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Abstract

The cu. rule is optimal for arbitrary arrival processes provided that
the service times are geometric and the service discipline is pre­
emptive.

1. The problem

We consider a discrete-time model of N queues competing for a single server. Let
Ai(t) be the random number of new customers that join queue i. No statistical
restriction is imposed on the arrival process {A, (t)}, i = 1, ... , N. The buffer capacity at
each queue is unlimited. The service time requirement of a customer in queue i is
geometric with mean f..t~l and the service time requirements of different customers are
statistically independent. In each period t, the service must be assigned to one of the
queued customers. At the end of the period the server may be reassigned to another
customer. That is, the service discipline is pre-emptive. Let 0 < (3< 1 be a fixed discount
factor. The objective is to find an assignment policy 7T to minimize the expected total
discounted waiting cost

(1)
T N

J(7T,T):=E L (3t L ciX7(t).
t=l i=l

Here T < 00, Cl ~ 0 are constants, and X~(t) is the length of the queue i under 7T. The
control policy 7T may depend upon previous queue lengths and control actions.

The problem described above generalizes that considered by Baras, Dorsey and
Makowski in [1]. They use dynamic programming to find the optimal policy for the
special case N = 2, T = 00, and when the arrivals in different time periods are indepen­
dent and identically distributed.

The cu. rule denotes the policy which at time t assigns the server to a customer in
queuei if Cif..ti = max {Cjf..tj IXj(t) > O}. The following result is proved in the next section.

Theorem. The cu. rule is optimal.

2. Proof of the theorem

The theorem can be proved using the results obtained in [2]. However, the simple
structure of the present problem permits a direct proof based on an interchange
argument.
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For T = 1 the assertion is true since I( 1T, 1) = E(3 I~ c.X, (1) does not depend en -it,

Suppose the assertion is true for some T ~ 1 and consider the horizon T + 1. Let 1T be
an optimal policy. By the induction hypothesis we may suppose that 1T follows the CIL
rule for t = 2, ... , T + 1. By way of contradiction suppose 1T does not follow the CIL rule
for t = 1. Then there are customers i, j at time 1, with CiILi > CjILj, and 1T serves j at t = 1.
Let (Y be the first time that 1T serves i. Then (Y ~ 2 a.s. Since the decision at T + 1 does
not affect the cost we may also assume that (Y ~ T + 1 a.s. Since 1T follows the CIL rule for
t ~ 2, therefore 1T does not serve j during 2, ... , (Y.

Consider now the policy 1T which is identical to 1T except that the time when j is
served for the first time, namely 1, and the time when i is served for the first time,
namely (Y, are interchanged. Then the states under both policies will be the same from
time (Y + 1 onwards, and so

(2)
IT IT

I(1T, T+ 1)-I(1T, T+ 1) = CiILiE L (3t -cjILjE L e: >0.
t=2 t=2

Since ILi is the probability that customer i will complete service in one step, the first
term on the right in (2) is the reduction in cost achieved by serving i at t = 1 instead of
at t = (Y; similarly, the second term is the increase in cost due to postponing service to j.
The inequality implies that 1T cannot be optimal and the proof is complete.

Remark. Since the CIL rule is optimal for all T < 00 and (3<0, it is also optimal for the
infinite-horizon problem with either the total discounted cost or the average cost per
unit time criterion. Secondly, by introducing a customer 0 with Co = ILo = 0 we can see
that it cannot be optimal to keep a server idle when customers are present.
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