
Adv. Appl. Prob. 47, 37–56 (2015)
Printed in Northern Ireland

© Applied Probability Trust 2015

THE MIXING TIME OF THE
NEWMAN–WATTS SMALL-WORLD MODEL

LOUIGI ADDARIO-BERRY,∗ ∗∗ and

TAO LEI,∗ ∗∗∗ McGill University

Abstract

‘Small worlds’ are large systems in which any given node has only a few connections to
other points, but possessing the property that all pairs of points are connected by a short
path, typically logarithmic in the number of nodes. The use of random walks for sampling
a uniform element from a large state space is by now a classical technique; to prove that
such a technique works for a given network, a bound on the mixing time is required.
However, little detailed information is known about the behaviour of random walks on
small-world networks, though many predictions can be found in the physics literature.
The principal contribution of this paper is to show that for a famous small-world random
graph model known as the Newman–Watts small-world model, the mixing time is of
order log2 n. This confirms a prediction of Richard Durrett [5, page 22] , who proved a
lower bound of order log2 n and an upper bound of order log3 n.
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1. Introduction

The small-world phenomenon is a catchy name for an important physical phenomenon that
shows up throughout the physical, biological, and social sciences. In brief, the term applies
to large, locally sparse systems (usually possessing only a bounded number of connections
from any given point) which nonetheless exhibit good long-range connectivity in the sense
that there are short paths between all points in the system. The Erdős–Rényi random graph
Gn,p is perhaps the most mathematically famous model possessing small-world behaviour:
when p = c/n for c > 1 fixed, the average vertex degree is c, and the diameter of the largest
connected component is

log n

log c
+ 2

log n

log(1/c∗)
+ Op(1)

(see [21]), where c∗ < 1 satisfies ce−c = c∗e−c∗
and Op(1) denotes a random amount that

remains bounded in probability as n → ∞.
The Erdős–Rényi random graph is unsatisfactory as a real-world model in two ways: first,

the network does not satisfy full connectivity (a constant proportion of vertices lie outside of
the giant component); second, the graph is locally tree-like (for any fixed k, the probability that
there is a cycle of length at most k through a randomly chosen node is o(1)). In real-world
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Figure 1.

networks showing small-world behaviour (e.g. social or business networks, gene regulatory
networks, networks for modelling infectious disease spread, scientific collaboration networks,
and many others — [19] contains many interesting examples), full or almost-full connectivity is
common, and short cycles are plentiful. Several connected models have been proposed which
in some respects capture the desired local structure as well as small-world behaviour, notably
the Bollobás–Chung model [2], the Watts–Strogatz model [23], and the Newman–Watts model
[14], [17], [18]. These models are closely related — all are based on adding sparse, long-range
connections to a connected ‘base network’ which is essentially a cycle. Note that in [23],
small-world models are connected random graph models having both short average distance
and relatively high clustering coefficient.

Understanding the behaviour of random walks on small-world networks remains, in general,
a challenging open problem. Numerical and nonrigorous results for return probabilities [11],
relaxation times [20], spectral properties [6], hitting times [4], [10], and diffusivity [8] appear
in the physics literature, but few rigorous results are known. In [5], Durrett considered the
Newman–Watts small-world model, proving lower and upper bounds on the mixing time of order
log2 n and log3 n, respectively, and suggested that the lower bound should in fact be correct. The
principle contribution of this paper is to confirm Durrett’s prediction (see Theorem 1, below).

As stated in [16], the Newman–Watts small-world model was proposed independently by
Monasson [14] and by Newman and Watts [17], [18]. In this paper, we follow the formulation
as in [14]. To define the Newman–Watts small-world model, first fix integers n ≥ k ≥ 1. The
(n, k)-ring Rn,k is the graph with vertex set [n] = {1, . . . , n} and edge set {{i, j} : i + 1 ≤ j ≤
i + k}, where addition is interpreted modulo n. (A picture of R18,3 appears in Figure 1.) In
particular, an (n, 1)-ring is a cycle of length n, and whenever n > 2k the (n, k)-ring is regular
of degree 2k. For 0 < p < 1, the (n, k, p)-Newman–Watts small-world model, denoted by
Hn,k,p, is the random graph obtained from the (n, k)-ring by independently replacing each
non-edge of the (n, k)-ring by an edge with probability p. To be more precise, independently
for each 1 ≤ i < j ≤ n,

P({i, j} is an edge of Hn,k,p) =
{

1 if {i, j} ∈ E(Rn,k),

p otherwise.

We write H as shorthand for Hn,k,p whenever the parameters are clear from the context.
Given a (finite, simple) graph G = (V , E), by a lazy simple random walk on G we mean a

random walk that at each step stays still with probability 1
2 , and otherwise moves to a uniformly

https://doi.org/10.1239/aap/1427814580 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1427814580


The mixing time of the Newman–Watts small-world model 39

random neighbour. In other words, this is a Markov chain with state space V and transition
probabilities

px,y =

⎧⎪⎨
⎪⎩

1
2 if x = y,

1/2dG(x) if y ∈ NG(x),

0 otherwise,

where dG(x) denotes the number of neighbours of x in G and NG(x) denotes the collection of
neighbours of x in G. (More generally, we shall say a chain is lazy if px,x ≥ 1

2 for all x in the
state space.) If G is connected then this Markov chain has a unique stationary distribution π

given by π(x) = dG(x)/2|E|. (We note for later use the notation π(S) = ∑
v∈Sπ(v) for S, a

set of vertices in G.)
Given two probability distributions μ, ν on V , we define the total variation distance be-

tween μ and ν as

‖μ − ν‖TV = sup
S⊂V

|μ(S) − ν(S)| = 1
2

∑
v∈V

|μ(v) − ν(v)|,

where μ(S) = ∑
v∈S μ(v). Now, let (Xk)k≥0 be a lazy simple random walk on G, and write

μk,x for the distribution of Xk when the walk is started from x; formally, for all y ∈ G,
μk,x(y) = P(Xk = y | X0 = x). The mixing time of the lazy simple random walk on G is
defined as

τmix(G) = max
x

min
{
k : ‖μk,x − π‖TV ≤ 1

4

}
.

(There are many different notions of mixing time, many of which are known to be equivalent
up to constant factors — [12] and [13] are both excellent references.) Note that the mixing time
is a deterministic parameter of the underlying graph G, but τmix(H) is a random variable since
H = Hn,k,p is random. We may now formally state our main result.

Theorem 1. Fix c > 0, let p = c/n, and let H be an (n, k, p)-Newman–Watts small-world
network. Then there exists C0 > 0 depending only on c and k such that, with a probability of
at least 1 − O(n−3),

C−1
0 log2 n ≤ τmix(H) ≤ C0 log2 n.

