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A SIMPLE PROOF OF THE SUM FORMULA

A. VERONA AND M.E. VERONA

In this note we present a simple, short proof of the sum formula for subdifferentials
of convex functions.

1. INTRODUCTION

Let A" be a Banach space, X* be its dual endowed with the dual norm. Let
f,g:X-*R\J {+00} be proper, lower semicontinuous, convex functions with
(effective) domains dom / and dom g respectively, and let df, dg : X —> 2X'
be their subdifferential operators respectively. It is straightforward to verify that
df[x) + dg(x) C d(f + g)(x) for any x € X. However, the converse inclusion is
not always true (see for example the remark in [2, Theorem, 3.16]). It is therefore
important to find conditions which assure that df(x) + dg(x) = d(f + g){x) for any
x s X. If for example the domain of / and the interior of the domain of g have
nonempty intersection, then the above equality is true (see for example [2, Theorem
3.16]). Attouch and Brezis proved in [1] the following more general result (see also [3]
for a different proof):

THE SUM FORMULA. Let / and g be as above and assume that

[J A(dom / - dom g) = lin (dom / - dom g)
A>0

Then df + dg = d(f + g).

(In the above statement, "lin" stands for the "linear span of".)
The aim of this note is to present a short and simple proof of the sum formula.

2. A PARTICULAR CASE

We begin by recalling the definition of the epi-sum (or inf-convolution) of two
functions / , g : R —> R U {+00}:

•= is* {/(«)+»(»>}
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From the definition it follows that dom( / + g) = dom / + dom g. The epi-sum / + g

is called exact at (u, v) if ( / + g)(u + v) = f(u) + g(v). If / and g are convex, then

/ + g is also convex. Finally, a direct computation shows that if / and g are convex

and / + g is exact at (u, v) then

(1) d(f$g)(u + v) = df(u)ndg(v).

LEMMA 1. Let f : X —> R U {+00} be a proper lower semicontinuous convex

function and let Y be a closed subspace of X such that Y+dom f is an absorbing subset

of X and (/ -?• /y)(0) > -00 . Then 0 e Int(dom(/ % /y)) and / % Iy is locally

Lipschitz at 0. Inparticular f + Iy is subdifferentiable at 0, thatis, d(f + /y)(0) ^ 0.

PROOF: By [3, Theorem 3], there exist e > 0 and A > 0 such that

eBC {x€X; \\x\\ ^ A, f{x) < A} + Y.

It follows immediately that (f $-IY)(x) ^ A for any x € eB. Since (/-£/y)(0)

> —00, it follows that f + Iy is nowhere -00. It is well known (see for example [2,

Proposition 1.6] and the remark following it) that / is locally Lipschitz on eB and

therefore is subdifferentiable at 0 (see for example [2, Proposition 1.11])- D

LEMMA 2 . Let f : X —> R U {+00} be a proper lower semicontinuous convex
function and let Y be a closed subspace of X such that Y + dom / is an absorbing
subset of X. Then d(f + Iy) = df + dly.

PROOF: It is well known and easy to check that df{x) + dly(x) C d(f + Iy){x)
for any x € X. To prove the other inclusion, let x* £ d(f + Iy)(x). Define g : X ->
R U {+00} by g(u) = f(x + u) - (x*,x + u). Then

(i) dom g = dom / - x and, since x € Y, Y + dom g = Y + dom / is
absorbing;

(ii) u' 6 df{x) if and only if u* - x* € 9^(0).
(iii) u* G d(f + Iy)(x) if and only if u* - x* £ d(g + /y)(0).

Since x* € d[f + Iy){x), (iii) implies that 0 € d(g + Iy)(0) and thus

Iy(0)= i

It follows that

(g % Iy)(0) = int{g{u) + Iy(-u)} = ini:{g(u) + Iy(u)} = 5(0) + 7y(0) > -00.
tifcA tl£J\
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Thus g % ly is exact at (0,0). From (i) and Lemma 1 it follows that g %- Iy is
subdifferentiable at 0 and therefore, from (1),

%^d{gi J>)(0) - dg(Q) n dIy(0).

Thus, there exists u* 6 X* such that u* £ dg{0)ndIY(0). Clearly -u* € dly{x) and,
by (ii), x* +u* e df(x). Since x* = x* + u* + (-u*) <= df(x) + dIy{0), the lemma is
proved. D

3. PROOF OF THE SUM FORMULA

The proof is now standard, but we shall sketch it for sake of completeness.
First, in view of [3, Lemma 25 (c)] we can assume without any loss of generality

that lin (dom / — dom g) — X and thus dom / — dom g is absorbing in X. Define
h: X xX -> Rl) {+00} by h(x, y) = f(x) + g(y) and let D = {(x, x); x € X) . Then
h is a proper lower semicontinuous convex function o n l x X , D is a closed subspace
of X x X, and dom h - D is an absorbing subset of X x X. The Sum Formula follows
from Lemma 2 and the following statements which, with the exception of (c), follow
more or less directly from the definitions; (c) is a particular case of Lemma 2. As usual
we shall identify {X x X)' with X* x X*.

(a) 0JD(z,z) = { ( z * , - * • ) ; * • € * • } ;
(b) z'€d{f
(c) (z*,0)
(d) (z',0)edh{z,z)+dID(z,z)

(e) (u*,vm) € dh{-z,z) <=> u*
z* = u* + v*, (u*, v*) € dh{z, z)\

df{u) and v' € df{v).

D
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