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Nonvanishing of twists of L-functions attached to
Hilbert modular forms

Nathan C. Ryan, Gonzalo Tornaŕıa and John Voight

Abstract

We describe algorithms for computing central values of twists of L-functions associated to Hilbert
modular forms, carry out such computations for a number of examples, and compare the results
of these computations to some heuristics and predictions from random matrix theory.

1. Introduction

Let f(q) =
∑∞
n=1 anq

n ∈ Sk(N) be a classical newform of weight k and level N , and let

λn = an/
√
n
k−1

. For D < 0 a fundamental discriminant, let

L(f, s, χD) =

∞∑
n=1

χD(n)
λn
ns

be the L-series of f (in the analytic normalization) twisted by the quadratic character χD
associated to the imaginary quadratic field Q(

√
D). The central values L(f, 1

2 , χD) encode
interesting arithmetic information about the form f , and a number of explicit investigations
have been carried out examining the family of these values [3, 15, 24, 27, 28].

An efficient way to compute the family L(f, 1/2, χD) of central values with varying
discriminant D is to use Waldspurger’s theorem [43], which asserts that the values are related
to the Fourier coefficients of a certain half-integer weight modular form. Concretely, for D < 0
coprime to N , we have

L(f, 1/2, χD) = κf
c|D|(g)2√
|D|

k−1
(1.1)

where the (nonzero) constant κf is independent of D and c|D|(g) is the |D|th coefficient of a
modular form g of weight (k + 1)/2 related to f via the Shimura correspondence. Computing
central values using (1.1) has the advantage that the description of g as a linear combination of
theta series permits the rapid computation of a large number of coefficients: for example, Hart–
Tornaŕıa–Watkins [17] compute hundreds of billions of twists of the congruent number elliptic
curve (using FFT methods). By comparison, experiments with the distribution of twists with
similar Hodge data computed without using Waldspurger’s theorem are much less extensive:
see for example, Watkins [45, § 6.6] and David–Fearnley–Kisilevsky [6].

Several authors have pursued Waldspurger’s theorem in the setting of Hilbert modular forms,
including Shimura [35], Baruch–Mao [1], Xue [46], Sirolli [38], and Hiraga–Ikeda [18]. In
this paper, we develop algorithms using these formulas to compute families of central values
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L(f, 1/2, χD) for Hilbert modular forms f over totally real fields F , defined in an analogous
way. We believe that these computations are of independent interest, but we also use them to
provide some partial evidence for conjectures concerning statistics for central values in families
of twists motivated by some heuristics and refined by random matrix theory.

Let F be a totally real field of degree n = [F : Q] with ring of integers ZF , and suppose that
F has narrow class number 1. Let

D(ZF ) = {D ∈ ZF /Z×2
F : D fundamental discriminant and D � 0}

be the set of totally negative fundamental discriminants in ZF ; the set D(ZF ) is in canonical
bijection with the complex multiplication (CM) extensions F (

√
D) of F . For X > 0, let

D(ZF ;X) = {D ∈ D(ZF ) : |NF/Q(D)| 6 X}.

To D ∈ D(ZF ), let χD be the character associated to the quadratic extension F (
√
D).

Let f be a Hilbert cusp form over F of parallel weight k ∈ 2Z>0 and level N ⊆ ZF with
rational integer Hecke eigenvalues, and let wf be the sign of the functional equation for L(f, s).
We will be interested in the number of vanishings

Nf (ZF ;X) = #{D ∈ D(ZF ;X) : χD(N) = (−1)n wf and L(f, 1/2, χD) = 0} (1.2)

as a function of X; the condition that χD(N) = (−1)n wf is equivalent to the condition that
the sign of the functional equation for L(f, s, χD) is +1, so that L(f, s, χD) vanishes to even
order.

Conjecture 1.3. There exist bf , Cf > 0 depending on f such that as X →∞, we have

Nf (ZF ;X) ∼ CfX1−(k−1)/4 (logX)bf .

When k = 2, the modular form f is expected (and known in many cases) to correspond to an
isogeny class of elliptic curves E over F , so according to the conjecture of Birch–Swinnerton-
Dyer, Conjecture 1.3 predicts the distribution of curves of even rank > 2 in CM quadratic
twists of E over F . Conjecture 1.3 generalizes the conjecture of Conrey–Rubinstein–Keating–
Snaith [4] made in the case F = Q, thinking of L(f, s) as a degree 2 L-function over F . The
additional power bf of logX that appears is conjecturally related to arithmetic and geometric
properties of f : for example, if F = Q and k = 2, then Delaunay–Watkins [7] conjecture a
value for bf that depends on the two-torsion structure of elliptic curves in the isogeny class
associated to f (see § 4 below for more discussion). The constant Cf > 0 is not presently
understood; when k > 6, we predict that Cf = 0.

Our second conjecture is a variant of the first and investigates a new phenomenon that arises
in the context of Hilbert modular form, restricting to twists by discriminants D ∈ Z; we still
write χD for the quadratic character of F (

√
D) over F . Let

Nf (Z;X) = #{D ∈ D(Z;X) : χD(N) = (−1)n wf and L(f, 1/2, χD) = 0}. (1.4)

Conjecture 1.5. There exist bf,Z, Cf,Z > 0 depending on f such that as X →∞, we have

Nf (Z;X) ∼ Cf,ZX1−n(k−1)/4 (logX)bf,Z .

In Conjecture 1.5, we instead are thinking of L(f, s) as a degree 2n L-function over Q, and
as a result, vanishing twists (with D ∈ Z) are more rare. Put another way, the discriminants
D ∈ Z are sparse among all discriminants D ∈ ZF , and consequently their contribution to the
number of vanishing twists is scant. The power bf,Z of logX depends on f as in Conjecture 1.5
but with an additional factor coming from the expected number of primes in the factorization
in ZF of (p) for a prime p ∈ Z.
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Remark 1.6. In the case of non-parallel weight (k1, . . . , kn), we expect Conjectures 1.3 and
1.5 hold replacing k with the average of the ki.

