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Abstract
In a smoothly bounded domain �⊂R

n, n ≥ 1, this manuscript considers the homogeneous Neumann boundary
problem for the chemotaxis system {

ut =�u − ∇ · (u∇v),

vt =�v + u − αuv,

with parameter α > 0 and with coincident production and uptake of attractants, as recently emphasized by Dallaston
et al. as relevant for the understanding of T-cell dynamics.
It is shown that there exists δ� = δ�(n)> 0 such that for any given α ≥ 1

δ�
and for any suitably regular initial data

satisfying v(·, 0) ≤ δ�, this problem admits a unique classical solution that stabilizes to the constant equilibrium
( 1

|�|
∫
�

u(·, 0), 1
α
) in the large time limit.

1. Introduction

The classical Keller-Segel chemotaxis model ([13]),{
ut =�u − ∇ · (u∇v),

vt =�v + u − βv,
(1.1)

was originally proposed for the description of slime mould aggregation as a typical process in which cells
move upward gradients of a chemoattractant secreted by themselves; in such contexts, u and v denote
the respective population densities and signal concentrations. Due to the presence of the chemotactic
cross-diffusion term −∇ · (u∇v), this system exhibits a striking feature of destabilization, as analytically
captured by results concerning the occurrence of exploding solutions in two- and higher-dimensional set-
tings ([6, 26]). Although partially understood less comprehensively from a mathematical point of view,
numerous variants of the prototypical chemotaxis-production system (1.1) arise in various biological
application contexts ([7, 17]).

In cases in which, in contrast to the above type of situations, taxis-type movement is directed by
a signal which is absorbed upon contact, modelling rather relies on chemotaxis-consumption models
such as

C© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.

https://doi.org/10.1017/S0956792524000299 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792524000299
mailto:taoys@sjtu.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0956792524000299&domain=pdf
https://doi.org/10.1017/S0956792524000299


European Journal of Applied Mathematics 571

{
ut =�u − ∇ · (u∇v),

vt =�v − uv;
(1.2)

typical examples include the motion of Escherichia coli or of Bacillus subtilis towards sources of nutrient
and oxygen ([3, 14, 24]). Moreover, such nutrient taxis mechanisms actually play a key role in predator-
prey interactions in which predators adjust their migration towards areas of higher prey density ([11, 12,
23, 28). In comparison to the chemotaxis-production system (1.1), the dissipative property of the sig-
nal consumption mechanism in the nutrient taxis system (1.2) prevents blow-up to some extent. Indeed,
this is reflected in results on global existence of classical solutions in two-dimensional boundary value
problems ([20]); in three-dimensional analogues, after all, some global weak solutions with properties of
eventual smoothness and stabilization could be constructed ([20]). Here, it might be worth further men-
tioning that when the diffusion �u in (1.2) is replaced by any slightly enhanced diffusion ∇ · (D(u)∇u)
with D satisfying D(u) → +∞ as u → ∞, the corresponding no-flux initial boundary problem admits
globally bounded solutions also in such three-dimensional settings ([10, 27]).

A chemotaxis model with synchronous production and consumption of signals. The immune sys-
tem protects us from the development of inflammatory diseases, and its establishment and maintenance
rely heavily on T-cells which are responsible for recognizing and destroying pathogens that have
been infected by viruses. The movement of T-cells within inflamed tissues is driven and controlled
by the distribution of chemotactic signalling agents that are chemokines secreted by effector T-cells
([2, 4, 5]). However, unlike the signal mechanisms in (1.1) or (1.2), the effector T-cells do not only pro-
duce the chemokine but also absorb this attractant ([2]). In order to capture some essential features of a
chemotaxis system with concurrent production and consumption of signals, by neglecting the regulatory
T-cell population, we shall here focus on a minimal model for T-cell dynamics recently developed by
Dallaston et al. in [2], and we shall subsequently consider the no-flux initial boundary problem⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut =�u − ∇ · (u∇v), x ∈�, t> 0,

vt =�v + u − αuv, x ∈�, t> 0,
∂u

∂ν
= ∂v

∂ν
= 0, x ∈ ∂�, t> 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈�,

(1.3)

where α > 0 is a given parameter.
To underline associated challenges, let us recall that essential parts of the literature both on (1.1)

and on (1.2) have relied on favourable global structures of both these simple systems ([16, 20, 26]):
Sufficiently regular trajectories of the chemotaxis-production system (1.1) are subject to the energy
identity