Furthermore, E[τmix(H)] ≤ C0(log2 n + 1).

The expectation bound in Theorem 1 follows easily from the probability bound. Indeed,
given a finite reversible lazy chain X = (Xt , t ≥ 0) with state space �; for x ∈ � write
τx = min{t ≥ 0 : Xt = x} for the hitting time of state x. Then τmix ≤ 2 maxx∈� Eπ (τx) + 1,
where Eπ denotes expectation starting from stationarity (see e.g. [12, Theorem 10.14 (ii)]).
If X is a lazy simple random walk on a connected graph G = (V , E) with |V | = n, then
maxx∈V Eπ (τx) ≤ ( 4

27 + o(1))n3 (see [3]). Assuming the probability bound of Theorem 1 and
applying the two preceding facts, we obtain

E[τmix(H)] ≤ C0 log2 n + 8
27n3(1 + o(1))P(τmix(H) > C0 log2 n) ≤ C0(log2 n + 1),

assuming that C0 is chosen to be large enough.
The lower bound of Theorem 1 is also straightforward, and we now provide its proof. For n

sufficiently large, given v ∈ [n] and � ∈ N, the probability that all vertices w of Hn,k,p with
w ∈ [v − �, v + �] (mod n) have degree exactly 2k is greater than

(1 − p)n(2�+1) ≥ e−2c(2�+1),
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the inequality holding since (1 − c/n)n > e−2c for large n. Taking α = 1/8c, it follows easily
that with a probability of at least 1 −O(n−3) there exists a v ∈ [n] such that all vertices w with
w ∈ [v−α log n, v+α log n] (mod n) have degree exactly 2k. Furthermore, the random walker
starting from such a vertex v will, with high probability, take time of order log2 n before first
visiting a vertex in the complement of [v − α log n, v + α log n] (mod n). Finally, under π , the
set [v − α log n, v + α log n] (mod n) has measure tending to zero with n; thus, it follows from
the definition of τmix that the mixing time is of order at least log2 n whenever such a vertex v

exists.
Having taken care of the expectation upper bound and lower bound in probability from

Theorem 1, the remainder of this paper is now devoted to proving that, with probability at
least 1 − O(n−3), τmix(H) = O(log2 n). In Section 2 we explain the conductance-based
mixing time bound of Fountoulakis and Reed [7] which will form the basis of our approach.
The Fountoulakis–Reed bound requires control on sizes of the edge boundaries of connected
subgraphs of Hn,k,p (or edge expansion for short). To this end, in Section 3 we bound the
expected number of connected subgraphs of Hn,k,p of size j , for each 1 ≤ j ≤ n; our
probability bounds on the edge expansion of such subgraphs follow in Section 4. In Section 5
we finish the proof of Theorem 1. The proof is more straightforward when c is large; hence,
we handle the large-c and small-c cases separately, as we will need to use the results for the
large-c case in the proof of the small-c case. Finally, in Section 6 we provide some concluding
remarks.

1.1. Notation

Given a graph G, write V (G) for the set of vertices of G and E(G) for the set of edges of G.
Also, given S ⊂ V (G), write G[S] for the subgraph of G induced by S (i.e. G[S] is the graph
with vertex set S and edge set {e = (u, v) : u, v ∈ S, e ∈ E(G)}). We say that S is connected
if G[S] is connected. Finally, given a formal power series F(z), we write [zj ]F(z) to mean the
coefficient of zj in F(z), so if F(z) = ∑

k≥0akz
k then [zj ]F(z) = aj .

Given sets S, T ⊂ V , write E(S, T ) = EG(S, T ) for the set of edges of G with one
endpoint in S and the other in T , and write e(S, T ) = |E(S, T )|. Also, given S ⊂ V write
e(S) = ∑

v∈S dG(v).

2. Mixing time via conductance bounds

A range of techniques are known for bounding mixing times ([15] is a recent survey of
the available approaches), many of which are tailor-made to give sharp bounds for particular
families of chains. One family of techniques is based on bounding the conductance of the
underlying graph, a function which encodes the presence of bottlenecks at all scales. Informally,
by a bottleneck at scale x we mean a set S ⊂ V with e(S, S) ≈ x|E(G)| and with e(S, Sc) �
x|E(G)|. For example, in the dumbbell graph formed by connecting two cliques of size n/2
with one edge, one of the cliques forms a bottleneck at scale 1

2 . In this case, there exists
bottlenecks of scale 1

2 but no bottlenecks of smaller scale. The precise bound we shall use is
due to Fountoulakis and Reed [7]. The conductance of S, written �(S), is given by

�(S) = e(S, Sc)

e(S)
.

For 0 ≤ x ≤ 1
2 , write

�(x) = min
S connected

x|E|≤e(S)≤2x|E|
�(S).
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The function �(x) is called the conductance profile of G. This definition is how we formalize
the idea of bottleneck at scale x: �(x) is the smallest conductance of a connected set S ⊂ V (G)

with π(S) ∈ [x/2, x]. The quantity �(S) is sometimes called the bottleneck ratio (see e.g. [12,
page 88]). Also, the conductance of S is sometimes defined to equal Q(S, Sc)/π(S)π(Sc),
where Q(S, Sc) = ∑

x∈S,y /∈S π(x)P (x, y) and P is the transition matrix of the random walk
(or, more generally, of some irreducible and aperiodic Markov chain with stationary distribution
π ). For a simple random walk on a graph G,

Q(S, Sc)

π(S)π(Sc)
= e(S, Sc)

e(S)

2|E|
e(Sc)

. (1)

Note that when e(S) ≤ |E|, the quantity on the left-hand side of (1) differs from �(S) by at
most a multiplicative factor of 2.

We will use the following theorem, a specialization of the main result from [7].

Theorem 2. ([7, Theorem 1].) There exists a universal constant C > 0 so that, for any
connected graph G,

τmix(G) ≤ C

�log2 |E|
∑
i=1

�−2(2−i ).

In fact, in [7] �(s) is defined as

�(S) = Q(S, Sc)

π(S)π(Sc)

and �(x) is set as
�(x) = min

S connected
x/2≤π(S)≤x

�(S).

However, by the comments preceding Theorem 2 this changes the precise upper bound in
Theorem 2 by at most a multiplicative factor of 2.

With Theorem 2 at hand, proving mixing time bounds boils down to understanding what
sorts of bottlenecks can exist in G. For the (n, k, p)-Newman–Watts small-world network with
p = c/n, it is not hard to see that small sets can have low conductance. Indeed, in Section 1
we observed that, with high probability, the ring Rn,k will contain connected sets S with
	(log n) nodes, to which no edges are added in Hn,k,p. Such a set S will have e(S, Sc) < k2

and so will have conductance �(S) = O(1/ log n). It follows that, with high probability,
�−2(2−i ) = 	(log2 n) for some i = 	(log log n). By Theorem 2, this suggests that to prove
Theorem 1, we might try to show that, for i smaller than some threshold of order log log n

(corresponding to sets of size larger than S), the contribution to the sum is negligible compared
with log2 n. We indeed take this approach.

