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We study the arrest of three-dimensional flow of wet granular matter subject to
a sinusoidal external force and a gravitational field confining the flow in the
vertical direction. The minimal strength of the external force that is required to
keep the system in motion, i.e. the critical force, is determined by considering the
balance of injected and dissipated power. This provides a prediction whose quality
is demonstrated by a data collapse for an extensive set of event-driven molecular-
dynamics simulations where we varied the system size, particle number, the energy
dissipated upon rupturing capillary bridges, and the bridge length at which rupture
occurs. The same approach also works for systems that are kept at a fixed density
by confining walls. In both cases, this universal method provides the critical force
irrespective of the flow profile, and without specifying the hydrodynamic equations.
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1. Introduction
Sudden arrest of granular flows is a challenge to the theoretical description of

granular flows in a hydrodynamic setting (Jaeger, Nagel & Behringer 1996; Kadanoff
1999; Silbert et al. 2001; Aranson & Tsimring 2006; Jop, Forterre & Pouliquen
2006; Borzsonyi & Ecke 2007; Forterre & Pouliquen 2008; Luding 2009; Schall &
van Hecke 2010; Slotterback et al. 2012), as well as an important problem in the
engineering sciences (GDR MiDi 2004). Its modelling involves two challenges: (a)
appropriately incorporating the role of dissipation arising from the particle interactions
into the framework of the balance equations underlying hydrodynamic transport
equations; and (b) addressing the roles of shear stresses, of the spatial distribution
of stress, and of yield stress in systems where the flow is spatially anisotropic.

Recent studies (Utter & Behringer 2008; Berardi et al. 2010; van Hecke 2010;
Tordesillas et al. 2011) of granular systems with purely repulsive interactions put
severe constraints on hydrodynamic descriptions of dense flows by pointing out a lack
of scale separation of microscopic and relevant hydrodynamic time and length scales.
Among other problems, this gives rise to a severe dependence of the effective material
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properties on the preparation history (Lois et al. 2009). In contrast, hydrodynamic
and continuum-mechanics considerations appear to provide a good description for
granular systems where the hard-core collisions with restitution are augmented by
(reversible) short-ranged attraction between particles (Trappe et al. 2001; Rognon
et al. 2006, 2008). Arguably this is due to the separation of connectivity and rigidity
percolation in response to attractive interactions (Lois, Blawzdziewicz & O’Hern
2007, 2008). This idealization of the particle interactions (Pitois, Moucheront &
Chateau 2000) applies as long as high-impact-velocity collisions with high capillary
numbers dominate the dynamics (see Kantak, Hrenya & Davis 2009; Donahue, Hrenya
& Davis 2010a for recent applications). On the other hand, recent experimental (Liao
& Hsiau 2010; Zhang et al. 2010; Remy, Khinast & Glasser 2012; Slotterback et al.
2012) and numerical (Remy et al. 2012) work on slowly moving shear flow in dense
granular systems clearly underlines the important impact of dissipation due to the
hysteretic formation and breaking of capillary bridges. Rather than accounting for the
finite restitution in collisions and assuming reversible attractive forces, the present
work therefore takes a complementary point of view: we explore slow flows in wet
systems where dissipation is arising solely from the hysteretic nature of the capillary
interaction between the wetting liquid and the particles, i.e. it is due to the formation
and rupturing of capillary bridges between particles (Herminghaus 2005; Mitarai &
Nori 2006). The hard-core collisions are elastic.

Shear forces that drive the flow can be modelled in various forms. Experimentally
studying shear forces in granular systems can be done, for instance, by constructing
two counter-rotating cylindrical walls (see Liao & Hsiau 2010 and references therein),
by constructing a specialized shear cell (Ren, Dijksman & Behringer 2011), or by
exploring a flow down an inclined plane (Quartier et al. 2000; Andreotti & Douady
2001; Andreotti, Daerr & Douady 2002; Rahbari et al. 2009). Moreover, in numerical
models it is convenient to induce shear flow by applying a cosine force field (Schulz,
Schulz & Herminghaus 2003; Herminghaus 2005; Roeller, Vollmer & Herminghaus
2009; Rahbari et al. 2010). Similarly to the method of images, this may be used to
mimic zero flow velocity at the positions envisioned for the walls.