This paper is organized as follows. We begin in § 2 by giving some background on Hilbert
modular forms and their L-functions, and we state a version of Waldspurger’s theorem for
Hilbert modular forms. In § 3, we make this theory algorithmic, and exhibit methods to
compute a large number of central values of L-functions of quadratic twists over totally real
fields. In § 4, we describe the heuristics motivating Conjectures 1.3–1.5 and show how they
might be refined using the connections between random matrix theory and L-functions in our
context. In § 5, we describe the experiments we carried out and present some data, tables and
graphs. Our computations are done primarily in Magma [2]. We conclude in § 6 with some
remaining questions.

2. Background and notation

In this section, we summarize the background and introduce the notation we use throughout.
General references for Hilbert modular forms include Freitag [13], van der Geer [41], and
Goren [14]; for algorithmic aspects, see the survey of Dembélé–Voight [10].

Hilbert modular forms

Let F be a totally real number field of degree n = [F : Q], discriminant dF , ring of integers
ZF , and different d. We assume throughout that F has narrow class number 1; removing this
hypothesis is possible but would make the exposition more technical. Let v1, . . . , vn be the real
embeddings of F into R. Let N be a nonzero ideal of ZF . Let

F+ = {a ∈ F : vi(a) > 0 for all i = 1, . . . , n}

and for a fractional ideal b of F , let b+ = b ∩ F+. Let H = {z ∈ C : Im(z) > 0} denote the
upper half-plane.

A Hilbert modular form over F of weight k = (ki)i ∈ 2Zn>0 and level N is a holomorphic
function f : Hn → C such that for all z = (z1, . . . , zn) ∈ Hn and all

γ ∈ Γ0(N) =

{
γ =

(
a b
c d

)
∈ GL2(ZF ) : c ∈ N and det(γ) ∈ ZF,+

}
,

we have

f(γz) = f

(
a1z1 + b1
c1z1 + d1

, . . . ,
anzn + bn
cnzn + bn

)
=

( n∏
i=1

(cizi + di)
ki

det γ
ki/2
i

)
f(z), (2.1)

where γi = vi(γ) =
(
ai bi
ci di

)
, and such that further f satisfies a condition of bounded growth

(necessary only in the case F = Q, by Koecher’s principle). If ki = k for all i = 1, . . . , n,
we say f has parallel weight k ∈ 2Z>0. A Hilbert cusp form is a Hilbert modular form that
vanishes at the cusps, elements of P1(F ) ↪→ P1(R)n. We denote by Sk(N) ⊆Mk(N) the space
of Hilbert cusp forms inside the finite-dimensional space of Hilbert modular forms of weight k
and level N over F .

A Hilbert modular form f ∈Mk(N) admits a Fourier expansion

f(z) = a0 +
∑

µ∈(d−1)+

aµq
Tr(µz) (2.2)

where qTr(µz) = exp(2πi
∑n
i=1 µizi), analogous to the q-expansion of a classical modular form.

If f(z) ∈ Sk(N), then a0 = 0.
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The space Sk(N) is equipped with the Petersson inner product given by

〈f, g〉 =
1

vol(X0(N))

∫
X0(N)

f(z)g(z)yk−2 dx dy (2.3)

where X0(N) = Γ0(N)\Hn, zi = xi +
√
−1yi and dx = dx1 . . . dxn, dy = dy1 . . . dyn. Further,

the spaces Mk(N) and Sk(N) are equipped with an action of pairwise commuting Hecke
operators Tn, indexed by the nonzero ideals n of ZF with n coprime to N, that are self-adjoint
with respect to the Petersson inner product. These spaces are also equipped with Atkin–Lehner
operators Wpe for prime powers pe ‖ N. If f ∈ Sk(N) is a (simultaneous) eigenform, we say f
is normalized if a(1) = 1; then Tnf = anf and each eigenvalue an is an algebraic integer that
lies in a totally real number field Kf = Q({an}).

There are natural injections Sk(M) ↪→ Sk(N) when M | N, and we define a newform to be
a normalized cusp eigenform which is orthogonal to the image of any such injection with M a
proper divisor of N. For each unitary divisor q ‖ N (so q | N and q is coprime to N/q), there
is an Atkin–Lehner operator Wq that is an involution on the new subspace of Sk(N), so that
Wqf = wq,ff = ±f for a Hecke newform f .

Theta series

The theory of half-integral weight modular forms was developed by Shimura in a series of
papers [33, 34, 36]. Suppose that N is odd (that is, N(N) is odd). A Hilbert modular form
over F of half-integer weight k ∈ ( 1

2 , . . . ,
1
2 ) + Zn>0, level 4N, and quadratic character ψ of

conductor dividing 4N is a holomorphic function f : Hn → C such that for all z ∈ Hn and all
γ =

(
a b
c d

)
∈ Γ0(4N), we have

f(γz) = ψ(d)h(γ, z)

( n∏
i=1

(cizi + di)
ki

det γ
ki/2
i

)
f(z)

as in (2.1); the factor h(γ, z) is an automorphy factor of weight ( 1
2 , . . . ,

1
2 ) defined on the

metaplectic cover of Γ0(4N) by

h(γ, z) =
θ(γz)

θ(z)
, where θ(z) =

∑
a∈ZF

qTr(a2z).

In this paper, the half-integral weight modular forms we encounter will arise from linear
combinations of weighted theta series, as follows.

Let Q : V → F be a positive definite quadratic form on an F -vector space V with dimF V =
d. Let Λ ⊂ V be a (full) ZF -lattice, so Λ is a finitely generated ZF -submodule that contains
a basis for V . Suppose that Λ is integral, so Q(Λ) ⊆ ZF . Let N be the discriminant of Λ and
suppose that N is odd.

A homogeneous polynomial P (x) = P (x1, . . . , xd) on Rd is spherical harmonic if(
∂2

∂x2
1

+ . . .+
∂2

∂x2
d

)
P = 0.