To be more precise, we will prove the upper bound in the probability bound of Theorem 1
by showing that there are constants ε > 0, C0 > 0 such that, with high probability, whenever
|S| ≥ C0 log n, we have �(S) ≥ ε. From a more precise version of this fact and Theorem 2, the
upper bound in Theorem 1 will follow straightforwardly. To prove such bounds, we will need
control on the likely number of connected subgraphs of Hn,k,p of size s, for all s ≥ C log n

for some constant C. In Section 3, we bound the expected number of such subgraphs using
Lagrange inversion and comparison with a branching process.
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3. Counting connected subgraphs

Let v ∈ [n], write Bj,v = Bj,v(H) for the set of all S ⊂ [n] containing v with |S| = j such
that H [S] is connected, and let Bj = ⋃

v∈[n] Bj,v . Our aim in this section is to establish the
following proposition.

Proposition 1. For any positive integer j and any v ∈ [n], E|Bj,v| ≤ (4(c + 2k))j , and
E|Bj | ≤ n(4(c + 2k))j .

We will prove Proposition 1 by comparison with a Galton–Watson process. Recall that a
Galton–Watson process can be described as follows. An initial individual — the progenitor —
has a random number Z1 of children, where Z1 is some nonnegative, integer-valued random
variable. The distribution of Z1 is called the offspring distribution. Each child of the progenitor
reproduces independently according to the offspring distribution, and this process continues
recursively. The family tree of a Galton–Watson process is called a Galton–Watson tree, and
is rooted at the progenitor.

The number of neighbours of a vertex in Hn,k,p is distributed as bin(n − 2k − 1, p) + 2k.
From this it is easily seen that |Bj,v| is stochastically dominated by the number of subtrees of
size j containing the root in T , where T is a Galton–Watson tree with offspring distribution
bin(n− 2k − 1, p)+ 2k. To bound the expectations of the latter random variables, we will first
encode these expectations as the coefficients of a generating function, then use the Lagrange
inversion formula ([22, Theorem 5.4.2]), which we now recall.

Theorem 3. (Lagrange inversion formula, in [22, Theorem 5.4.2].) If G(x) is a formal power
series and f (x) = xG(f (x)), then

n[xn]f (x)k = k[xn−k]G(x)n.

Fix a nonnegative, integer-valued random variable B, and for m ≥ 0 write pm = P(B = m).
Given a Galton–Watson tree T with offspring distribution B, let μj = μj (B) denote the
expected number of subtrees of T containing the root of T and having exactly j vertices (so
μ0 = 0). Also, write

qj =
∑
m≥j

pm(m)j ,

where (m)j = m!/(m− j)! is the falling factorial. Note that qj is the expected number of ways
to choose and order j children of the root in T . Let F(z) = ∑∞

j=0μjz
j and Q(z) = ∑∞

j=0 qj z
j

be the generating functions of μj and qj respectively, viewed as formal power series.

Lemma 1. Let F(z) = zQ(F(z)).

Proof. We have

Q(F(z)) =
∑
j≥0

qj

(∑
r≥1

μrz
r

)j

=
∑
j≥0

qj

(∑
r≥j

∑
r1+···+rj =r

r1,··· ,rj ∈N+

zrμr1 · · · μrj

)

= 1

z

∑
r≥0

zr+1
∑
j≤r

qj

( ∑
r1+···+rj =r

r1,··· ,rj ∈N+

μr1 · · · μrj

)
. (2)
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The rth term in the outer sum on the right-hand side of (2) encodes subtrees of T with r + 1
vertices that contain the root, as follows. First specify the degree j of the root of the tree T to
be embedded. Then choose which j children of the root of T will form part of the embedding,
and the order in which the children of the root of T will be mapped to these nodes (there are qj

ways to do this on average). Next, choose the sizes r1, . . . , rj of the subtrees of the children of
the root in the embedded tree; finally, embed each such subtree in the respective subtree of T ;
on average, there are μri ways to do this. It follows that

1

z

∑
r≥0

zr+1
∑
j≤r

qj

( ∑
r1+···+rj =r

r1,··· ,rj ∈N+

μr1 · · · μrj

)
= 1

z

∑
r≥0

zr+1μr+1 = 1

z
F (z),

which proves the lemma. (We remark that verifying that the identity in the first line can be
done purely formally; however, we find the preceding explanation more instructive.)

Lemma 2. Fix C > 0. If qj ≤ Cj for all j ≥ 0 then

μj ≤ 1

j

(
2j − 2

j − 1

)
Cj−1 < (4C)j−1,

for all j ≥ 1.

Proof. By Lemma 1 and Theorem 3, we have j [zj ]F(z)k = k[zj−k]Q(z)j . In particular,
taking k = 1, we have μj = [zj ]F(z) = (1/j)[zj−1]Q(z)j . Now,

Q(z)j =
(∑

l≥0

qlz
l

)j

=
∑
r≥0

( ∑
l1+···+lj =r

l1,··· ,lj ∈N

ql1ql2 · · · qlj

)
zr .

Therefore,

[zj−1]Q(z)j =
∑

l1+···+lj =j−1
l1,··· ,lj ∈N

ql1ql2 · · · qlj .

Each summand ql1 · · · qlj is at most Cj−1 by assumption. There are
(2j−2

j−1

)
nonnegative integer

solutions to the equation l1 + · · · + lj = j − 1, so we obtain that [zj−1]Q(z)j ≤ (2j−2
j−1

)
Cj−1.

The result follows.

The next lemma controls the growth of qj for some important special offspring distributions,
which allows us to use Lemma 2 to prove Proposition 1.

Lemma 3. If the offspring distribution B is Poi(c) distributed then qj = cj for all j . Also,
if B is bin(n, c/n) distributed then, for all j ≥ 0, qj ≤ cj . Finally, if B − � is bin(n, c/n)

distributed for some fixed � ≥ 0 then, for all j ≥ 0, qj ≤ (c + �)j .

Proof. If B
d= Poi(c), then

qj =
∑
m≥j

pm

m!
(m − j)! =

∑
m≥j

cm

m! e−c m!
(m − j)! = e−ccj

∑
l≥0

cl

l! = e−ccj ec = cj .
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If B
d= bin(n, c/n) then, using the binomial theorem, we have

qj =
∑

j≤m≤n

(
n

m

)(
c

n

)m(
1 − c

n

)n−m
m!