Here, we will focus on the arrest of flow when the force driving the flow falls below
a threshold value Fex. Considerations based on a system of sheared disks at a fixed
density (Rahbari et al. 2010) suggest that the critical force, Fex, results from the power
balance between the energy-injection rate resulting from particle motion in the external
force field, and the dissipation rate accounting for the rupture of capillary bridges
between the particles.

Surprisingly, we show in the following that the same approach also describes the
arrest of flow in a three-dimensional system with constant pressure. The motion in the
third dimension is constrained by a hard wall at the bottom and a gravitational field in
the vertical direction (figure 1a). For external driving forces close to Fex all particles
accumulate at the bottom of the cell such that the packing density always lies slightly
above random close packing.

This finding is quite remarkable since the setting of constant density (Rahbari et al.
2010) fundamentally differs from that of constant pressure: at high packing fraction,
the constraint of constant density requires cooperative large-scale rearrangements
when two particles pass each other. In contrast the constraint of constant pressure
allows particles to pass each other with only local rearrangements. In spite of this
considerable difference, the arrest of flow in both settings is obtained by an informed
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FIGURE 1. (Colour online) (a) Sketch of a system of width Lx = L and length Ly = 2L with
periodic boundary conditions in the two lateral directions and elastically reflecting top and
bottom plates. The space-dependent cosine-shaped force field is indicated by the vertical band
and by arrows. Additionally, a gravitational force, g, is acting downwards. (b) A snapshot of
a simulation of 2.15 × 105 monodisperse spheres of diameter d that interact via a hysteretic
square-well potential (see § 2.1). The cosine-shaped shear force field, Fs(x), is sketched on
top of the figure. The colour of each particle indicates its individual kinetic energy according
to the colour bar at the bottom left. The system size is L = 100 d and H = 12.5 d, and the
filling height is h= 8.8 d for a shear force of amplitude Fsmax = 40 Ecb/L, i.e. F̂smax = 0.15.

inspection of the global energy budget. We argue that this approach hence provides a
versatile, universal method to study the arrest of granular flows.

Our paper is organized as follows. In § 2 we describe the system, our numerical
approach, and the dimensionless units adopted for modelling. Subsequently, in § 3 we
first provide a two-dimensional discussion of the power injected into the systems
by the external field, and the dissipated power due to the breaking of capillary
bridges and work against gravity. This power balance provides a prediction for the
critical force Fex. In § 4 the predicted parameter dependence of Fex is compared to the
numerical findings. Based on three scalar constants we describe the dependence of the
stability boundary in the four-dimensional parameter space spanned by the system size
L, the particle number N, the energy Ecb dissipated upon rupturing capillary bridges,
and the critical bridge length scb where rupture occurs. (Here and in the following
the subscript cb refers to capillary bridge.) The values of the three constants are
interpreted and derived from the model in § 5. In § 6 we augment the two-dimensional
model by flow features reflecting the vertical extent of the bed in order to calculate the
numerical values of these constants.

2. The model
The system is confined in a rectangular cuboid of size L × 2L × H with periodic

boundary conditions in the x- and y-directions, and solid, reflecting walls in the
z-direction. This box contains N particles whose motion is confined in the z-direction
by a gravitational field of uniform acceleration, g = −gẑ, where ẑ is the unit vector
along the z-axis (see figure 1). For the shear flows studied in the present work particles
never touch the upper wall of the container due to the gravitational confinement.

In the following ways this setting is fundamentally different from that of the two-
dimensional flows considered by Rahbari et al. (2010).

(i) Rahbari et al. (2010) consider a flow at fixed density close to random close
packing. In order to maintain constant density, particles passing each other in the
flow require cooperative large-scale rearrangements of large portions of the system.
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This is costly energetically, because it is accompanied by the breaking of a large
number of capillary bridges.

(ii) Conversely, in gravity-confined granular beds, particles can pass each other via a
slight, local expansion of the bed in the vertical direction. Only a few capillary
bridges must be ruptured in the resulting fixed-pressure setting, even though the
density of the bed is always very close to random close packing.

2.1. Particle interactions
In the present study we consider monodisperse spheres of diameter d, in order
to suppress any additional dynamics arising from different particle sizes. In fact,
polydisperse beads, which are subject to small shearing forces, segregate according to
their size (Schulz et al. 2003).