For i = 1, . . . , n, let Pi(x) be a spherical harmonic polynomial on V ⊗vi R of homogeneous
degree mi, and let P (x) =

∏n
i=1 Pi(x). We define the theta series associated to Λ and P as

Θ(Λ, P ) : Hn → C,

Θ(Λ, P ; z) =
∑
x∈Λ

P (x) qTr(Q(x)z). (2.4)

Then θ is a Hilbert modular form of level 4N, weight (d/2 + mi)i, and quadratic character
ψ of conductor dividing 4N [36]. Note that

∑
imi must be even, or else trivially we have

Θ(Λ, P ) = 0.
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Twists of L-functions

For the analytic properties of Hilbert modular forms we use in this section, we refer to Shimura
[32]. Let f ∈ Sk(N) be a Hilbert newform of weight k and level N, and let k0 = max(k1, . . . , kn).

Let Tnf = anf and let λn = an/
√

N(n)
k0−1

.
Associated to f is an L-function L(f, s) given by the normalized Dirichlet series

L(f, s) =
∑
n

λn
N(n)s

,

convergent for Re s > 1. Define the completed L-function

Λ(f, s) = Qs/2
( n∏
i=1

ΓC(s+ (ki − 1)/2)

)
· L(f, s) (2.5)

where Q = d2
F N(N) is the conductor and ΓC(s) = 2(2π)−sΓ(s). Then Λ(f, s) has an analytic

continuation to C and satisfies the functional equation

Λ(f, s) = wfΛ(f, 1− s) with wf = (−1)(k1+...+kn)/2 wN,f ,

where wN,f is the canonical (Atkin–Lehner) eigenvalue of f .
We will be interested in twisting L-functions by quadratic characters, which are indexed

by fundamental discriminants, as follows. The ring of integers of a quadratic field K is of
the form ZK = ZF [x]/(x2 − tx + n) with t, n ∈ ZF ; the quantity D = t2 − 4n ∈ ZF /Z×2

F

is the fundamental discriminant uniquely associated to K = F (
√
D). Consequently, there is

a bijection between the set of isomorphism classes of quadratic fields K/F and fundamental
discriminants D. An element D ∈ ZF is a fundamental discriminant if and only if D is a square
modulo 4 and minimal with respect to this property under divisibility by squares: that is, we
have D ≡ t2 (mod 4) for some t ∈ ZF and, if D = f2d with d, f ∈ ZF and d a square modulo
4, then f ∈ Z×F . Let

D(ZF ) = {D ∈ ZF /Z×2
F : D fundamental discriminant and D � 0}

be the set of totally negative fundamental discriminants. For D ∈ D(ZF ), let χD be the
quadratic character associated to K = F (

√
D).

Suppose that D is coprime to N. We consider the quadratic twist fD = f ⊗ χD ∈ Sk(ND2)
of f and its associated L-function L(f, s, χD) defined by

L(f, s, χD) = L(fD, s) =
∑
n

χD(n)
λn

N(n)s
.

The completed L-function Λ(f, s, χD) = Λ(fD, s) is defined as in (2.5) with Q = d2
F N(ND2);

it satisfies the functional equation

Λ(f, s, χD) = wfD Λ(f, 1− s, χD) with wfD = (−1)n χD(N)wf .

Definition 2.6. A weight satisfies the parity condition if (k1 + . . . + kn)/2 ≡ n (mod 2).
We say that D ∈ D(ZF ) is permitted if D is coprime to N and χD(q) = wq,f for all q ‖ N.

The parity condition ensures that

wf = (−1)n wN,f , (2.7)
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and wfD = χD(N)wN,f . For permitted D we have χD(N) = wN,f , thus wfD = 1. Note that
the parity condition for parallel weight k ∈ 2Z>0 holds when n is even or when n is odd and
k ≡ 2 (mod 4).

To simplify notation, we write |D| = −D when D is totally negative.

Conjecture 2.8. Let f ∈ Sk(N) be a Hilbert newform of odd squarefree level N such that k
satisfies the parity condition. Then there exists a modular form g(z) =

∑
µ∈(d−1)+

cµq
Tr(µz) ∈

S(k+1)/2(4N) such that for all permitted D ∈ D(ZF ), we have

L(f, 1/2, χD) = κf
c|D|(g)2∏n

i=1

√
|vi(D)|

ki−1
, (2.9)

where κf 6= 0 is independent of D. In the case of parallel weight k the denominator in the

right-hand side is just
√

N(D)
k−1

.

Conjecture 2.8 is known in many cases. It follows in principle from general work of
Waldspurger [43] and Shimura [35], but we were not able to extract the explicit statement
above: the difficult part is to construct a nonzero form g. Baruch–Mao [1] prove Conjecture
2.8 in the case F = Q (using work of Kohnen for the existence of g). Xue [46] gives a proof for
general F and prime level N = p, provided L(f, 1

2 ) 6= 0; Hiraga–Ikeda [18] treat general F and
trivial level N = (1). We will discuss in § 3 an algorithm that conjecturally always computes
the form g associated to f ∈ Sk(N) when L(f, 1

2 ) 6= 0: it is correct as long as g 6= 0, by the
work of the above authors.

Remark 2.10. The condition that N is odd and squarefree is important here for the purposes
of a concise exposition; already in the case F = Q, to relax these hypotheses involves technical
complications. Similarly, there are extensions to totally real fundamental discriminants as well,
but we do not pursue them here. The restriction to permitted discriminants is necessary; if
(D/l) = −wl,f for some prime l ‖N then the coefficient c|D| is trivially zero but L(f, 1

2 , χD)
need not be zero.

3. Algorithms

In this section, we discuss algorithms to test the vanishing or nonvanishing of central values
L(f, 1

2 , χD) using the theory of the previous section, encoded as the coefficients of a linear
combination of quaternionic theta series. We continue with our notation from the previous
section: in particular, let f ∈ Sk(N) be a Hilbert newform over F . Throughout, we employ
conventions and algorithms described by Kirschmer–Voight [21, 22]; a general reference for
the results on quaternion algebras we will use is Vignéras [42].