(m − j)!

=
(

c

n

)j

n(n − 1) · · · (n − j + 1)
∑

j≤m≤n

(
n − j

n − m

)(
c

n

)m−j(
1 − c

n

)n−m

≤ cj ,

Finally, if B
d= bin(n, c/n) + � then we consider three Galton–Watson trees, T1, T2, and T3,

with offspring distributions B1 ≡ l, B2
d= bin(n, c/n), and B3

d=bin(n, c/n) + � respectively.
For i = 1, 2, 3 write q

(i)
j = qj (Bi). Since q

(1)
j is the expected number of ways to choose and

order precisely j children of the root in T1, we have q
(1)
j = (l)j ≤ lj and by the previous

argument we know that q
(2)
j ≤ cj . Finally, since q

(3)
j is the expected number of ways to choose

and order precisely j children of the root in T3, by independence we have

q
(3)
j =

j∑
s=0

(
j

s

)
q(1)
s q

(2)
j−s ≤

j∑
s=0

(
j

s

)
lscj−s = (l + c)j .

The factor
(
j
s

)
in the first equality arises because as long as we choose s positions for children

coming from the deterministic component of offspring distribution, the order of all j children
are fixed since the order among s children and the order among the other j − s are both fixed.

We remark that if T has deterministic d-ary branching (every node has exactly d children
with probability one), then for all j , the number of subtrees containing the root and having
precisely j nodes is exactly

(
dj

j−1

)
/j (see [22, Theorem 5.3.10]) which is bounded above by

(edj/(j − 1))j−1/j ≤ (ed)j . Thus, Lemma 2 shows that when factorial moments grow only
exponentially quickly, the values μj behave roughly as in the case of deterministic branching.
We also note that when T has Poi(c) branching distribution, Lemma 2 and the argument of
Lemma 3 together yield the exact formula μj = (cj−1/j)

(2j−2
j−1

)
.

Proof of Proposition 1. Let T be a Galton–Watson tree with offspring distribution B
d=

bin(n, c/n) + 2k. Then, for any v ∈ V (Hn,k,p), the random variable |Bj,v| is stochastically
dominated by the number of subtrees of T containing the root of T and having exactly j vertices.
As above, we write μj (B) for the expected number of such subtrees. By Lemma 3, we have that
qj (B) ≤ (c + 2k)j for all j , and it then follows from Lemma 2 that μj (B) ≤ (4(c + 2k))j−1

for all j , proving the proposition.

4. Bounding the expansion of connected subgraphs of Hn,k,p

Recall from Section 3 that Bj is the collection of connected subsets S of V (Hn,k,p) with
|S| = j . We will show that, with high probability, for all j ≥ log n, all elements S of Bj

have conductance uniformly bounded away from zero. Many of our proofs are easier when c

is large, and we treat this case first.
In the course of the proofs we will make regular use of the standard Chernoff bounds (see,

e.g. [9] Theorem 2.1) which we summarize here.
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Theorem 4. If X
d= bin(m, q) then

P(X ≤ (1 − x)mq) ≤ exp(−mqφ(−x)) ≤ exp

(−mqx2

2

)
for all 0 < x < 1

and

P(X ≥ (1 + x)mq) ≤ exp(−mqφ(x)) ≤ exp

( −mqx2

2(1 + x)

)
for all x > 0,

where φ(x) = (1 + x) log(1 + x) − x.

We will use the coarser bounds most of the time. The finer bound will only be used twice,
once in the proof of Lemma 7 and once in the proof of Theorem 1.

We will also need the following lemma, which is an easy consequence of the Fortuin-
–Kasteleyn—Ginibre (FKG) inequality (see, e.g. [9, Theorem 2.12]). Let � = [n] =
{1, 2, . . . , n}. Given 0 ≤ p1, . . . , pn ≤ 1, �p1,...,pn ⊂ [n] is obtained by including element i

with probability pi independently for all i. We say that a function f : 2� → R is increasing if
f (A) ≤ f (B) for A ⊂ B, and f is decreasing if f (A) ≥ f (B) for A ⊂ B.

Lemma 4. If C is an increasing event and A is a decreasing event, then

P(C | A) ≤ P(C).

We begin by bounding the edge expansion of all but the very large connected sets, in the
case that c is large.

Lemma 5. Fix c large enough such that c/720 − log(4(c + 2k)) > 5. Then, for all n,

P

(
there exists S ∈

⋃
log n≤j≤9n/10

Bj , e(S, Sc) ≤ c|S|
12

)
≤ 1

n3 .

Proof. Fix j ∈ [log n, 9n/10], and S ⊂ [n] with |S| = j . Note that E(S, Sc) is inde-
pendent of H [S], so given that S ∈ Bj , e(S, Sc) stochastically dominates a bin(j (n − j), p)

random variable. Since j (n − j) ≥ jn/10, it follows that under this conditioning e(S, Sc)

also stochastically dominates X, a bin(nj/10, p) random variable. By a union bound it
follows that

P

(
there exists S, |S| = j, H [S] connected, e(S, Sc) ≤ cj

12

)

≤
∑

S,|S|=j

P

(
e(S, Sc) ≤ cj

12

∣∣∣∣ H [S] connected

)
P(H [S] connected)

≤ P

(
X ≤ cj

12

)
E|Bj |

≤ e−cj/720n(4(c + 2k))j ,

where the last line follows by a Chernoff bound and by Proposition 1. (This is a typical example
of our use of Proposition 1 in the remainder of the paper.)

By our assumption that c/720 − log(4(c + 2k)) > 5 and since j ≥ log n, we obtain that this
probability is at most

exp

(
log n + j

(
log(4(c + 2k)) − c

720

))
≤ 1

n4 .

The result follows by a union bound over j ∈ [log n, 9n/10].
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The next lemma provides a lower bound on the edge expansion of very large sets, again in
the case that c is sufficiently large.

Lemma 6. If c > 40 then, for all n sufficiently large,

P

(
there exists S ⊂ [n] : |S| >

9n

10
, e(S) ≤ |E(H)|

)
≤

(
2

e

)n

.

Proof. In this proof write E = E(H). Since, for any set S ⊂ [n], e(S) + e(Sc) = 2|E|, the
claim of the lemma is equivalent to

P

(
there exists S ⊂ [n] : |S| <

n

10
, e(S) ≥ |E|

)
≤

(
2

e

)n

.