The dynamics in the simulation is calculated using a standard event-driven
molecular-dynamics method which has been described in detail by Fingerle et al.
(2008), Huang, Roeller & Herminghaus (2009), Roeller et al. (2009), Ulrich et al.
(2009a,b) and Roeller (2010). For the sake of a self-contained exposition we only
briefly summarize the particle interactions. Following Herminghaus (2005) the effect
of particle adhesion due to the capillary bridges is modelled as follows.

(i) Capillary interaction gives rise to pair forces between particles only.
(ii) Unless particles are connected by a capillary bridge they feel no force when they

approach each other.
(iii) They collide elastically, and upon collision a capillary bridge is formed

instantaneously. When the particle separate, this bridge gives rise to an attractive
force which is modelled by placing the particle into a potential well with a depth
Ecb, and a finite width scb.

(iv) The liquid bridge ruptures at the critical rupture separation, scb. A rupture event
is modelled by removing the potential well. Consequentially the particles stop
exerting a force on each other, until they touch once again.

In this manner the capillary bridge energy, Ecb, is dissipated whenever a capillary
bridge is removed (i.e. ruptures) after a collision. Particle collisions, without
bridge rupture, do not dissipate energy. They can, however, thermalize the particle
velocities by redistributing kinetic energy from the ordered centre-of-mass motion into
disordered motion. Henceforth, we shall refer to this as each particle’s thermal degrees
of freedom.

Work focusing on individual collisions (Davis, Rager & Good 2002; Antonyuk et al.
2009; Donahue et al. 2010a,b, 2012a,b; Gollwitzer et al. 2012) reports a multitude
of features of particle collisions involving capillary interactions that cannot fully be
captured by this model. On the other hand, the positions of phase boundaries of wet
granular fluids appear to be universal in the sense that they only depend on Ecb and
scb, and not on other details of the particle interaction (Huang et al. 2009). For
computational convenience all simulations shown in the present paper therefore adopt
a hysteretic square-well potential, i.e. we use an event-driven algorithm where the
potential takes the form of a square-well with hysteresis as outlined in (i)–(iv).

2.2. Dimensionless units
Masses are measured in units of the particle mass, m, distances in units of the
particle diameter, d, and the time unit is fixed by measuring forces in terms of mg.
Non-dimensionalized quantities are denoted by a hat. Unless stated otherwise, the
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Arrest of the flow of wet granular matter 411

system size is L̂× 2L̂× Ĥ = 60× 120× 7.5, and the number of monodisperse particles
is 4.39 × 104, resulting in a filling height of ĥ = 5.0. Furthermore, the capillary
interaction gives Êcb = 3/8 and ŝcb = 1/16.

2.3. Shear flow and arrest
A shear flow is induced by applying a space-dependent external force field

Fs(x)= Fs(x) ŷ with Fs(x)= Fsmax cos
2πx

L
(2.1)

to the system (Hoover 1983; Schulz et al. 2003; Schulz & Schulz 2006; Rahbari
et al. 2009, 2010), which accelerates particles along the ŷ-direction. The particles
are initially homogeneously distributed within the system with a Gaussian velocity
distribution of mean granular temperature Tg/Ecb = 40.0.

For external forces with an amplitude, Fsmax, slightly larger than the critical forcing,
Fex, the system approaches a fluid flow whose local centre-of-mass velocity follows
the external field. (The kinetic energy of states above the flow threshold gradually
grows. Eventually, for time scales much larger than those studied here, this can lead
to flow instabilities (see Roeller et al. 2009).) In figure 1(b) we illustrate such a
system by visualizing a flow in a larger simulation box, where L̂ = 100 and Ĥ = 12.5,
accommodating a greater filling height of ĥ ' 8.8, and an external force only 11%
above Fex. In that situation shear bands form such that the capillary bridges in the
region around Lx/4 and 3Lx/4 are ruptured, while in the other parts the network of
capillary bridges evolves only slowly. For shear forces smaller than Fex the system
eventually arrests in a solid state with a frozen network of nearest neighbours.