d

dt

{
1

2

∫
�

|∇v|2 + 1

2

∫
�

v2 −
∫
�

uv +
∫
�

u ln u

}
+

∫
�

v2
t +

∫
�

∣∣∣∇u√
u

− √
u∇v

∣∣∣2 = 0, (1.4)

while smooth solutions of (1.2) in convex domains � satisfy the inequality
d

dt

{
2

∫
�

|∇√
v|2 +

∫
�

u ln u

}
+

∫
�

|∇u|2

u
+

∫
�

v|D2 ln v|2 + 1

2

∫
�

u
|∇v|2

v
≤ 0 (1.5)

throughout evolution. In the simultaneous presence of both production and consumption of signal such
as in (1.3), however, none of these structural features appear to persist in any generalized nor weakened
form.

Main results. In order to nevertheless describe some dynamical features of (1.3) in comparison to those
observed for (1.1) and (1.2), in the present manuscript, we shall build an analysis of (1.3) on tracing the
evolution of functionals of the form ∫

�

upϕ(v),
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with the weight functions

ϕ(s) := (δ− s)−κ − As, s ∈ [0, δ0],

depending on p> 1 through appropriate choices of the parameters κ = κ(p)> 0, δ = δ(p)> 0, A =
A(p)> 0 and δ0 = δ0(p) ∈ (0, δ) (see Lemma 2.4 below for details). In domains of arbitrary dimension
and for initial data which are suitably small with respect to their second component, through accordingly
obtained a priori estimates we shall thereby discover that regardless of the size in the corresponding
first component and hence in stark contrast to (1.1), blow-up can entirely be ruled out and that solutions
asymptotically behave in an essentially diffusion-dominated manner:

Theorem 1.1. Let n ≥ 1. Then there exists δ� = δ�(n)> 0 with the property that whenever �⊂R
n is a

bounded domain with smooth boundary, given an arbitrary α ≥ 1
δ�

and any initial data (u0, v0) which
are such that {

u0 ∈ C0(�) is nonnegative with u0 �≡ 0 and
v0 ∈ W1,∞(�) is nonnegative,

(1.6)

and such that

v0(x) ≤ δ� for all x ∈�, (1.7)

one can find a uniquely determined pair of nonnegative functions{
u ∈ C0(�× [0, ∞)) ∩ C2,1(�× (0, ∞)) and
v ∈ ⋂

q>n C0([0, ∞); W1,q(�)) ∩ C2,1(�× (0, ∞))
(1.8)

such that (u, v) solves (1.3) in the classical sense. Moreover,

u(·, t) → 1

|�|
∫
�

u0 in L∞(�) (1.9)

and

v(·, t) → 1

α
in L∞(�) (1.10)

as t → ∞.

In order to further underline the strongly smoothing effect of the absorptive action induced by the choice
α > 0 in (1.3), let us state the following simple consequence of known results for the planar version of
(1.2) on solutions to (1.3) for which the initial signal concentration is, unlike the situation covered by
Theorem 1.1, conveniently large throughout the domain:

Proposition 1.2. Let �⊂R
2 be a bounded domain with smooth boundary, let α > 0, and assume that

(1.6) holds with

v0(x)>
1

α
for all x ∈�. (1.11)

Then (1.3) admits a unique global classical solution within the class of functions specified in (1.8), and
furthermore, this solution satisfies (1.9) and (1.10).

As a simple consequence of this result, we can finally make sure that for some suitably chosen initial
data, the behaviour in (1.3) for appropriately large α > 0 drastically differs from that seen for α= 0:

Corollary 1.3. Let R> 0 and �= BR(0) ⊂R
2. Then there exist radially symmetric functions u0 and v0

which satisfy (1.6) and which are such that for α= 0, the problem (1.3) admits a solution blowing up
in finite time, while for sufficiently large α > 0, a global classical solution fulfilling (1.9) and (1.10) can
be found. More precisely, for these data, there exist Tmax ∈ (0, ∞),{

u(0) ∈ C0(�× [0, Tmax)) ∩ C2,1(�× (0, Tmax)) and
v(0) ∈ ⋂

q>n C0([0, Tmax); W1,q(�)) ∩ C2,1(�× (0, Tmax))
(1.12)
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as well as α0 > 0 and{
(u(α))α>α0 ⊂ C0(�× [0, ∞)) ∩ C2,1(�× (0, ∞)) and
(v(α))α>α0 ⊂ ⋂

q>n C0([0, ∞); W1,q(�)) ∩ C2,1(�× (0, ∞))
(1.13)

such that u(α) ≥ 0 and v(α) ≥ 0 for all α ∈ {0} ∪ (α0, ∞), that (u(0), v(0)) solves (1.3) in �× (0, Tmax) for
α = 0, with

lim sup
t↗Tmax

‖u(0)(·, t)‖L∞(�) = ∞, (1.14)

and that for each α > α0, the pair (u(α), v(α)) is a global classical solution of (1.3) satisfying

u(α)(·, t) → 1

|�|
∫
�

u0 and v(α)(·, t) → 1

α
in L∞(�) (1.15)

as t → ∞.