Fix any set S with |S| < n/10. Write e∗(S) = ∑
v∈S |{e � v : e �∈ E(Rn,k)}| for the total degree

incident to S not including edges of the ring Rn,k , and similarly let E∗ = E \ E(Rn,k). Since
|S| < n/10 < n/2, in order to have e(S) ≥ |E| we must in fact have e∗(S) ≥ |E∗|. Also, e∗(S)

is stochastically dominated by bin(n2/10, p), and |E∗| d= bin(n(n − 1 − 2k)/2, p). When n

is large enough such that n − 1 − 2k > 4n/5, we have

P(e(S) ≥ |E(H)|) ≤ P

(
|E∗| ≤ cn

5

)
+ P

(
e∗(S) >

cn

5

)

≤ P

(
|E∗| ≤ c(n − 1 − 2k)

4

)
+ P

(
e∗(S) >

cn

5

)

< exp

(−c(n − 1 − 2k)

16

)
+ exp

(−cn

40

)
,

by a Chernoff bound. For n sufficiently large, the last line is at most 2e−cn/40 < 2e−n, and the
result follows by a union bound over all S with |S| ≤ n/10 (there are less than 2n−1 such sets).

A similar but slightly more involved argument yields the following result, which will be
useful for dealing with smaller values of c.

Lemma 7. For any c > 0 there exists β = β(c) > 0 such that, for all n sufficiently large,

P(there exists S ⊂ [n] : |S| > (1 − β)n, e(S) ≤ |E(H)|) ≤ (1 − β)n.

Proof. As in the proof of Lemma 6, it suffices to prove that, for some β > 0,

P(there exists S ⊂ [n] : |S| < βn, e(S) > |E|) ≤ (1 − β)n.

Furthermore, since P(there exists S ⊂ [n] : |S| < βn, e(S) > |E|) decreases as β decreases, it
suffices to find β > 0 and ε > 0 such that, for n sufficiently large,

P(there exists S ⊂ [n] : |S| < βn, e(S) > |E|) = O(e−εn).

We fix 0 < β < 1/(3e) small enough such that 1/2β − 8k/c > 1 + 1/3β. Additionally,
recalling the function φ(x) = (1 + x) log(1 + x) − x from Theorem 4, we choose β small
enough such that φ(1/3β) > log(1/3β)/6β. Finally, we assume that β < c/36.
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For any S ⊂ [n] with |S| < βn and with e(S) > |E|, defining e∗(S) and E∗ as in the proof
of Lemma 6, we then have e∗(S) ≥ |E| − 2k|S| ≥ |E| − 2kβn and

P(there exists S ⊂ [n] : |S| < βn, e(S) > |E|)
≤ P(there exists S ⊂ [n] : |S| < βn, e∗(S) ≥ |E| − 2kβn)

≤ P

(
|E| ≤

(
n

2

)
p − 2kβn

)

+ P

(
there exists S ⊂ [n] : |S| < βn, e∗(S) >

(
n

2

)
p − 4kβn

)
. (3)

Since |E| stochastically dominates bin(
(
n
2

)
, p), by a Chernoff bound we have

P

(
|E| ≤

(
n

2

)
p − 2kβn

)
≤ exp

(
−1

2

(
n

2

)
p

(
2kβn(

n
2

)
p

)2)

< exp

(
−4k2β2

c
n

)
, (4)

which handles the first summand in (3). For the second summand, let X be bin(βn(n − 1), p)

distributed, and note that, for all S ⊂ [n] with |S| ≤ βn, e∗(S) is stochastically dominated
by X. Also, for β < 1

3 there are less than 2
(

n
�βn�

)
subsets of [n] of size less than βn, and it

follows by a union bound that

P

(
there exists S ⊂ [n] : |S| < βn, e∗(S) >

(
n

2

)
p − 4kβn

)

≤ 2

(
n

�βn�
)

P

(
X >

(
n

2

)
p − 4kβn

)
. (5)

Since 1/(p(n − 1)) = n/(c(n − 1)) ≤ 2/c for all n ≥ 2, and by our assumption that 1/(2β) −
8k/c > 1 + 1/3β, we have(

n

2

)
p − 4kβn = βn(n − 1)p

(
1

2β
− 4k

p(n − 1)

)
> βn(n − 1)p

(
1 + 1

3β

)
.

By the sharper of the Chernoff upper bounds in Theorem 4 and by our assumption that
φ(1/3β) > log(1/3β)/6β, it follows that

P

(
X >

(
n

2

)
p − 4kβn

)
≤ exp

(
−βn(n − 1)pφ

(
1

3β

))

≤ exp

(
−βn(n − 1)p

log(1/3β)

6β

)

< exp

(
−c log(1/3β)

12
n

)
,

for n sufficiently large.
Combined with (5) this yields

P

(
there exists S ⊂ [n] : |S| < βn, e∗(S) >

(
n

2

)
p − 4kβn

)

< 2

(
n

�βn�
)

exp

(
−c log(1/3β)

12
n

)
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≤ 2

(
e

β

)βn

exp

(
−c log(1/3β)

12
n

)

= 2 exp

(
n

(
β + β log

(
1

β

)
− c

12
log

(
1

3β

)))

< 2 exp

(
− c

36
n

)
,

where in the last inequality we used that β + β log(1/β) < 2β log(1/β) < (c/18) log(1/β)

and that log(1/3β) > 1. Together with (3) and (4), we obtain

P(there exists S ⊂ [n] : |S| < βn, e(S) > |E|) ≤ exp

(
−4k2β2

c
n

)
+ 2 exp

(
− c

36
n

)
,

which completes the proof.

In order to use Lemma 5 to bound the conductance of connected subsets S of V (Hn,k,p) of
size at most 9n/10, we need to know that for such subsets we have e(S) = O(|S|) with high
probability. Such a bound is provided by Lemma 8, below.

For given k, let x = xk be the positive solution of the equation x/720 − log(4(x +2k)) = 5,
and let M = M(c, k) = k + 1 + 10 max(xk, c). We remark that xk is much larger than 40 for
all k ≥ 1.

Lemma 8. For all c > 0 and for all n,

P

(
there exists S ∈

⋃
1≤j≤n

Bj , e(S, S) > M max(|S|, log n)

)
≤ 1

n3 .