In passing we note that this arrest of flow is conceptually different from those
jamming transitions where crowding and hard-core interactions prevent particles from
passing each other, even at arbitrarily strong applied shear forces (Cates et al. 1998;
Trappe et al. 2001; O’Hern et al. 2003; Drocco et al. 2005; Bi et al. 2011). This
form of jamming is prevented here because the system can expand in the vertical
direction where it is only bounded by gravity (see, for example Valverde, Quintanilla
& Castellanos 2004 and references therein). Furthermore, the transition is also distinct
from those observed in earlier studies on cohesive granular materials: we focus on
the role of dissipation due to the hysteretic nature of capillary bridge ruptures, while
previous studies (Trappe et al. 2001; Rognon et al. 2006, 2008) address conservative
attractive forces. They implemented dissipation via grain friction and a restitution
coefficient smaller than one (Rognon et al. 2006, 2008), or indirectly by treating the
suspending fluid of attractive colloidal particles as an inert background (Trappe et al.
2001).

2.4. Measuring Fex

The kinetic energy, Ey, of motion parallel to the driving shear force will serve as the
order parameter to distinguish the dynamics. Rahbari et al. (2010) used the amplitude
of the velocity profile in the direction of the external field (i.e. the amplitude of the
velocity response in reaction to the applied force field, Fsmax) as an order parameter.
This has advantages when following the hysteresis loop of the response upon slowly
decreasing and subsequently increasing Fsmax. In the present study where we focus on
the arrest of flow only, the kinetic energy, Ey, is a numerically stable and more easily
accessible order parameter.
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FIGURE 2. (Colour online) Time evolution of the kinetic energy, Êy, of motion parallel to Fs

(upper set of lines), and that in transverse direction, Êx (lower set of lines) for a system of size
L̂ = 50 driven by shear forces with amplitude F̂smax ' 0.235 (dotted lines) and 0.245 (solid
lines), respectively. Initially all curves approximately follow the dynamics of free cooling
(dashed line, see Ulrich et al. 2009b for the derivation) until the kinetic energy reaches values
of the order of Ecb. Subsequently, the applied field is too weak to support sustained flow, and
one encounters arrest at finite times into a state with no system-spanning flow (dotted line).
For larger amplitudes of the force, the field injects a sufficient amount of energy into the
system to permit sustained motion (solid lines). They eventually enter a state where the flow
shows a rich time-dependent dynamics (cf. Roeller et al. 2009).

In figure 2 its time evolution is shown together with the kinetic energy, Ex, of
the motion transverse to the external field. When started in a state with high kinetic
energy, the fluid first cools down in a manner closely reminiscent of free cooling
(Ulrich et al. 2009a,b). Starting at t̂ ' 10 it has cooled so far that the acceleration due
to the external field becomes noticeable over the initial kinetic energy. Depending on
whether the external field is stronger or weaker than a sharp critical value, F̂ex, the
fluid either gains sufficient energy to remain in the fluid state forever, or it settles into
the arrested state. The phase boundary, Fex, is calculated as the mean value between
the neighbouring values of shear forces, F̂smax, which approach different final states.
For the data shown in figure 2 it is F̂ex ' 0.240.

The phase boundary hence corresponds to the smallest external force that still leads
to sustained shear flow. We demonstrate in the following that the flow at this threshold
corresponds to motion in a liquid state where the energy injected by the external field
is exactly balanced by dissipation due to rupture of capillary bridges.

3. Fluidization point: two-dimensional model
In this section we discuss the power balance of the flow. Energy is injected into

the kinetic energy of the particles due to their motion in the external force field.
In a steady state this power is balanced by the energy dissipation rate due to the
inelastic particle collisions. For external forces close to Fex the granular temperature is
small. Therefore, effects due to the thermal motion may be neglected, and the energy
dissipation rate is dominated by the rupture of capillary bridges when particles pass
each other in the flow field.
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For all investigated systems the flow remains translationally invariant in the y-
direction, in accordance with the symmetry of the forcing. Moreover, the density of
the liquid cannot be distinguished from the random close packing density, φrcp, and
the height of the layer is spatially uniform. Consequently, the number of particles,
n(x) dx, in a thin rectangular cuboid of size 2L× h× dx aligned parallel to the external
field takes a constant value, N/L, where N denotes the number of particles in the
system and L the system size transverse to the flow. This finding is in line with the
expectation that a flow breaking the symmetries of the system or noticeably expanding
the bed would give rise to higher dissipation.