2. Global existence

The following statement on local existence and extensibility can be obtained by straightforward
adaptation of standard arguments, as detailed for a closely related setting in [8].

Lemma 2.1. Let α > 0, and assume (1.6). Then there exist Tmax ∈ (0, ∞] and uniquely determined
nonnegative functions {

u ∈ C0(�× [0, Tmax)) ∩ C2,1(�× (0, Tmax)) and
v ∈ ⋂

q>n C0([0, Tmax); W1,q(�)) ∩ C2,1(�× (0, Tmax))
(2.1)

such that (1.3) is satisfied in the classical sense in �× (0, Tmax), that∫
�

u(·, t) =
∫
�

u0 for all t ∈ (0, Tmax), (2.2)

and that

if Tmax <∞, then

lim sup
t↗Tmax

{
‖u(·, t)‖L∞(�) + ‖v(·, t)‖W1,∞(�)

}
= ∞. (2.3)

A sharpening of the above extensibility criterion (2.3) has been achieved in [1, Lemma 3.2] in a problem
framework actually more general than that of (1.3).

Lemma 2.2. If α > 0 and (1.6) holds, and if for some p ≥ 1 fulfilling p> n
2
, we have

sup
t∈(0,Tmax)

‖u(·, t)‖Lp(�) <∞,

then Tmax = ∞, and there exists C> 0 such that

‖u(·, t)‖L∞(�) ≤ C for all t> 0.

Now the presence of the consumption term −uv in the second equation from (1.3) implies a basic but
important a priori information on L∞ bounds for v.

Lemma 2.3. Let α > 0, and assume (1.6). Then

‖v(·, t)‖L∞(�) ≤ max
{
‖v0‖L∞(�) ,

1

α

}
for all t ∈ (0, Tmax). (2.4)

Proof. Since for v(x, t) := �→ max
{
‖v0‖L∞(�) , 1

α

}
, (x, t) ∈�× [0, ∞), we have

vt −�v − u(x, t) + αu(x, t)v = u(x, t) · (αv − 1) ≥ 0 in �× (0, Tmax)
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according to the inequality v ≥ 1
α
, and since moreover v(·, 0) ≥ v(·, 0) in � due to the fact that v ≥

‖v0‖L∞(�), this immediately results from the comparison principle.

In view of Lemma 2.2, global existence is a consequence of an a priori estimate on
∫
�

up(·, t), t ∈
(0, Tmax), with some p>max{1, n

2
}. This will be achieved in Lemma 2.5 below through analysing the

evolution undergone by coupled functionals of the form
∫
�

upϕ(v) with suitable weight functions ϕ =
ϕ(v) which enjoy suitable pointwise bounds from below. In comparison to previous related studies in
which similar approaches have been pursued (cf., e.g., [19, 20] and [25]), the simultaneous presence of
production and consumption of attractants requires a more complex design of these weight functions.
We therefore separately address this in the following elementary but crucial lemma.

Lemma 2.4. Let p> 1. Then there exist κ = κ(p)> 0, δ = δ(p)> 0, A = A(p)> 0 and δ0 = δ0(p) ∈ (0, δ)
such that letting

ϕ(s) ≡ ϕ(p)(s) := (δ− s)−κ − As, s ∈ [0, δ0], (2.5)

defines a function ϕ ∈ C∞([0, δ0]) which satisfies

ϕ(s)> 0 for all s ∈ [0, δ0] (2.6)

and

ϕ ′(s)< 0 for all s ∈ [0, δ0] (2.7)

as well as

4pϕ ′2(s) + p(p − 1)2ϕ2(s)< 4(p − 1)ϕ(s)ϕ ′ ′(s) for all s ∈ [0, δ0]. (2.8)