Proof. First note that the event whose probability we aim to bound is increasing in p (and
in c), so increasing c only increases its probability of occurrence. Since M(c, k) is constant
for c ≤ xk , it suffices to prove the bound for c = xk , and the case c < xk follows. Hence, we
now assume that c ≥ xk . Note that in this case c/720 − log(4(c + 2k)) ≥ 5. For all n, and any
j ∈ [n], we have

P(there exists S ∈ Bj , e(S, S) > (k + 1 + 10c) max(j, log n))

≤
∑

S⊂[n], |S|=j

P(e(S, S) > (k + 1 + 10c) max(j, log n), S ∈ Bj ). (6)

Write TS for the set of all possible trees on vertex set S (so |TS | = |S||S|−2) and list the
elements of TS as t1, . . . , tr . For i ∈ [r], let Fi be the event that ti is a subgraph of H , and let
Ei = Fi \⋃

j<i Fj be the event that ti is a subgraph of H but none of t1, . . . , ti−1 are subgraphs
of H . The events Ei partition the event that S ∈ Bj , so

P(e(S, S) > (k + 1 + 10c) max(j, log n) | S ∈ Bj )

≤ max
i∈[r] P(e(S, S) > (k + 1 + 10c) max(j, log n) | Ei). (7)

For i ∈ [r], write Pi (·) for the conditional probability measure P( · | Fi).
Write C for the event that |E(S, S) \ E(ti)| > (k + 1 + 10c) max(j, log n) − (j − 1). Then

we have

P(e(S, S) > (k + 1 + 10c) max(j, log n) | Ei) = Pi

(
C

∣∣∣∣ ⋂
j<i

F c
j

)
.
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Since C is increasing and
⋂

j<i F c
j is decreasing, it follows from Lemma 4 that

Pi

(
C

∣∣∣∣ ⋂
j<i

F c
j

)
≤ Pi (C)

= Pi (|E(S, S) \ E(ti)| > (k + 1 + 10c) max(j, log n) − (j − 1)).

Under Pi , the set E(S, S) \ (E(ti) ∪ E(Rn,k)) is distributed as a bin(p) random subset of
{uv : u, v ∈ S}\(E(ti)∪E(Rn,k)) since, after conditioning that ti is a subgraph ofH , those edges
not in ti or Rn,k still appear independently. Furthermore, |E(S, S) ∩ E(Rn,k)| ≤ kj . It follows
that, under Pi , |E(S, S) \E(ti)| is stochastically dominated by kj + bin(max(j, log n)n/2, p).
Letting X have distribution bin(n max(j, log n)/2, p). For all i ∈ [r] we thus have

P(e(S, S) > (k + 1 + 10c) max(j, log n) | Ei)

≤ P(kj + (j − 1) + X > (k + 1 + 10c) max(j, log n))

≤ P(X > 10c max(j, log n))

= P(X > 20EX)

≤ e−9c max(j,log n)/2.

The last inequality uses the upper Chernoff bound with x = 19 (using 192/40 > 9). It then
follows from (6) and (7) that

P(there exists S ∈ Bj , e(S, S) > (k + 1 + 10c) max(j, log n))

≤
∑

S⊂[n], |S|=j

e−9c max(j,log n)/2
P(S ∈ Bj )

= e−9c max(j,log n)/2
E|Bj |

≤ e−9c max(j,log n)/2n(4(c + 2k))j ,

the last inequality follows by Proposition 1. By assumption, c is large enough such that
c/720 − log(4(c + 2k)) > 5, and it follows that

P(there exists S ∈ Bj , e(S, S) > (k + 1 + 10c) max(j, log n))

≤ exp

(
log n + log(4(c + 2k)) max(j, log n) − 9c max(j, log n)

2

)
< n−4.

A union bound over j ∈ [n] completes the proof.

5. Proof of Theorem 1

As noted in Section 1, the case when c is large is more straightforward, and we handle
it first.

Proof of Theorem 1 assuming c > xk . We begin by summarizing the structure of the proof.
Recall that Theorem 2 yields an upper bound on the mixing time of H = Hn,k,p in terms of
the conductance profile function �(x), i.e.

τmix(H) ≤ C

�log2 |E|
∑
i=1

�−2(2−i ), (8)
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where
�(x) = min

S connected
x|E|≤e(S)≤2x|E|

�(S),

for 0 ≤ x ≤ 1
2 .

Let A be the event that for all S ⊂ [n] with |S| > 9n/10 we have e(S) > |E(H)|. Let A′
be the event that n(c/2 + k)/2 ≤ |E(H)| ≤ 2n(c/2 + k).

Note that |E(H)| d= nk + bin(n(n − 2k − 1)/2, p), so by a Chernoff bound, for all n large
enough, P(A′) ≥ 1 − n−3. Also, by Lemma 6, P(A) ≥ 1 − n−3 for all n sufficiently large.
Thus, P(A ∩ A′) ≥ 1 − 2n−3. In analyzing the upper bound in (8), we would like to work
conditionally upon A ∩ A′. However, it turns out to be technically more straightforward to
instead replace � by a function �0 with the property that, for all x, �0(x) ≤ �(x) whenever
A ∩ A′ occurs. More precisely, for x ≥ 0 write

�0(x) = min

{
e(S, Sc)

e(S)
: S connected, |S| ≤ 9n

10
,
xn(c/2 + k)

2
≤ e(S) ≤ 4xn

(
c

2
+ k

)}
.

(9)
If A occurs then, for all 0 ≤ x ≤ 1

2 and all Ŝ ⊂ [n] with e(Ŝ) ≤ 2x|E(H)|, we have
e(Ŝ) ≤ |E(H)|, so |Ŝ| ≤ 9n/10. If A′ occurs then, for all x ≥ 0 and all Ŝ with x|E(H)| ≤
e(Ŝ) ≤ 2x|E(H)|, we have xn(c/2 + k)/2 ≤ e(Ŝ) ≤ 4xn(c/2 + k). It follows that, on A∩A′,
for all 0 ≤ x ≤ 1

2 we have �0(x) ≤ �(x) since �0(x) minimizes over a larger set than �(x).
From the preceding sentence and (8) (on the event A ∩ A′), it follows that, with a probability
of at least 1 − 2n−3,

τmix(H) ≤
�log2 |E|
∑

i=1

�−2(2−i ) ≤
�log2 |E|
∑

i=1

�−2
0 (2−i ).

We now focus on bounding the latter quantity. Note that for i < i′, if S and S′, respectively,
appear in the minimum in (9), then e(S) > e(S′). Also, recall the definitions of xk and
M = M(c, k) from just before the statement of Lemma 8. Let

kn :=
⌊

log2

(
n(c/2 + k)

8M log n

)⌋
=

⌊
log2 n − log2 log n + log2

(
c + 2k

16M

)⌋
.

We split the sum into two cases: i ≥ kn and i ≤ kn.
First we consider i ≥ kn, and let j = i − kn. For all S considered when bounding �0(2−i )

we have e(S) ≤ 2−j+6M log n and e(S, Sc) ≥ 2, so

�log2 |E|
∑
i=kn

�−2
0 (2−i ) =

�log2 |E|
−kn∑
j=0

�−2
0 (2−kn−j )

≤ 45M2 log2 n

∞∑
j=0

4−j

= 46M2

3
log2 n.