3.1. Energy injection rate
Let vy(x) denote the profile of the flow established when applying the critical force

Fs(x)= Fsmax cos(2πx/L)
!= Fex cos(2πx/L). The input power that is injected by means

of this external force acting on the particles is given by

〈Pforcing〉 =
∫ L

0
vy(x)Fs(x) n(x) dx

= N Fex

L

∫ L

0
vy(x) cos

2πx

L
dx. (3.1)

Up to the factor N Fex this amounts to the leading-order Fourier coefficient of the
expansion of the velocity profile vy(x). Consequently, the injected power takes the
form

〈Pforcing〉 = Cf N1vy Fex (3.2)

where 1vy is the amplitude of the velocity field. Admissible values of Cf lie in
the narrow range 0.5 < Cf < π/4. The constant Cf takes the value 0.5 when the
velocity profile is faithfully approximated by its first even harmonic, i.e. vy(x) '
1vy cos(2π x/L), and Cf = π/4' 0.785 in the other extreme case of plug flow. Hence,
Cf characterizes the shape of the velocity response to the applied external field.

3.2. Energy dissipation rate
For each particle the creeping flow enforces a change of neighbours (in the direction
of the flow) with a rate γ̇ = dvy/dx. Such a displacement results in an energy
dissipation of γ̇ νEcb due to rupturing on average a number ν of capillary bridges
per change of neighbours. The total power dissipated upon rupturing capillary bridges
is thus given by

〈Pbridge〉 =
∫ L

0
n(x)

∣∣∣∣dvy

dx

∣∣∣∣ ν Ecb dx. (3.3)

For every L-periodic function vy(x) with a single local maximum per period, this
integral yields

〈Pbridge〉 = 4 N1vy

L
ν Ecb, (3.4)

provided that n(x)≡ N/L is spatially uniform.
For the present system, rearrangements due to two particles passing each other are

achieved by a slight vertical expansion of the particle bed. Assuming that there is no

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

58
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.587


414 K. Röller, J. Blaschke, S. Herminghaus and J. Vollmer

height preference for the rearrangements, and that there are on average h/2d particles
in the column on top of the pair under consideration, a potential energy of

U = CU
h

2d
mg1h (3.5)

is associated with the expansion. Here, CU accounts for the number of columns to
be lifted, and 1h to the expansion in height. Due to the frequent collisions in the
dense bed the potential energy U is immediately dissipated into thermal degrees of
freedom (i.e. the random component of the particle velocities) of the granular fluid,
and therefore it is not just a one-off investment. Rather, work has to be done against
gravity each time particles move past each other. Multiplying this energy with the
frequency of particle passages, 4N1vy/L (as given by (3.4)), therefore provides a
second contribution to the energy dissipation,

〈Pgrav〉 = 4 N1vy

L
U = 4 N1vy

L
CU
1h

2d
mgh. (3.6)

3.3. Predicting the critical force F̂ex

Assuming that bridge rupture occurs only in the plane parallel to the applied force, the
effect of the third dimension is then only to provide an additional energy sink due to
gravity, 〈Pgrav〉. Therefore, in a steady state the total dissipation rate, due to rupturing
bridges and relaxation of U into thermal degrees of freedom, has to balance the input
power. We hence obtain

〈Pforcing〉 = 〈Pbridge〉 + 〈Pgrav〉
⇔FexL = aEcb + bmgh

⇔ F̂exL̂ = aÊcb + bĥ, (3.7a)

with a= 4ν
Cf

(3.7b)

b= 2CU1ĥ

Cf
. (3.7c)

At this point, it is worth pointing out that the flow’s response to the external force
field is characterized by its amplitude, 1vy, and the parameter, Cf , which characterizes
the shape of the velocity response. The amplitude-dependence, 1vy, cancels in the
power balance. In the worst case, the parameter Cf can vary by no more than a factor
of 1.6. Furthermore, for external forcing close to F̂ex the variability is expected to
be even smaller. Hence, one expects that F̂ex is well-approximated by (3.7) under the
assumption that Cf is a constant of order unity. Thus, it is not necessary to determine
Cf by calculating it from the flow directly.

The coefficient a characterizes the mean number of capillary bridges ruptured in
the flow as particles pass each other. Likewise CU counts how many rows of particles
are lifted when the particles pass each other. As a consequence, b mgh is the average
amount of work done against gravity in the flow per unit time.