As we will be employing an algorithmic version of Conjecture 2.8, we assume that N is odd
and squarefree and that the weight k satisfies the parity condition (Definition 2.6). Moreover,
we make the assumption that L(f, 1

2 ) 6= 0 to work with the simplest construction of the
associated half-integral weight form g: for extensions, see Remark 3.2 below.

Brandt module

The assumption that L(f, 1
2 ) 6= 0 implies, in particular, that wf = 1. By (2.7), we have

wN,f = (−1)n; in other words #{l | N : wl,f = −1} ≡ n (mod 2), and it follows that there is a
quaternion algebra B over F ramified at all the real places and at primes l | N with wl,f = −1.
Since N is squarefree there is an Eichler order O ⊂ B with reduced discriminant N.
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The quaternion algebra B has a unique involution : B → B such that the reduced norm
nrd(α) = αα ∈ F and reduced trace trd(α) = α + α ∈ F belong to F for all α ∈ B. The
discriminant

∆(α) = −(α− α)2 = 4 nrd(α)− trd(α)2 ∈ F
defines a positive definite quadratic form ∆ : B/F → F .

A right fractional ideal of O is a finitely generated ZF -submodule I ⊂ B with IF = B such
that IO ⊆ I. The right order of a right fractional ideal I is

OR(I) = {x ∈ B : Ix ⊆ I}.

Left fractional ideals and left orders are defined analogously. A right fractional ideal of O has
OR(I) = O if and only if I is (left) invertible, so there exists a left fractional ideal I−1 with
OR(I−1) = OL(I) such that I−1I = O.

Let I, J be invertible right fractional O-ideals. We say that I and J are in the same right
ideal class (or are isomorphic) if there exists an α ∈ B× such that I = αJ , or equivalently if
I and J are isomorphic as right O-modules. We write [I] for the equivalence class of I under
this relation and denote the set of invertible right O-ideal classes by ClO. The set ClO is
finite and H = # ClO is independent of the choice of Eichler order O. Let I1, . . . , IH be a set
of representatives for ClO such that nrd Ii is coprime to N for all i.

Let Ui be the space of spherical harmonic polynomials of homogeneous degree (ki− 2)/2 on
Bvi/Fvi

∼= R3 (with respect to ∆) and let

Wk =

n⊕
i=1

Ui.

Then B× (and hence B×/F×) acts on Wk by conjugation on each factor. The space MB
k (N)

of quaternionic modular forms of weight k and level N for B can be represented as

MB
k (N) ∼=

H⊕
i=1

WΓi

k

where Γi = OL(Ii)
×/Z×F . By the correspondence of Eichler, Shimizu, and Jacquet–Langlands,

MB
k (N) is isomorphic as a Hecke module to a subspace of Mk(N) of forms that are new at all

the primes where B is ramified. In particular, f corresponds to a quaternionic modular form
given by (P (1), . . . , P (H)) with P (i) ∈WΓi

k . Algorithms to compute the coefficients P (i) are due
to Socrates–Whitehouse [39] and Dembélé [8] and are surveyed in the work of Dembélé–Voight
[10].

The form g ∈ M(k+1)/2(4N) associated to f by Conjecture 2.8 can be (conjecturally)
computed as

g(z) =

H∑
i=1

1

#Γi
Θ(Λ(i), P (i); z) (3.1)

where Λ(i) = OL(Ii)/ZF has quadratic form ∆ and spherical harmonic polynomial P (i).
Therefore, to compute the (non)vanishing twists L(f, 1/2, χD), encoded in the coefficients
c|D|(g), we need only compute the theta series Θ(Λ(i), P (i)) with sufficiently many terms and
choose a unique representative for each fundamental discriminant.

Remark 3.2. If we follow this construction with L(f, 1/2) = 0, then the corresponding form
has g = 0: see Gross [15] and Böcherer–Schulze-Pillot [3] for the case F = Q and Xue [46]
and Sirolli [38] for general F . On the other hand, one expects a nonzero g in Conjecture 2.8;
see Mao–Rodriguez-Villegas–Tornaŕıa [24] for an extension of this algorithm to compute g in
this case.
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Theta series

To expand a theta series over ZF such as in the previous section, we consider the form over Z
given by the trace, as follows. Let Λ be an integral ZF -lattice with a positive definite quadratic
form Q and a spherical polynomial P , and let Θ(Λ, P ) be its theta series as in (2.4). We will
exhibit a method to compute the expansion of this series over all terms qν with Tr ν 6 T .

For each embedding vi : F ↪→ R the quadratic form Q : Λ → ZF yields a positive definite
quadratic form Qi : Λ→ R, and the sum

TrQ : Λ ∼= Zdn → Z
x 7→ TrQ(x)

is a positive definite quadratic form over Z. Then the Fincke–Pohst algorithm [12], based on
the LLL lattice reduction algorithm [23], can be used to iterate over the elements of

XT = {x ∈ Λ : TrQ(x) 6 T}

using O(T dn/2) bit operations for fixed Λ, Q, P as T →∞, which is proportional to the volume
of the associated region. This allows one to compute the coefficients of

Θ(Λ, P ; z) = c0 +
∑

ν∈(ZF )+

qTr(νz)

for all ν with Tr ν 6 T as
cν =

∑
x∈XT

Q(x)=ν

P (x).

Discriminants

To test the conjectures highlighted in the introduction, among the coefficients in the theta
series computed in the previous subsection we need to find a unique set of representatives for
fundamental discriminants with bounded norm (not trace). In this subsection, we explain how
to do this.

First, we will need to work with ‘balanced’ representatives of fundamental discriminants, up
to the action of UF = Z×2

F . To do so, we find a fundamental domain ∆ for the action of UF on
F+ ↪→ Rn>0, and choose the representative D such that −D lies in this fundamental domain.
The study of such domains was pioneered by Shintani [37]; see also the exposition by Neukirch
[25, §VII.9].

Theorem 3.3. There exists a Q-rational polyhedral cone ∆ that is a finite disjoint union of
simplicial cones such that

Rn>0 =
⊔
u∈UF

u∆.