Next suppose that i ≤ kn. In this case we have e(S) ≥ 4M log n. By Lemma 8,
with a probability of at least 1 − n−3, for all connected sets S with |S| ≤ log n we have
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e(S, S) ≤ M log n. Since e(S) ≥ 4M log n, this implies that

e(S, Sc) = e(S) − 2e(S, S) ≥ e(S) − 2M log n ≥ e(S)

2
,

so �(S) ≥ 1
2 . Also, by Lemmas 5 and 8, with a probability of at least 1 − 2n−3, for all

connected sets S with |S| ≥ log n, we have

e(S, Sc)

e(S)
= e(S, Sc)

e(S, Sc) + 2e(S, S)
≥ c|S|

12

1

c|S|/12 + 2M|S| ≥ c

36M
,

so �(S) ≥ c/(36M). Since 1
2 > c/36M it follows that, with a probability of at least 1 − 3n−3,

for all i ≤ kn we have �0(2−i ) ≥ c/36M , and in this case

kn∑
i=1

�−2
0 (2−i ) ≤ 64M2

c2 log2 n.

Combining these bounds, we see that, with a probability of at least 1 − 3n−3,

�log2 |E|
∑
i=1

�−2
0 (2−i ) ≤ 46M2

3
log2 n + 64M2

c2 log2 n,

so with a probability of at least 1 − 5n−3,
∑�log2 |E|


i=1 �−2(2−i ) is at most the same quantity.
By Theorem 2 it follows that, with a probability of at least 1 − 5n−3,

τmix(G) ≤ C

(
46M2 log2 n

3
+ 64M2

c2 log2 n

)
.

This completes the proof in the case c > xk .

For the remainder of this paper, we fix 0 < c < xk and let R = �max(k, 2x1/c)
. Also,
recall the constant β = β(c) from Lemma 7. The remaining case of Theorem 1 follows
straightforwardly from the following lemma.

Lemma 9. There exists a α = α(c) > 0 such that, for all n sufficiently large,

P

(
there exists S ∈

⋃
R log n≤j≤(1−β)n

Bj (H), eH (S, Sc) ≤ α|S|
)

≤ 3R3

n3 .

We provide the proof of Lemma 9 at the end of this section.

Proof of Theorem 1 assuming c ≤ xk . For x ≥ 0 write

�0(x) = min

{
e(S, Sc)

e(S)
: S connected, |S| ≤ (1−β)n,

xn(c/2 + k)

2
≤ e(S) ≤ 4xn

(
c

2
+k

)}
.

As in the case c > xk , by a Chernoff bound and by Lemma 7, for all n sufficiently large, with
a probability of at least 1 − 2n−3 we have

�log2 |E|
∑
i=1

�−2(2−i ) ≤
�log2 |E|
∑

i=1

�−2
0 (2−i ),

and the remainder of the proof is just as in the case c > xk , but using Lemma 9 in place of
Lemma 5.
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It now remains to prove Lemma 9; before doing so, we briefly describe our approach. We
shall divide vertices of H into groups of size R, each containing R consecutive vertices. We
view each group as a new single vertex; two new vertices are connected if there is an edge
connecting their constituent sets. This yields an auxiliary graph H ′, whose distribution is that
of an (n′, 1, p′) Newman–Watts small-world model, for suitable n′ and p′. We will shortly see
that p′ = c′/n′ for some c′ > x1, so all ‘large-c’ results can be applied to H ′.

To translate edge expansion results from H ′ into corresponding results for H , we proceed
as follows. Given a set S of vertices of H , we consider the blow-up S+ of S, which is the
collection of all vertices of H belonging to the same group as some element of S. The idea is
that in most cases, the event that e(S, Sc) is small relative to |S| should be nearly identical to
the event that e(S+, (S+)c) is small relative to |S+|. If this were always true, Lemma 5 would
then yield bounds for the number of edges leaving S+, which would in turn yield strong bounds
on the probability that e(S+, (S+)c) < ε |S+|, where ε > 0 will be a function of R.

The above line of argument relies upon the intuition that the size of the blow-up S+ should
be essentially a constant factor greater than that of S. Since the ratio |S+|/|S| is in fact a
random quantity, to make the above argument work, we end up needing to additionally show
that e(S+, (S+)c) is very unlikely to be large if e(S, Sc)/|S| is extremely small. In order to
quantify the notion of ‘extremely small’, we are forced to introduce a third parameter δ > 0,

with δ much smaller than ε. We now turn to the details.

Proof of Lemma 9. We assume for simplicity that R divides n (the general case is practically
identical) and write n′ = n/R. For i ∈ [n′] let wi = {(i − 1)R + j, 1 ≤ j ≤ R}. We form
an auxiliary graph H ′ = (V ′, E′) with V ′ = {wi, i ∈ [n′]} by adding an edge between wi and
wj if there is some edge from an element of wi to an element of wj in H . It is easily verified
(using the fact that R > k) that H ′ is an (n′, 1, p′)-Newman–Watts small-world model, with
p′ = P(bin(R2, p) > 0) > Rc/2n′ = c′/n′ (where c′ = Rc/2) for all n sufficiently large.
Note that since c′ = Rc/2 > x1, it follows that we may apply Lemma 5 to H ′ (this is the only
way we will use this bound on R).

Given S ⊂ [n], write I ′ = {i ∈ n′ : wi ∩ S �= ∅}, let S′ = {wi, i ∈ I ′}, and write
S+ = ⋃

i∈S′ wi . Now, write j = |S|. As in the proof of Lemma 8, we partition the event
that S ∈ Bj (H) into E1(S), . . . , Er(S) according to the first spanning tree appearing in S. Fix
ε = c/12R(2Rc + 1) and let δ > 0 be small enough so that εc ≥ 2kδ and that εRc(log(ε/δ)−
1) ≥ 5 + log(4(c + 2k)). For all 1 ≤ i ≤ r we then have

P(eH (S+ \ S, (S+)c) > 2εRcj | eH (S, Sc) ≤ δj, Ei(S))

≤ P(eH (S+ \ S, (S+)c) > (εc + 2kδ)Rj | eH (S, Sc) ≤ δj, Ei(S))

≤ P(eH (S+ \ S, (S+)c) > (εc + 2kδ)Rj | eH (S, Sc) ≤ δj, ti ⊂ H).

The first inequality is true since we pick δ such that εc ≥ 2kδ and the second inequality holds
by Lemma 4. Now write g(S) = |{i ∈ S′ : |S ∩ wi | < |wi |}|, so g(S) is the number of sets
wi that intersect S but are not covered by S. It is easily checked that eH (S, Sc) ≥ g(S); the
extremal case is that for each i ∈ S′, eH (S ∩ wi, wi \ S) = 1, while for i, j ∈ S′ with i �= j ,
eH (wi, wj ) = 0.