We hence predict that F̂ex is inversely proportional to the system size L̂, and that
F̂exL̂ is a linear function of Êcb and the filling height ĥ. In the following section we
compare these predictions to the results of the molecular-dynamics simulations.
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FIGURE 3. (Colour online) The parameter dependence of the critical driving forces, F̂ex,
separating regions that lead to either solid or fluidized behaviour. The symbols indicate
the phase boundary between the two phases, and solid lines are the theoretical predictions
described in the main text. For most of the data points the numerical error in the phase
boundary is smaller than the size of the symbol. (a–d) The phase boundary between the
solid and the fluidized state upon varying different parameters: (a) system size, L̂, (b) filling
height ĥ, (c) dissipated energy, Êcb, and (d) critical rupture separation, ŝcb. In (e) F̂exL̂/ĥ is
plotted as a function of Êcb/ĥ in order to demonstrated that the data of (b) and (c) are not
compatible with the prediction, (3.7). (f ) A collapse of the data of (b) and (d), when F̂exL̂/ĥ
is plotted as a function ŝcb/ĥ in order to demonstrate that ŝcb and ĥ, rather than Êcb and
ĥ may considered independent parameters to predict F̂exL̂. The method for performing the
simulations is discussed in the text.

4. Comparison to numerical data

In figure 3(a–d) we explore the dependence of F̂ex on the systems size, L, the
filling height, h, the dissipated energy, Ecb, and the rupture length, ŝcb. Plotting F̂ex as
a function of the respective parameters provides sections through the phase diagram:
there is sustained flow for values of F̂s larger than F̂ex and flow is arrested for smaller
external forces.

4.1. Parameter dependence of F̂ex

(a) The system size L̂ was varied whilst keeping the aspect ratio of the container
constant at Ly/Lx = 2. At the same time the average particle number density was kept
constant at φ = 0.43 which means that the number of particles is changing in order
to provide a fixed filling height, ĥ ' 5. As expected from (3.7) the value of F̂exL̂ is
constant. We find that F̂exL̂' 12 for fixed Êcb = 0.375 and ĥ' 5 (figure 3a).

(b) The filling height, ĥ, was varied by changing the number of particles in the
system whilst keeping the geometry of the simulation volume and particle interactions
fixed. The filling height is estimated as the filling height in the solid state when
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assuming random close packing. As predicted by (3.7) the dependence of F̂exL̂ on ĥ
for a fixed Êcb is linear. In the simulations we find

F̂exL̂' 6.0+ 1.2 ĥ (4.1)

for Êcb = 0.375 (figure 3b).
(c) Whilst varying the capillary bridge energy, Ecb, the rupture separation, ŝcb =

1/16, filling height, ĥ' 5, and the system size, L̂= 60, were kept constant. Figure 3(c)
shows the expected linear dependence of F̂exL̂ on Êcb,

F̂exL̂' 24Êcb + 2.8. (4.2)

Central to the assertion of linear dependence is that Cf takes a constant value close to
arrest. The slight deviation from the linear fit for small Êcb expresses a slight increase
of the deviation of the velocity profile from a cosine profile.

(d) The critical rupture separation, scb, was varied for a fixed aspect ratio of width
versus depth of the potential well, i.e. Ecb was varied together with scb at a fixed ratio
of R ≡ Ecb/scb = 6.0. System size and filling height were fixed to L̂ = 60 and ĥ = 5,
respectively. The resulting linear dependence

F̂exL̂' 16 R ŝcb + 6.0 (4.3)

is shown in figure 3(d).

4.2. Consistency checks: effects of the third dimension

Merely finding linear dependences of F̂ex on ĥ, Êcb and ŝcb is not sufficient to show
that (3.7) faithfully describes the arrest of flow. One also has to verify that the linear
functions are mutually consistent for all sections through the phase diagram.

(e) In order to compare (4.1) and (4.2), their respective y-intercepts need to be
expressed in terms of the quantity held constant in (b) and (c). The y-intercept of (4.1)
may be written as 6.0' 16 Êcb given that Êcb = 0.375. Whereas the y-intercept of (4.2)
can be written as 2.8' 0.56 ĥ for ĥ= 5. This gives two linear equations,

F̂exL̂' 16 Êcb + 1.2ĥ according to (4.1), (4.4a)

F̂exL̂' 24 Êcb + 0.56 ĥ according to (4.2), (4.4b)

that must hold simultaneously if (3.7) is an accurate model. Plotting F̂exL̂/ĥ versus
Êcb/ĥ in figure 3(e) shows that this is clearly not the case. Consequentially the data
shown in figure 3(b,c) lie on different straight lines. It is not admissible to interpret
(3.7a) as a linear relation with constant coefficients a and b, and Êcb and ĥ as
independent variables.