Proof. We abbreviate ξ0 := 1
40

and a := 8, and given p> 1, we fix κ = κ(p) ∈ (0, 1] small enough such
that

65pκ

(p − 1)(κ + 1)
<

1

4
(2.9)

and
p(p − 1)a2κ

4(κ + 1)
<

1

4
(2.10)

as well as

aκ <
1

4
. (2.11)

Furthermore, choosing δ= δ(p) ∈ (0, 1] in such a way that
p(p − 1)

4κ(κ + 1)
· δ2 <

1

4
, (2.12)

we set

A ≡ A(p) := aκδ−κ−1 (2.13)

as well as

δ0 ≡ δ0(p) := ξ0δ, (2.14)

and let ϕ be as defined through (2.5). Then since δ0 ≡ δ

40
< δ, it is evident that ϕ ∈ C∞([0, δ0]), and

computing

ϕ ′(s) = κ(δ− s)−κ−1 − A, s ∈ [0, δ0], (2.15)

and

ϕ ′ ′(s) = κ(κ + 1)(δ − s)−κ−2, s ∈ [0, δ0], (2.16)
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we see that according to (2.14) and (2.13),

ϕ ′(s) ≤ ϕ ′(δ0) = κ(δ− δ0)−κ−1 − A

= κ(1 − ξ0)
−κ−1δ−κ−1 − aκδ−κ−1

= κδ−κ−1 ·
{

(1 − ξ0)
−κ−1 − a

}
< 0 for all s ∈ [0, δ0],

because the inequalities ξ0 ≤ 1
2

and κ ≤ 1 ensure that

(1 − ξ0)
−κ−1 ≤ 2κ+1 ≤ 22 < 8 = a.

As thus (2.7) holds, we particularly obtain (2.6) as a consequence thereof, observing that, again by (2.14)
and (2.13),

ϕ(s) ≥ ϕ(δ0) = (δ− δ0)−κ − Aδ0

= (1 − ξ0)
−κδ−κ − aκξ0δ

−κ

= δ−κ ·
{

(1 − ξ0)
−κ − aκξ0

}
for all s ∈ [0, δ0],

and that here

(1 − ξ0)
−κ − aκξ0 ≥ 1 − aκξ0 = 1 − κ

5
> 0

due to the restriction that κ ≤ 1.
To finally verify (2.8), we first note that by (2.5), (2.15) and (2.16),

4pϕ ′2(s) + p(p − 1)2ϕ2(s) − 4(p − 1)ϕ(s)ϕ ′ ′(s)

= 4p ·
{
κ(δ− s)−κ−1 − A

}2 + p(p − 1)2 ·
{

(δ − s)−κ − As
}2

−4(p − 1) ·
{

(δ− s)−κ − As
}

· κ(κ + 1)(δ − s)−κ−2

= 4pκ2(δ− s)−2κ−2 − 8pκA(δ − s)−κ−1 + 4pA2

+p(p − 1)2(δ− s)−2κ − 2p(p − 1)2As(δ − s)−κ + p(p − 1)2A2s2

−4(p − 1)κ(κ + 1)(δ− s)−2κ−2 + 4(p − 1)κ(κ + 1)As(δ − s)−κ−2

≤ I1(s) + I2 + I3(s) + I4(s) + I5(s) − J(s) for all s ∈ [0, δ0], (2.17)

where

I1(s) := 4pκ2(δ − s)−2κ−2

and

I2 := 4pA2

and

I3(s) := p(p − 1)2(δ − s)−2κ

as well as

I4(s) := p(p − 1)2A2s2
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and

I5(s) := 4(p − 1)κ(κ + 1)As(δ − s)−κ−2

and

J(s) := 4(p − 1)κ(κ + 1)(δ − s)−2κ−2

for s ∈ [0, δ0]. Here, once more recalling (2.13) and our definition of a, we can rely on (2.9) to
estimate

I1(s) + I2

J(s)
= 4pκ2(δ− s)−2κ−2 + 4pa2κ2δ−2κ−2

4(p − 1)κ(κ + 1)(δ − s)−2κ−2

= pκ + 64pκ(δ − s)2κ+2δ−2κ−2

(p − 1)(κ + 1)

≤ pκ + 64pκ

(p − 1)(κ + 1)

<
1

4
for all s ∈ [0, δ0], (2.18)

while the fact that δ0 ≤ δ ≤ 1 ensures that

I4(s)

J(s)
= p(p − 1)2a2κ2δ−2κ−2s2

4(p − 1)κ(κ + 1)(δ − s)−2κ−2

= p(p − 1)a2κ(δ− s)2κ+2δ−2κ−2s2

4(κ + 1)