Shintani gives an effective procedure for computing ∆, but it is quite complicated to carry
out in practice. Further algorithms for computing the cone ∆ are given by Okazaki [26] and
Halbritter–Pohst [16].

For concreteness, in this subsection we assume that F is a real quadratic field. (Similar
arguments work for higher degree fields, including work done for real cubic fields [11, 40], but
for degree n = [F : Q] > 4, they are quite a bit more complicated.) In this case, we have
Z×2
F = εZ; replacing ε by 1/ε, we may assume that ε2 > ε1, and then ε is unique. Then the

Shintani domain ∆ is the cone over the vectors (1, 1) and (ε1, ε2), so (x1, x2) ∈ ∆ if and only
if 1 6 x2/x1 < ε2/ε1.
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Lemma 3.4. If x = (x1, x2) ∈ ∆ has N(x) = x1x2 6 X then

Trx = x1 + x2 6 Tr(ε)
√
X.

Proof. By homogeneity, it suffices to prove this for the case X = 1. Then the maximum
value of Trx subject to N(x) = 1 and x ∈ ∆ occurs at the vertex (ε1, ε2).

With Lemma 3.4 in hand, to compute the coefficients c|D|(g), one for each D ∈ D(ZF ;X),

we apply the method of the previous subsection with T = γF
√
X where γF = Tr(ε) and select

only those with −D ∈ ∆. We can further restrict to fundamental discriminants by factoring
DZF to ensure that its odd part is squarefree, the exponent of an even prime is 6 3, and finally
that D/e2 is not a square modulo 4 for all even nonassociate prime elements e. In a similar
way, we can enumerate all permitted D ∈ D(ZF ;X) using the unary theta series Q(x) = x2

on ZF .

Remark 3.5. For a totally real field F of degree n = [F : Q], by similar reasoning and the
arithmetic–geometric mean, there exists γF > n depending only on F such that for all x ∈ ∆,
we have

nN(x)1/n 6 Tr(x) 6 γF N(x)1/n,

that is, Tr(x) = Θ(N(x)1/n). (In fact, γF = maxε |Tr(ε)| for ε a ray of the Shintani cone.) So
for the purposes of testing our conjectures, one can use either trace or norm, and for higher
degree fields, the former is much simpler to implement.

Remark 3.6. The algorithms above are used for experimental purposes, so we do not give
a precise running time for them; however, we can give a rough idea of the running time (which
bears out in practice): for a fixed field F , the time to compute {c|D|(g) : D ∈ D(ZF ;X)} for
a Hilbert modular newform f ∈ Sk(N) over F is governed by computing theta series, which is
roughly

O((NN)(X1/n)3n/2) = O((NN) ·X3/2)

because Tr(D) = O(X1/n) for −D ∈ ∆ and dimSk(N) = O(# ClO) = O(NN) by Eichler’s
mass formula [42, Corollaire V.2.5].

Example

The Hilbert modular form of parallel weight 2 and smallest level norm over F = Q(
√

5) is the
form f whose label is 2.2.5.1-31.1-a (see § 5 for more on the labeling system), and we take
this form as an example to illustrate the above algorithms. Let w = (1 +

√
5)/2, so w satisfies

w2 − w − 1 = 0 and ZF = Z[w]. Let N = (5w − 2), so NN = 31. Then there is a unique form
in S2(N); it has rational Hecke eigenvalues

a(2) = −3, a(2w−1) = −2, a(3) = 2, a(3w−2) = 4, . . .

and is neither CM nor base change. By the Eichler–Shimura construction, this form corresponds
to the isogeny class of the elliptic curve

E : y2 + xy + wy = x3 + (w + 1)x2 + wx (3.7)

via #E(ZF /p) = N p + 1− ap for p 6= N.
The L-function L(f, s) has conductor Q = 52 · 31 = 775 and L(f, 1

2 ) = 0.359 928 9 . . . 6= 0;
the Atkin–Lehner eigenvalue is wN,f = wf = 1. Like any form of parallel even weight k over
a real quadratic field, the form f satisfies the parity condition 2k ≡ 0 (mod 4).
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We find a quaternion algebra ramified only at the two real places of F to be
B = ((−1,−1)/F ), with Eichler order of level N given by

O = ZF ⊕ ZF (5w − 2)i⊕ ZF
(w + 1) + (w + 8)i+ j

2
⊕ ZF

w + (w + 25)i+ k

2
.

There are two right ideal classes in O, with the class [I1] = [O] and the nontrivial class
represented by the ideal

I2 = (w + 3)O +
(w + 11) + (w + 70) + j

2
O

of reduced norm nrd(I) = (3w − 2) itself of norm 11. We have #Γ1 = #(O×1 /Z
×
F ) = 5 and

#Γ2 = 3. In parallel weight 2, the weight space Wk = C is trivial, and we find that accordingly
MB

2 (N) has dimension 2 as a C-vector space. The eigenform f corresponds to the eigenvector
5[I1]− 3[I2], so we have P (1) = 5 and P (2) = −3.

We have OL(O) = O, and the discriminant form ∆ on Λ(1) = O/ZF gives a theta series

Θ(Λ(1); z) =
∑
v∈Λ(1)

qTr(∆(v)z)

= 1 + qTr((−w+3)z) + q(Tr(w+2)z) + 0qTr(3z) + qTr((4w+3)z) + . . . .

The terms ν = 0,−4w + 12, 4w + 8 correspond to nonfundamental discriminants. In a similar
way we compute Θ(Λ(1); z) and then compute

g(z) = Θ(Λ(1), P (1); z) + Θ(Λ(2), P (2); z) = 5
5Θ(Λ(1); z)− 3

3Θ(Λ(2); z)

= qTr((w+2)z) + qTr((−w+3)z) − qTr(3z) − qTr((3w+3)z) + qTr((−3w+6)z) + qTr((4w+3)z) + . . . .

We confirm that the quadratic twists of E by the discriminants D = −w−2, w−3,−3,−3w−
3, 3w − 6,−4w − 3 all have rank 0, consistent with this series; we find out first vanishings at
D = 8w − 43,−9w − 38, and the corresponding twists indeed have rank 2.