(f ) In order to provide a physical interpretation of the origin of this deviation, we
note that the data shown in figures 3(d) and 3(b) are compatible. Equation (4.3) is
commensurate with (4.1) since the latter has a y-intercept of 6.0 = 16 Êcb = 16 Rŝcb

with R = 6.0 and ŝcb = 1/16, and since the y-intercept of (4.3) is 6.0 = 1.2 ĥ with
ĥ= 5.0.

In the following we show that a consistent description of the numerical data can
only be achieved by assuming that a has a weak, linear dependence on ĥ.

Equation (3.7) is consistent with the numerical data when taking into account a
monotonic increase of the number of bridge ruptures for increasing h/scb. After
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4
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FIGURE 4. (Colour online) The solid line shows our theoretical prediction, (5.1) involving
only three free parameters ã, b̃, and χ̃ whose values can also explicitly be calculated. It
provides a master plot incorporating all data shown in the different panels of figure 3. The
dependence of the critical force Fex on the system size, L̂, the filling height, ĥ, the energy
dissipated upon rupturing capillary bridges, Êcb, and the critical rupture separation, ŝcb, is
faithfully described. The data points referring to different system size are so close that they all
lie on top of each other in this representation.

all, swapping events also lead to rupturing bridges along the sides of the vertically
displaced column of particles on top of the considered site.

5. Fluidization point: three-dimensional model and data collapse
The likelihood of rupturing bridges in the vertical direction can be derived from

the disparity between (4.3) and (4.2). They can only be consistent if the y-intercept
of (4.3) comprises a contribution proportional to R, and if the slopes are adjusted
accordingly, i.e. by decomposing the y-intercept as 6.0 = 1.2 ĥ ' (0.55 + R/10) ĥ with
ĥ= 5 and R= 6.0. Observing that R≡ Ecb/scb this provides an improved prediction

F̂exL̂'
(

1+ χ̃ ĥ

ŝcb

)
ãÊcb + b̃ĥ. (5.1a)

The agreement of all of our numerical data with this prediction is demonstrated in
figure 4. It shows a master plot where all data shown in figure 3 collapse on a single
line, (5.1a) with coefficients

ã' 16 bridge ruptures, (5.1b)

b̃' 0.55 flow dilation, (5.1c)
χ̃ ' 1/160 out-of-plane bridge ruptures. (5.1d)

A priori, it is not clear whether these values comply with their physical interpretation.
As a final step of the data analysis, we check our findings by estimating the expected
values of the parameters ã, b̃ and χ̃ .
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5.1. Determination of ã
In view of (3.7b) the parameter a is related to the number, ν, of capillary bridge
ruptures in every particle exchange

a= 4 ν
Cf
' 8ν, (5.2)

where we used the estimate Cf ' 0.5, as argued upon introducing this constant in (3.2).
Moreover, in order to take into account the correction term for the height dependence
introduced in (5.1) another factor 1 + ĥ/160ŝcb must also be considered. For the
standard choice of parameters ĥ= 5 and ŝcb = 1/16 we hence find

ã= 4ν
Cf

(
1+ ĥ

160ŝcb

)−1

' 16
3
ν. (5.3)

Finally, in a granular bed that is expanding to allow particles to pass each other the
number ν of rupture events must be larger than 1, but still small. For ν = 3 we hence
recover the value ã= 16 reported in (5.1b).

5.2. Determination of b̃
In order to see that the value for b ' 0.55 is also reasonable, we observe that
subsequent rows of spheres in a close-packed structure are separated by a height
distance ĥcp = √2/3 ' 0.816 and that the saddle that has to be passed to roll from
one minimum to a nearby minimum is at height ĥsaddle =

√
3/2' 0.866. The minimum

expansion in height to move over the potential landscape set up by the layers below is
therefore of the order of 1ĥ' ĥsaddle − ĥcp ' 0.05. Potential wells in a disordered, only
slightly expanded random packing, will still be of the same order of magnitude. Based
on this estimate, on Cf ' 0.5, and on (3.7c) the number of columns, CU, lifted in a
swapping event amounts to

CU ' 0.55
Cf

21ĥ
' 2.8. (5.4)

Lifting a small number of columns gives plausibility to b' 0.55.

