in (20) to solve ford (discarding the triple if this value is not integral), and then the
definition of I gives the value of the last coefficientwhich again we check to be integral.

This is the procedure we have implemented as part of our progmarank for 2-
descent on general elliptic curves defined d@eFor more details of this algorithm, see the
description in [8, Section 3.6] and also the original papériflote that in B], the syzygy is
not used and there is no quadratic sieving. Also, the computatidraafie there is done
using the cubic quantities;, which are only known approximately, to a certain precision.
This results in a practical problem, of how to decide whether the computed valdesdé
are in fact integers when they are close to integers. By contrast, our approach uses e
integer arithmetic throughout, apart from the computation of the boundsaoid H .

4.6.1. Examples
We give here two examples to show how the bounds just obtained improve substantially
those used in [3], given above in (42) and (43), which we call the BSD bounds.

Example 1.First consider integer quartics with= 3792 and/ = —591408. These arise
on doing 2-descent on the elliptic curve

E: y’4+y=x3-79x+342

which has rank 5. The discriminant hereAs= —131658746112= 2833A . The real
value ofyp is ¢ = 126.6686 and the complex values afe= —63.3343+ 25.5457iand its
conjugate. The BSD bound farleads us to consider the range

1<a<84

and for eaclu we consider integer values &f satisfying (43). The number &#, H) pairs
satisfying these is 927 806.

Now the bound oifu| givenin Lemmatin (49) is 2415; fora intherange-24 < a < 24,
the inequalities (50), (51) on Hre incompatible unless5 < a < 24. As expected, the
refined bounds fat in Propositionl4 give precisely this range far. The number ofa, H)
pairs which satisfy §7), (60) is only 177176, or approximately one fifth of the earlier
number. This leads to a saving of almost 81 percent in the time to find all inequivalel
integer quartics with these invariants. The number we find is in fact 58; under the weak
equivalence between quartics which is relevant for classifying homogeneous spaces fc
2-descent, this number reduces to 32 and hence to the conclusion that theEchage
rank 5. (We omit fuller details of the 2-descent, which is describe@]i) [

Example 2.For an even more impressive example, we consider the invariantg21812
andJ = —1236714912, which come from the elliptic curve

E: y?=x%— 240604 + 45804256
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of rank 7. The BSD bounds give the rangecls < 1134 fora, and a total of 2188 507 643
(a, H) pairs satisfy the BSD inequalities. Using our bounds we find the rarige< a <
290 fora, and a total of 77 752 19, H) pairs. The saving here is nearly 96.5%.

5. Remarks on reduction over number fields

In extending our results to the reduction of polynomials over number fields, two importar
matters arise. Firstly, reduction of integer polynomials uses the real embégldingR. For
a number fieldk , we must use all the real embeddingskgfas well as the complex (non-
real) embedding& < C if K is not totally real. Secondly, we must somehow combine
the bounds coming from the various embedding& @b obtain usable bounds, and a finite
search region, for the coefficients of reduced polynomiat8 i X].

We consider first totally real fields. The only case which has been worked out in dete
to date is that of a real quadratic field of class number 1: 8geupd [L4] for fuller details.
One finds that the correct approach is not to consider the real embeddings separately, bt
work with them simultaneously. The basic reduction theory of Se&@javhich was based
on the action of the modular group 8, Z) on the upper half-plang’, must be replaced by
a theory based on the action of the Hilbert modular grouf2S®x ) on #?2. This leads to
bounds on theormof the leading coefficient of a reduced totally positive definite quadratic
in K[X], and this is sufficient to produce a finite search region since the action of units ce
easily be controlled.

For the case of fields which are not totally real, we only consider here an imagina
guadratic fieldK. Instead of reduction by means of positive definite real quadratics (o
equivalently, points in the upper half-platf€), one is led to reduction by means of so-
called ‘Hermitian quadratics’. These have the form

h(z, w) = azz + bzw + bzw + cww,

whereq andc are realp is complex, and we consideandw to be complex indeterminates.

In place of points on the upper half-plane, we have points in hyperbolic 3-stéac€he
modular group SI2, Ok) is here usually called a Bianchi group, and acts both on the seto
Hermitian quadratics and offs. This theory is quite classical, originating in the late 19th
century with the work of Bianchi, Humbert and others. The application to the reduction c
polynomials with complex coefficients forms the second part of Julia’s treatise [12], whos
first part we have referred to repeatedly in this paper. In a future paper, we hope to she
how to use Julia’s methods to find all quartics with giv€rintegral invariantd and J,

up to SL(2, Ok)-equivalence, over an imaginary quadratic figlef class number 1. This
will form part of a planned implementation of an explicit 2-descent algorithm for elliptic
curves defined over such fields. Itis not yet clear whether the approach via classical invari
theory, which we have exploited in this paper, has an analogue in the complex case. So
preliminary work on such a theory is in progress, but it is too early to tell whether the resul
will have practical applications to reduction.
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