≤ p(p − 1)a2κ · δ2

4(κ + 1)

≤ p(p − 1)a2κ

4(κ + 1)

<
1

4
for all s ∈ [0, δ0] (2.19)

because of (2.10). Since moreover, for a similar reason,

I5(s)

J(s)
= aκδ−κ−1 · s · (δ − s)−κ−2

(δ− s)−2κ−2

= aκ(δ− s)κs · δ−κ−1

≤ aκ · δκ · δ · δ−κ−1

= aκ

= 8κ

<
1

4
for all s ∈ [0, δ0] (2.20)
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by (2.11), and since our smallness assumption in (2.12) guarantees that also

I3(s)

J(s)
= p(p − 1)2(δ − s)−2κ

4(p − 1)κ(κ + 1)(δ − s)−2κ−2

= p(p − 1)(δ − s)2

4κ(κ + 1)

≤ p(p − 1)

4κ(κ + 1)
· δ2

<
1

4
for all s ∈ [0, δ0], (2.21)

we only need to collect (2.18)-(2.21) to infer (2.8) from (2.17).

With the above technical preparation at hand, we can perform an essentially straightforward modifi-
cation of an argument from [20] to identify, given any p> 1, a smallness condition on v0 as sufficient to
ensure bounds for u with respect to the norm in Lp(�).

Lemma 2.5. Let p> 1, and let δ0(p) be as provided by Lemma 2.4. Then whenever α ≥ 1
δ0(p)

and (u0, v0)
satisfies (1.6) as well as

v0(x) ≤ δ0(p) for all x ∈�, (2.22)

one can find C = C(p, α, u0)> 0 such that

∫
�

up(·, t) ≤ C for all t ∈ (0, Tmax) (2.23)

and

∫ t

0

∫
�

up−2|∇u|2 ≤ C for all t ∈ (0, Tmax). (2.24)

Proof. Writing δ0 = δ0(p), in view of Lemma 2.3, the hypothesis α ≥ 1
δ0(p)

together with (2.22) ensures
that 0 ≤ v(x, t) ≤ δ0 for all x ∈� and t ∈ (0, Tmax), whence Lemma 2.4 applies so as to warrant that
with ϕ = ϕ(p) as defined there, the functions ϕ ◦ v, ϕ ′ ◦ v and ϕ ′ ′ ◦ v are continuous on �× [0, Tmax)
and that

ϕ(v) ≥ c1, ϕ ′(v) ≤ −c2 and ϕ ′ ′(v) ≥ c3 in �× (0, Tmax) (2.25)

as well as

4p(p − 1)ϕ(v)ϕ ′ ′(v) − 4p2ϕ ′2(v) − p2(p − 1)2ϕ2(v)

4ϕ ′ ′(v) − 4pϕ ′(v)
≥ c4 in �× (0, Tmax) (2.26)

with some ci = ci(p)> 0, i ∈ {1, 2, 3, 4}. To make appropriate use of this information, we go back to (1.3)
and compute
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d

dt

∫
�

upϕ(v) = p
∫
�

up−1ϕ(v) ·
{
�u − ∇ · (u∇v)

}
+

∫
�

upϕ ′(v) ·
{
�v + u − αuv

}

= −p(p − 1)
∫
�

up−2ϕ(v)|∇u|2 − p
∫
�

up−1ϕ ′(v)∇u · ∇v

+p(p − 1)
∫
�

up−1ϕ(v)∇u · ∇v + p
∫
�

upϕ ′(v)|∇v|2

−p
∫
�

up−1ϕ ′(v)∇u · ∇v −
∫
�

upϕ ′ ′(v)|∇v|2

+
∫
�

up+1ϕ ′(v) · (1 − αv)

= −p(p − 1)
∫
�

up−2ϕ(v)|∇u|2 +
∫
�

up−1 ·
{

− 2pϕ ′(v) + p(p − 1)ϕ(v)
}
∇u · ∇v

−
∫
�

up ·
{
ϕ ′ ′(v) − pϕ ′(v)

}
|∇v|2

+
∫
�

up+1ϕ ′(v) · (1 − αv) for all t ∈ (0, Tmax). (2.27)

Here, the second inequality in (2.25) together with (2.4) shows that∫
�

up+1ϕ ′(v) · (1 − αv) ≤ 0 for all t ∈ (0, Tmax), (2.28)

and Young’s inequality implies that thanks to the positivity of ϕ ′ ′(v) − pϕ ′(v) entailed by (2.25), the third
to last summand can be controlled according to∫