5.3. Determination of χ̃
In order to gain insight into the order of magnitude of χ̃ we note that the lifted
column needs to rupture bonds all along its walls. Hence, ν is not merely dependent
on its cross-section, as implied by assuming ν to be independent of ĥ. The number
of bonds that are broken is then expected to scale linearly with column height and
inversely proportional to ŝcb. After all, bonds are allowed to stretch to a finite length
ŝcb, and the larger ŝcb the lower the likelihood that the dilation requires a given bond
(along the vertical walls of the pile of particles displaced vertically) to be broken.
This leads to an additional number χ̃νĥ/ŝcb of bonds broken per column. As we saw
above, it increases the number of bond ruptures by ∼50 % which seems reasonable
in a system with a packing height of only five layers and a rupture separation,
ŝcb = 1/16 = 0.065 that is larger than the average height displacement, 1h̃ = 0.05,
of the column. After all, in such a situation only pre-stretched bonds are likely to
rupture. Keeping this in mind, the small value of χ̃ may be understood as a result of
incorporating a factor of 1h̃ and a probability of ∼1/4 to encounter a pre-stretched
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bond in a layer of a column that is vertically displaced. In this interpretation the
average number of layers in the column is ĥ/2.

6. Summary and outlook
The present study substantiates the finding that the transition from a fluidized to an

arrested state in wet granular matter arises when the dissipation rate due to the rupture
of capillary bridges in the shear flow can no longer be balanced by the power injection
from the external field. Earlier work (Rahbari et al. 2010) showed that this approach
provides a comprehensive understanding of the transition in settings where the density
is fixed by a confining box. The present work addressed the flow of a bed kept at
constant pressure by confining it in the vertical direction by a gravitational field. Just
above the transition the flow is reminiscent of a slow plastic flow of the bed in the
direction of the applied field: the bed expands only minimally in the vertical direction,
and gravity keeps density, filling height, and pressure to values observed in an arrested
packing. Also, for this gravitationally confined wet granular flow the power balance
provides an accurate prediction, (5.1), of the critical force at which the flow ceases.
This is demonstrated by a master plot, figure 4, showing a collapse of all numerical
data obtained by varying four different characteristics of the system: the system size,
the filling height, as well as the strength and critical rupture separation of capillary
bridges. Our data collapse suggests that the prediction of the flow threshold involves
only three constants characterizing the types of dissipative events:

(i) When the granular flow is confined by gravity, typically only 2–3 capillary
bridges are ruptured upon swapping neighbouring particles moving with slightly
different speed in the direction of the external forcing. This is a striking difference
to wall-bounded flows (Rahbari et al. 2010) where this number diverges when the
density approaches close packing.

(ii) In a gravity-confined granular bed the effortless passing of the particles is
facilitated by a slight expansion of the granular bed where 2–3 columns
of particles are lifted by a small amount to let the particles pass between
neighbouring potential wells arising from the corrugations formed by the layer
below. The associated potential energy is also dissipated.

(iii) With a small probability additional capillary bridges are broken due to the slight
expansions in vertical direction.

The most remarkable finding of our study is that the critical force Fex can be
determined from the forcing alone. No details of the flow’s response are required
to predict whether the flow will arrest. Fex can be calculated without specifying the
hydrodynamic equations of the flow and determining their solution. We therefore
conclude that the approach of balancing the energy input rate (due to the external
force inducing the flow) and the dissipation rate (due the rupture of capillary bridges,
when particles move past each other) provides a powerful framework to study the
arrest of flow in wet granular materials. It provides a universal method to predict the
threshold for the arrest of flow.
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ROGNON, P. G., ROUX, J.-N., NAAÏM, M. & CHEVOIR, F. 2008 Dense flows of cohesive granular

materials. J. Fluid Mech. 596, 21–47.
ROGNON, P. G., ROUX, J.-N., WOLF, D., NAAÏM, M. & CHEVOIR, F. 2006 Rheophysics of
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