4. Conjectures about central values of L-functions

Random matrix theory has proved useful in refining conjectures related to the low-lying zeros
of L-functions [19, 20]. In work of Conrey–Keating–Rubinstein–Snaith [4], the following basic
question was considered. Let f ∈ Sk(N) be a newform with rational integer coefficients. For
how many fundamental discriminants D with |D| 6 X does the twisted L-function L(f, s, χD)
vanish at the center of the critical strip? In a collection of papers [24, 29, 30], a number of
variants of this problem were considered: the weight of f was allowed to vary, the level of f
was allowed to be composite, and so on.

Simple heuristics

To motivate the power of X in our Conjectures 1.3 and 1.5, we start with two simple heuristics
that follow a similar coarse reasoning and ignore logarithmic factors. Let

Nf (X) = #{D ∈ D(Z;X) : χD(N) = −wf and L(f, 1/2, χD) = 0}

count the number of vanishing twists of f with sign +1. If k = 2, then f corresponds to an
elliptic curve E over Q of conductor N , and so assuming the (weak) Birch–Swinnerton-Dyer
conjecture, the function Nf (X) counts the proportion of twists of E with rank at least two.
The function Nf (X) has a heuristic estimate attributed to Sarnak, as follows. As discussed in
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§ 2, Conjecture 2.8 relates the central value of the Dth twist of f to the coefficient c|D|(g) of
a particular half-integer weight modular form g attached to f according to the formula

L(f, 1/2, χD) = κf
c|D|(g)2√
|D|

. (4.1)

The Ramanujan–Petersson bound on the coefficients of g is |D|1/4+ε
for all ε > 0, and so, if

c|D|(g) takes a value in the range [0, |D|1/4] for |D| 6 X that is not too far from uniform, then

it should take the value 0 approximately X3/4+ε of the time.
The same heuristic extends to higher weight and to the case of Hilbert modular forms, as

follows. Let f be a Hilbert modular form of parallel weight k over a field F of degree n = [F : Q].
The Lindelöf hypothesis (see for example, Baruch–Mao [1, Conjecture 1.4]) implies that the
central values of any family of quadratic twist L-functions satisfying the Riemann hypothesis
have

L(f, 1/2, χD) = O(|N(D)|ε) (4.2)

for all ε > 0 as |N(D)| → ∞. By Conjecture 2.8, the bound (4.2) is equivalent to

|c|D|(g)| = O(|N(D)|(k−1)/4+ε)

for all ε > 0, so this would also be asserted by the Ramanujan–Petersson bound for half-integral
weight Hilbert modular forms.

Now, consider the context of Conjecture 1.3. If for each D ∈ D(ZF ;X) the coefficient c|D|(g)

has a distribution in [0, |N(D)|(k−1)/4] that is not too far from uniform, then the expected
number of times when the value is 0 is approximately X1−(k−1)/4+ε, since D(ZF ;X) = Θ(X).
We note that this bound is independent of n = [F : Q].

On the other hand, consider the case considered in Conjecture 1.5 where we twist only by
twist D ∈ D(Z;X). If c|D|(g) is still distributed in a way not too far from uniform, then since

|N(D)|(k−1)/4+ε = |D|n(k−1)/4+nε

then it should vanish about X1−n(k−1)/4+ε for all ε > 0.

The power of log

We now pay attention to the power of logX appearing in our conjectures, and for this
refinement we must dig a bit deeper. Consider first the case F = Q and weight k. We follow the
heuristic [4, 19] prescribed by random matrix theory, verified by the large scale computation of
central values of L-functions twisted by a quadratic character over Q; see also further work by
Watkins [44]. In this theory, low-lying zeros of L-functions are related to values of characteristic
polynomials of random matrices of SO(2m) and we deduce

Prob[L(f, 1/2, χD) = 0] ∼ Cf2λ(D,f) (log |D|)3/8

|D|(k−1)/4
(4.3)

for a constant Cf . Here 2λ(D,f) is a multiplicative function that increases with the number of
prime divisors of D and depends on the arithmetic and geometric nature of f . We assume, too,
that for some constant bf , we have 2λ(D,f) ≈ (logD)bf on average. For example, Delaunay–
Watkins [7] for the case of an elliptic curve E (so F = Q and k = 2) predict the exponent

bE where b′E = 1,
√

2
2 ,

1
3 ,
√

2
2 −

1
3 depending on properties of the mod 2 Galois representations

occurring for elliptic curves in the isogeny class of E and, roughly speaking, define 2λ(D,f) to
be the product of the Tamagawa numbers gp for p | D. A further refinement could be achieved
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by considering 2λ(D,f) to be related to the power of 2 that divides the coefficient c|D|(g) of the
half-integer weight form that corresponds to f as in Conjecture 2.8 over Q when this conjecture
is a theorem. To find the total number of vanishings, we sum the probability in (4.3) over all
discriminants up to X.

In the setting of Hilbert modular forms we arrive at a formula in an identical way. As far as
we can tell, the random matrix theory arguments do not see the field over which the Hilbert
modular form is defined; they only care about the L-function and its functional equation. It
is reasonable then to suppose that we have

Prob[L(f, 1/2, χD) = 0] ∼ Cf2λF (D,f) (log |N(D)|)An

|D|(k−1)/4
(4.4)

in analogy with (4.3), where An is a constant that depends only on the degree of the field
(arising from the normalization of m in SO(2m); A1 = 3

8 ) and 2λF (D,f) is a multiplicative
function that increases with the number of primes in ZF dividing the ideal (D). For
Conjecture 1.3, we suppose that 2λF (D,f) for D ∈ D(ZF ) is, for some bf , on average roughly
of size (log N(D))bf and so we have

Nf (ZF ;X) ∼
∑

D∈D(ZF ;X)

2λF (D,f) (log |N(D)|)An

|N(D)|(k−1)/4

∼
∑

D∈D(ZF ;X)

(log |N(D)|)bf (log |N(D)|)An

|N(D)|(k−1)/4
∼ Cf X(1−(k−1)/4)(logX)bf+An .