Next, suppose that S ⊂ [n] satisfies eH (S, Sc) ≤ δj . Then we must have g(S) ≤ δj , and
it follows that |S+ \ S| ≤ Rδj . Under this conditioning, |EH (S+ \ S, (S+)c)\E(Rn,k)| is
independent of the event that ti ⊂ H since they are determined by disjoint sets of edges and it is
stochastically dominated by bin(Rδjn, p). It follows that eH (S+ \ S, (S+)c) is stochastically
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dominated by 2kRδj + bin(Rδjn, p), so by the finer of the Chernoff upper bounds,

P(eH (S+ \ S, (S+)c) > (εc + 2kδ)Rj | eH (S, Sc) ≤ δj, ti ⊂ H)

≤ exp

(
−εRcj

(
log

(
ε

δ

)
− 1

))
.

It follows that, for j ≥ R log n, writing

S1 = {S ⊂ [n], S ∈ Bj (H), eH (S, Sc) ≤ δj, eH (S+ \ S, (S+)c) > 2εRcj},
we have

E|S1| ≤
∑

S⊂[n], |S|=j

∑
1≤i≤r

P(Ei(S), eH (S, Sc) ≤ δ|S|, eH (S+ \ S, (S+)c) > 2εRc|S|)

≤ exp

(
−εRcj

(
log

(
ε

δ

)
− 1

))
E|{S ⊂ [n], |S| = j, H [S] connected}|

≤ exp

(
−εRcj

(
log

(
ε

δ

)
− 1

))
n(4(c + 2k))j

≤ n−4,

the second-to-last inequality is by Proposition 1, and the last inequality follows since we chose
δ such that

εRc

(
log

(
ε

δ

)
− 1

)
≥ 5 + log(4(c + 2k))

and since j ≥ R log n ≥ log n. It follows by a union bound over R log n ≤ j ≤ 9n/10 and
Markov’s inequality that

P

(
there exists S ∈

⋃
R log n≤j≤9n/10

Bj (H), eH (S, Sc) ≤ δ|S|, eH (S+ \ S, (S+)c) > 2εRc|S|
)

≤ 1

n3 . (10)

Next, write

S2 =
{
S ∈

⋃
R log n≤j≤9n/10R

Bj (H), eH (S, Sc) ≤ ε|S|, eH (S+ \ S, (S+)c) ≤ 2εRc|S|
}
.

For any S ∈ S2, we have

eH (S+, (S+)c) = eH (S, (S+)c) + eH (S+\S, (S+)c)

≤ eH (S, Sc) + eH (S+\S, (S+)c)

≤ ε(2Rc + 1)|S|
≤ ε(2Rc + 1)R|S′|
= c′|S′|

12
,
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where the last equality follows by our choice of ε. Then we obtain that eH ′(S′, (S′)c) ≤
c′|S′|/12. Furthermore, since |S| ≥ R log n we have |S′| ≥ log n ≥ log n′, and since |S| ≤
9n/10R we have |S′| ≤ 9n/10R = 9n′/10. It follows by Lemma 5 that

P

(
there exists S ∈

⋃
R log n≤j≤9n/10R

Bj (H), eH (S, Sc) ≤ ε|S|,

eH (S+ \ S, (S+)c) ≤ 2εRc|S|
)

≤ P

(
there exists S′ ∈

⋃
log n′≤j≤9n′/10

Bj (H
′), eH ′(S′, (S′)c) ≤ c′|S′|

12

)

≤ 1

(n′)3 . (11)

Next, for any m ≥ 1, if eH (S, Sc) ≤ m then, viewed as a subset of a cycle of length n, S

must have at most m connected components. The number of subsets of an n-cycle with at most
m connected components is 2n

(
n+2m−1

2m−1

)
. (This is a straightforward combinatorial exercise but

may be seen as follows: the factor n chooses a starting point on the cycle, the factor
(
n+2m−1

2m−1

)
chooses the points on the cycle at which membership in S alternates, and the factor 2 accounts
for whether or not the starting point belongs to S.)

It follows that, for any γ > 0, the number of subsets of an n-cycle with at most γ n connected
components is at most

2n

(
n + �2γ n�

�2γ n�
)

≤ 2n

(
e(1 + 2γ )n

2γ n

)2γ n

= exp

(
log(2n) + n2γ

(
1 + log

(
1 + 1

2γ

)))
. (12)

Since x(1 + log(1/2x)) → 0 as x ↓ 0, we may choose 0 < γ < 9βc/20R small enough such
that (12) is at most exp(n9βc/160R) for all n sufficiently large.

Finally, for a fixed set S with 9n/10R ≤ |S| ≤ (1−β)n, the probability that eH (S, Sc) ≤ γ n

is bounded above by P(bin((9n/10R)βn, p) ≤ γ n), since eH (S, Sc) stochastically dominates
bin(|S|(n − |S|), p) and |S| ≥ 9n/10R, n − |S| ≥ βn. Since 10Rγ/9βc ≤ 1

2 , by a Chernoff
bound we have

P(eH (S, Sc) ≤ γ n) ≤ P

(
bin

(
9n

10R
βn, p

)
≤ γ n

)
≤ exp

(
− 9βc

80R
n

)
. (13)

Since all sets S ⊂ [n] with at least γ n components (still viewed as subsets of the n-cycle)
have e(S, Sc) ≥ γ n, it follows by (12), (13), and a union bound over sets with at most γ n

components that, for all n sufficiently large,

P

(
there exists S ∈

⋃
9n/10R≤j≤(1−β)n

Bj (H), eH (S, Sc) ≤ γ n

)

≤ 2n

(
n + �2γ n�

�2γ n�
)

exp

(
− 9βc

80R
n

)
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≤ exp

(
− 9βc

160R
n

)

≤ 1

n3 . (14)

Writing α = min(γ, ε, δ), it follows from (10), (11), and (14) that

P

(
there exists S ∈

⋃
R log n≤j≤(1−β)n

Bj (H), eH (S, Sc) ≤ α|S|
)

≤ 3

(n′)3 .

Since n′ = n/R this completes the proof.

6. Conclusion

We remark that a slightly different model was proposed in [17] in which random edges can
be added between any pair of sites of the ring. This results in a multi-graph model. The current
work is very easily adapted to the latter model. For both models, the only difference appears
in Lemma 6 of Section 4 and bounding E(H) in the proof of Theorem 1 in Section 5. In both
cases we would have to use bin(n(n − 1)/2, p) instead of bin(n(n − 2k − 1)/2, p) for the
‘multi-graph’ version. But when we actually work on the computation with a Chernoff bound,
this makes no difference for our estimation (e.g. we can always use the stochastic dominating
random variable bin(n2, p) for both estimations).
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