�

up−1 ·
{

− 2pϕ ′(v) + p(p − 1)ϕ(v)
}
∇u · ∇v

≤
∫
�

up ·
{
ϕ ′ ′(v) − pϕ ′(v)

}
|∇v|2

+
∫
�

up−2 ·
{ − 2pϕ ′(v) + p(p − 1)ϕ(v)

}2

4 · {ϕ ′ ′(v) − pϕ ′(v)
} · |∇u|2 for all t ∈ (0, Tmax). (2.29)

Since{ − 2pϕ ′(v) + p(p − 1)ϕ(v)
}2

4 · {ϕ ′ ′(v) − pϕ ′(v)
} − p(p − 1)ϕ(v)

= 4p2ϕ ′2(v) − 4p2(p − 1)ϕ(v)ϕ ′(v) + p2(p − 1)2ϕ2(v)

4 · {ϕ ′ ′(v) − pϕ ′(v)
− p(p − 1)ϕ(v)

= 1

4 · {ϕ ′ ′(v) − pϕ ′(v)
} ·

{
4p2ϕ ′2(v) − 4p2(p − 1)ϕ(v)ϕ ′(v) + p2(p − 1)2ϕ2(v)

−4p(p − 1)ϕ(v)ϕ ′ ′(v) + 4p2(p − 1)ϕ(v)ϕ ′(v)
}

= 1

4 · {ϕ ′ ′(v) − pϕ ′(v)
} ·

{
4p2ϕ ′2(v) + p2(p − 1)2ϕ2(v) − 4p(p − 1)ϕ(v)ϕ ′ ′(v)

}
in �× (0, Tmax),
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on the basis of (2.26), we can estimate∫
�

up−2 ·
{ − 2pϕ ′(v) + p(p − 1)ϕ(v)

}2

4 · {ϕ ′ ′(v) − pϕ ′(v)
} · |∇u|2 − p(p − 1)

∫
�

up−2ϕ(v)|∇u|2

≤ −c4

∫
�

up−2|∇u|2 for all t ∈ (0, Tmax).

Combining (2.27) with (2.29) and (2.28) hence leads to the inequality
d

dt

∫
�

upϕ(v) ≤ −c4

∫
�

up−2|∇u|2 for all t ∈ (0, Tmax),

meaning that∫
�

up(·, t)ϕ(v(·, t)) + c4

∫ t

0

∫
�

up−2|∇u|2 ≤
∫
�

up
0ϕ(v0) for all t ∈ (0, Tmax),

and that thus the claim results in view of the uniform positivity property of ϕ contained in (2.25).

In view of Lemma 2.2, to ensure global extensibility, it is sufficient to apply the latter to some suitably
large but fixed p> 1:

Lemma 2.6. There exists δ� = δ�(n)> 0 such that if�⊂R
n is smoothly bounded, if α ≥ 1

δ�
and if u0 and

v0 satisfy (1.6) as well as (1.7), then Tmax = ∞ and

sup
t>0

‖u(·, t)‖L∞(�) <∞ (2.30)

as well as ∫ ∞

0

∫
�

|∇u|2 <∞. (2.31)

Proof. With (δ0(p))p>1 taken from Lemma 2.4, we fix p> 1 such that p> n
2
, and let δ� :=

min{δ0(p), δ0(2)}. Then two applications of Lemma 2.5 yield c1 > 0 and c2 > 0 such that∫
�

up ≤ c1 for all t ∈ (0, Tmax),

and that ∫ t

0

∫
�

|∇u|2 ≤ c2 for all t ∈ (0, Tmax),

whence the claim becomes a consequence of Lemma 2.2.

3. Large time behaviour. Proof of Theorem 1.1

Our large time analysis will rely on the following general observation, possibly of independent interest,
concerning L∞ decay as a consequence of uniform continuity in conjunction with a certain averaged
decay property.