For example, if λF (D, f) = ωF (D), we have bf = 1: the congruent number curve for F = Q is
an example where λQ(D, f) = ω(D).

Now consider the sum ∑
D∈D(Z;X)

2λF (D,f) (log |N(D)|)An

|N(D)|(k−1)/4
, (4.5)

as required by Conjecture 1.5. Now we must consider λF (D) with D ∈ Z. Let eF be the
expected number of distinct primes p in ZF dividing (p) for p ∈ Z prime. For example, for F
quadratic we have eF = 2( 1

2 ) + 1( 1
2 ) = 3

2 , and for F of degree n with Gal(F/Q) ∼= Sn, we have

eF = 1 + 1
2 + . . .+ 1/n is the nth harmonic number. Then 2λF (D,f) ∼ 2eFλQ(D,f) ≈ log(D)bf eF

where the bf is as in the beginning of this section. Substituting in this estimate, and using
that N(D) = Dn for D ∈ Z, we are led to conjecture that

Nf (Z;X) ∼ Cf,ZX(1−n(k−1)/4)(logX)bf eF +An ,

as predicted by Conjecture 1.5, with bf,Z = bf eF .

5. Computations

In this section we describe the results of the computations resulting from our implementation
of the algorithms in § 3. When describing a Hilbert modular form we use the labelling found
in the LMFDB [9]. For example, the label 2.2.5.1-[2,4]-37.1-b means the form over the
field F with label 2.2.5.1 (‘degree 2 with 2 real places of discriminant 5 numbered 1’, that
is, F = Q(

√
5)) with weight k = (2, 4), level norm 31 and ideal numbered 1, and isogeny class

b. If k = (2, . . . , 2) is parallel weight 2, we will suppress it and write simply 2.2.5.1-31.1-a,
for example.
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Verification

To make sure that we got the statement of Conjecture 2.8 exactly correct in the cases we
care about, we computationally verified the statement as written by comparing the central
values we get by computing them directly using lcalc [31] and by using the coefficients
of the theta series computed with the algorithms described below. Consider the ratio
D/3 · L(f, 1

2 , χD)/L(f, 1
2 , χ−3) where D ∈ Z. By Conjecture 2.8, this ratio should be the

square of an integer, namely the square of the ratio of the corresponding coefficients of the
associated half-integral modular form. For the forms 2.2.5.1-31.1-a and 2.2.13.1-4.1-a,
we checked the twists D = −3,−7,−11,−19,−23,−43.

We also verified for the form 2.2.5.1-31.1-a and all |N(D)| < 10 000 that the vanishing of
c|D| matched the vanishing of L(E, 1, χD) with E as in (3.7) using Magma. (Similar verification
was performed by Sirolli [38].)

Overview of examples

A Hilbert modular form f over F is a base change (BC) if there exists a proper subfield F ′ ( F
and a Hilbert modular form f ′ over F ′ of some weight and level such that the base change of
f ′ (when it exists) to F is equal to f (up to quadratic twist).

For each of the examples below, we tabulated data related to vanishings of central values of
twists and data related to the distributions of values of coefficients:

(1) F quadratic, k = 2 (2.2.5.1-31.1-a, neither CM nor BC; 2.2.8.1-9.1-a, BC but not
CM; 2.2.24.1-1.1-a, BC and CM);

(2) F = Q(
√

5), k = 4 (2.2.5.1-[4,4]-11.1-a, neither BC nor CM); and
(3) F cubic, k = 2 (3.3.49.1-41.1-a, neither BC nor CM).

(We did not collect enough data for a BC and CM form; a potential candidate is the form
2.2.24.1-1.1-a.)

A first example

We dedicate particular attention to the data related to the form 2.2.5.1-31.1-a which we
gave as an example at the end of § 3. In Table 1, we give some timings to provide some
idea of how long our computations of this example took and also to provide data related to
Conjectures 1.3 and 1.5. We study the vanishings Nf (ZF ;X) and Nf (Z;X) as defined in (1.2)
and (1.4). See also Figure 1 for a graphical representation of these data as well as some data
related to the distributions of the Fourier coefficients of the Shimura lift of f .

Because the power bf of logX is still uncertain, we appealed to another prediction made by
random matrix theory (RMT): for a prime q - N, we define

Table 1. Statistics for the Hilbert modular form 2.2.5.1-31.1-a over Q(
√
5).

X Time #D(ZF ;X) Nf (ZF ;X) #D(Z;X) Nf (Z;X)

102 0.07 s 3 0
103 0.4 s 41 0
104 5 s 439 41
105 1 m 40 s 4481 397
106 47 m 44 865 3173
107 46 h 448 667 24 748 387 50
10 · 107 4 486 620 183 100 1229 120
15 · 107 1.5 y 6 729 969 259 525 1509 141
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Figure 1. The top figure is Nf (ZF , X)/(X3/4(logX)ef ) for the form 2.2.5.1-31.1-a and for various
powers of log. The powers of log are ef = 11

8
(shown in black), ef = 41

24
(shown in green) and ef = 25

12

(shown in red). The powers of log were determined as follows: ef = 11
8

is the prediction analogous
to the one made by Delaunay–Watkins for curves with full 2-torsion over Q but over F ; ef = 25

12
is the

least-squares fit of the data and ef = 41
24

comes from fitting the data to the computation of vanishings
in a slice (see Remark 3.5) and comparing it with the vanishings up to X. The bottom figure is the
distribution of the values of the coefficients c|D|(g) that corresponds to f as in Conjecture 2.8, for
N(D) < 2 · 107.

Nf (ZF , q,±1;X) = #

{
D ∈ D(ZF ;X) : χD(N) = (−1)n wf and L(f, 1/2, χD) = 0

and

(
D

q

)
= ±1

}
as well as

Rq(f ;X) =
Nf (ZF , q,+1;X)

Nf (ZF , q,−1;X)
and Rq(f) = lim

X→∞
Rq(f ;X). (5.1)

Then one expects that the limit Rq(f) exists [4, Conjecture 2] and

Rq(f) =

√
Nq + 1− aq
Nq + 1 + aq

.
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In Table 2, we computed the ratios (5.1) for several primes; the agreement is good, which gives
a general indication that the predictions of RMT are relevant in this context.

Remark 5.2. We did one extra experiment with this example by taking a slice of coefficients
farther out for the example . In order to do this efficiently, we took a ‘trace slice’, not a ‘norm
slice’; according to Remark 3.5, we expect qualitatively the same behavior, but potentially a
different constant. We computed vanishing statistics for all negative fundamental discriminants
D with

3
√

109 < |Tr(D)| 6 3
√

109 + 106

(here γF = 3 for F = Q(
√

5)); according to Remark 3.5, this corresponds to the range with

109 < |N(D)| 6 109 + 106

up to a constant factor. We find that there are 1761 vanishings out of 75 688 for twists over
ZF and 0 vanishings out of 3 for twists over Z.

We also computed the ratios (5.1) inside this slice: we also found weak agreement, for
example,

Nf (ZF ; q; +1; 109 + 106)−Nf (ZF ; q; +1; 109)

Nf (ZF ; q;−1; 109 + 106)−Nf (ZF ; q;−1; 109)
=

822

536
= 1.533 ≈ 1.414

for N(q) = 5, and similarly for N(q) = 9, 11, 11 we found 625
877 = 0.713 ≈ 0.816, 609

874 = 0.697 ≈
0.707, and 903

597 = 1.513 ≈ 1.414.

Vanishings

We mention further experimental results related to vanishings. In Figures 1–4 we provide a
graphical representation of the ratio Nf (ZF , X)/(X3/4(logX)11/8) for a variety of Hilbert
modular forms of weight 2. These plots all qualitatively get flat at about the same rate,
suggesting to us that they are obeying the same qualitative law, the law from Conjecture 1.3.
In Figure 5 we provide a graphical representation of Nf (ZF , X)/(X1/4(logX)11/8) for a form
of weight 4, as well as some data related to the distribution of the Fourier coefficients of the
Shimura lift of f .

Our experiments provide convincing evidence for Conjecture 1.3, but cannot help us find the
power of log despite having a massive amount of data; by comparison, we can provide almost
no evidence for Conjecture 1.5 since we collected only a tiny amount of data. On the other
hand, the simple heuristics we provided in § 4, assuming that Conjecture 1.3 is correct, give
strong evidence for Conjecture 1.5.

Table 2. Congruence ratios for 2.2.5.1-31.1-a over Q(
√
5).

Nq Rq(f ; 2 · 107)
√

Nq+1−aq

Nq+1+aq

5 20 925/14 986 = 1.396 1.414
9 18 237/22 481 = 0.811 0.817

11 17 293/24 674 = 0.701 0.707
11 24 899/17 140 = 1.453 1.414
19 19 955/24 802 = 0.805 0.817
19 24 847/20 015 = 1.241 1.225
29 23 955/22 424 = 1.068 1.069
29 24 040/22 294 = 1.078 1.069
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Figure 2. The figure on the left shows #Nf (ZF , X)/(X3/4(logX)11/8) for the form 2.2.8.1-9.1-a

and the figure on the right shows the distribution of the values of the coefficients c|D|(g) that correspond
to f as in Conjecture 2.8.
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Figure 3. The figure on the left shows #Nf (ZF , X)/(X3/4(logX)11/8) for the form 2.2.24.1-1.1-a

and the figure on the right shows the distribution of the values of the coefficients c|D|(g) that correspond
to f as in Conjecture 2.8.
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Figure 4. The figure on the left shows #Nf (ZF , X)/(X3/4(logX)11/8) for the form 3.3.49.1-41.1-a

and the figure on the right shows the distribution of the values of the coefficients c|D|(g) that correspond
to f as in Conjecture 2.8.
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Figure 5. The figure on the left shows #Nf (ZF , X)/(X1/4(logX)11/8) for the form
2.2.5.1-[4,4]-11.1-a and the figure on the right shows and the distribution of the values of the
coefficients c|D|(g) that correspond to f as in Conjecture 2.8.

Distribution of coefficients

We computed and stored the coefficients of the Shimura lifts of the examples mentioned above
for two reasons. First, while the data related to vanishings discussed in the previous section
grows on the order of X3/4, the number of coefficients grows on the order of X. So, we
automatically have more data at our disposal to compare with the predictions of random
matrix theory [4, 5]. Second, the distributions of Fourier coefficients of modular forms of even
integer weight are related to the Sato–Tate conjecture; given a modular form f the distribution
of its Fourier coefficients depends on, for example, whether or not the modular form is CM. The
distributions of the Fourier coefficients of the half-integral weight forms mentioned above are
also plotted in Figures 1–5 and they all exhibit qualitatively the same behavior, independent
of whether or not the form whose Shimura lift we are considering is CM or not.

The data we compute are consistent with the random matrix theory predictions as described
in [5] and the distributions we compute match the predictions well.

6. Remaining questions

This paper just scratches the surface of this topic, and many questions remain.
(1) What can be said about twists over a totally real field with other signatures? In

particular, are the asymptotics the same for discriminants D such that F (
√
D) is of mixed

signature? (Such extensions are a genuinely new phenomenon over F 6= Q.)
(2) Do the same asymptotics apply when the narrow class number of F is bigger than 1, or

does the class group pose an obstruction?
(3) What happens when the modular form f has coefficients in a field K larger than Q?

For weight k = 2, such a form corresponds to an isogeny class of abelian varieties of GL2-type
defined over F . More care must be taken in the discretization step in this situation, since it
must be performed with respect to the ring of integers of K embedded as a lattice.
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10. L. Dembélé and J. Voight, ‘Explicit methods for Hilbert modular forms’, Elliptic curves, Hilbert modular
forms and Galois deformations (Birkhäuser, Basel, 2013) 135–198.
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