Lemma 3.1. Let t0 ∈R and ψ :�× [t0, ∞) →R be bounded, uniformly continuous and such that∫ t+1

t

∫
�

|ψ |q → 0 as t → ∞ (3.1)

with some q> 0. Then

ψ(·, t) → 0 in L∞(�) as t → ∞. (3.2)

Proof. Suppose that (3.2) was false. Then since the uniform continuity ofψ on�× [t0, ∞) implies that
(ψ(·, t))t≥t0 is equi-continuous, the Arzelá-Ascoli theorem would provide ψ∞ ∈ C0(�) and a sequence
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(tk)k∈N ⊂ [t0, ∞) such that tk → ∞ and

ψ(·, tk) →ψ∞ in L∞(�)

as k → ∞ and that ψ∞ �≡ 0. Accordingly taking x0 ∈� such that c1 := |ψ∞(x0)|> 0, we could then find
k0 ∈N such that |ψ(x0, tk)| ≥ c1

2
for all k ≥ k0, whereupon again relying on uniform continuity, we could

fix R> 0 and τ ∈ (0, 1) such that |ψ(x, t)| ≥ c1
4

for all x ∈ BR(x0) ∩�, any t ∈ (tk, tk + τ ) and each k ≥ k0.
Then, however,∫ tk+1

tk

∫
�

|ψ |q ≥
∫ tk+τ

tk

∫
BR(x0)∩�

|ψ |q ≥ c1τ

4
· ∣∣BR(x0) ∩�∣∣ for all k ≥ k0,

which is incompatible with (3.2) due to the fact that |BR(x0) ∩�|> 0 by smoothness of ∂�.

In order to satisfy the requirements concerning uniform continuity in the previous lemma, we note
that standard parabolic theory ensures that L∞ bounds entail Hölder estimates in the following sense:

Lemma 3.2. Let δ� be as in Lemma 2.6, let α ≥ 1
δ�

, and assume (1.6) and (1.7). Then there exist θ ∈ (0, 1)
and C> 0 such that

‖u‖
Cθ , θ2 (�×[t,t+1])

≤ C for all t ≥ 1 (3.3)

and

‖v‖
Cθ , θ2 (�×[t,t+1])

≤ C for all t ≥ 1 (3.4)

Proof. In view of the boundedness properties of u and v asserted by Lemmas 2.6 and 2.3, an appli-
cation of standard heat semigroup estimates to the second equation in (1.3) ([8]) shows that ∇v ∈
L∞((0, ∞); L∞(�; Rn)). Relying on this and again using the boundedness of u, (3.3) can be obtained
from [18, Theorem 1.3] (cf., e.g., [21, Lemma 6.1] for a related precedent). Likewise, the assertion (3.4)
can be concluded from the boundedness of u and ∇v through [18, Theorem 1.3].

Based on the above two lemmas, the weak decay information contained in (2.31) can be turned into
a statement on L∞ stabilization in the first solution component:

Lemma 3.3. If δ� is as in Lemma 2.6, and if α ≥ 1
δ�

and (u0, v0) satisfies (1.6) and (1.7), then

u(·, t) → 1

|�|
∫
�

u0 in L∞(�) as t → ∞. (3.5)

Proof. According to a Poincaré inequality, there exists c1 > 0 such that∫
�

∣∣∣∣ψ − 1

|�|
∫
�

ψ

∣∣∣∣
2

≤ c1

∫
�

|∇ψ |2 for all ψ ∈ W1,2(�),

whence using (2.2), we find that∫ t

0

∫
�

∣∣∣∣u(x, t) − 1

|�|
∫
�

u0

∣∣∣∣
2

≤ c1

∫ t

0

∫
�

|∇u|2 for all t> 0.

From Lemma 2.6, we thus infer that∫ ∞

0

∫
�

∣∣∣∣u − 1

|�|
∫
�

u0

∣∣∣∣
2

<∞,

so that since �× [1, ∞) � (x, t) �→ u(x, t) − 1
|�|

∫
�

u0 is uniformly continuous thanks to Lemma 3.2, it
is sufficient to apply Lemma 3.1.
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Our large time analysis of the second solution component will be based on the following elementary
relaxation feature which actually does not rely on largeness of α nor on smallness of v0 and is thus
enjoyed also by possibly existing non-global solutions to (1.3).

Lemma 3.4. Let α > 0, and assume (1.6). Then there exists C> 0 such that∫ t

0

∫
�

u ·
(

v − 1

α

)2 ≤ C for all t ∈ (0, Tmax). (3.6)

Proof. An integration by parts using the second equation in (1.3) shows that

1

2

d

dt

∫
�

(
v − 1

α

)2 =
∫
�

(
v − 1

α

)
·
{
�v − αu ·

(
v − 1

α

)}

= −
∫
�

|∇v|2 − α

∫
�

u ·
(

v − 1

α

)2

≤ −α
∫
�

u ·
(

v − 1

α

)2

for all t ∈ (0, Tmax).

Therefore,

1

2

∫
�

(
v(·, t) − 1

α

)2 + α

∫ t

0

∫
�

u ·
(

v − 1

α

)2 ≤ 1

2

∫
�

(
v0 − 1

α

)2

for all t ∈ (0, Tmax),

which implies (3.6).

Using that the weight function u appearing in (3.6) eventually admits a uniform pointwise lower
bound due to Lemma 3.3, we can combine Lemma 3.4 with the uniform continuity property implied by
Lemma 3.2 to assert stabilization also in the signal concentration.

Lemma 3.5. Let δ� be as in Lemma 2.6, let α ≥ 1
δ�

, and suppose that (1.6) and (1.7) hold. Then

v(·, t) → 1

α
in L∞(�) as t → ∞. (3.7)

Proof. As we are assuming that u0 �≡ 0, letting c1 := 1
2|�|

∫
�

u0 defines a positive constant which due to
Lemma 3.3 has the property that

u(x, t) ≥ c1 for all x ∈� and t> t0

with some t0 > 0. Therefore,

c1

∫ t

t0

∫
�

(
v − 1

α

)2 ≤
∫ t

t0

∫
�

u ·
(

v − 1

α

)2 ≤
∫ ∞

0

∫
�

u ·
(

v − 1

α

)2

for all t> t0,

whence using Lemma 3.4, we obtain that since under the current hypotheses, we already know that
Tmax = ∞, ∫ ∞

t0

∫
�

(
v − 1

α

)2

<∞.

Based on the uniform continuity property of v − 1
α

implied by (3.4), by means of Lemma 3.1, this yields
(3.7).

Both parts of our claim concerning the large time behaviour in (1.3) have thereby been completed:

Proof of Theorem 1.1. We only need to combine Lemma 2.6 with Lemma 2.1, and collect the outcomes
of Lemmas 3.3 and 3.5.
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4. Blow-up prevention in planar domains. Proofs of Proposition 1.2 and Corollary 1.3

In the particular case when n = 2, a simple reduction to known results on (1.2) extends the results from
Theorem 1.1 to situations in which v0 is suitably large throughout �:

Proof of Proposition 1.2. Since v0 − 1
α

is nonnegative, according to a known argument the problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut =�u − ∇ · (u∇w), x ∈�, t> 0,

wt =�w − αuw, x ∈�, t> 0,
∂u
∂ν

= ∂w
∂ν

= 0, x ∈ ∂�, t> 0,

u(x, 0) = u0(x), w(x, 0) = v0(x) − 1
α
, x ∈�,

(4.1)

possesses a uniquely determined classical solution (u, w) with{
u ∈ C0(�× [0, ∞)) ∩ C2,1(�× (0, ∞)) and
w ∈ ⋂

q>n C0([0, ∞); W1,q(�)) ∩ C2,1(�× (0, ∞)),

and with u ≥ 0 and w> 0 in �× [0, ∞), and this solution additionally satisfies

u(·, t) → 1

|�|
∫
�

u0 and w(·, t) → 0 in L∞(�)

as t → ∞; for the special case α= 1, this can be found detailed in [9], while a proof for arbitrary α > 0
can be obtained by straightforward modification thereof. Setting v := w + 1

α
, we thus obtain a pair (u, v)

of nonnegative functions fulfilling (1.8) as well as (1.9) and (1.10).

In radially symmetric settings, also on the basis of known approaches from the literature, we can
thereby make sure that the behaviour in (1.3) for large α > 0 substantially deviates from that when
α = 0:

Proof of Corollary 1.3. A straightforward modification of the reasonings in either [6] or [15] provides
Tmax ∈ (0, ∞) as well as nonnegative, radially symmetric functions u(0) and v(0) such that (1.12) and (1.14)
hold and that (1.3) with α= 0 is classically solved in �× (0, Tmax); in view of the strong maximum
principle, we may assume upon replacing Tmax with 1

2
Tmax and t with t − 1

2
Tmax here if necessary that

(u0, v0) := (u(0), v(0))(·, 0) satisfies (1.6) with v0 > 0 in �. Accordingly, α0 := 1
infx∈� v0(x)

is well defined
and positive, and therefore, we may apply Proposition 1.2 to see that for each α > α0, the problem (1.3)
possesses a global classical solution (u(α), v(α) fulfilling (1.13) and (1.15).
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