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1. Introduction. Let A be a complex Banach algebra with unit e. An element
a ∈ A is called quadratic if it satisfies a2 + λ1a + λ2e = 0 for some scalars λ1 and λ2.

Observe that idempotents and nilpotent elements of order 2 are quadratic elements.
Our main goal in this paper is to study some properties of such elements. See

[1, 2, 3, 4] for concrete applications.

2. Deddens subspaces. Let A be a Banach algebra with a unit e. For any two
invertible elements a1, a2 ∈ A put

Da1,a2

def=
{

x ∈ A : sup
n≥0

∥∥an
1xa−n

2

∥∥ def= cx < ∞
}
.

We call the subspaces Da1,a2 and Da2,a1 the Deddens subspaces. Note that, when a1 =
a2 the notion of Deddens subspace coincides with the notion of Deddens algebra,
introduced in [4].

Our main result in this section is the following theorem.

THEOREM 1. Let A be a Banach algebra with unit e. Let p be any idempotent and q
a nilpotent of order 2, respectively. We have

(a) De+p,e+q = {x ∈ A : px = xq},
(b) De+q,e+p = {x ∈ A : qx = xp}.

Proof. (a) Let us denote Intertw{ p, q} = {x ∈ A : px = xq}. The inclusion
Intertw{ p, q} ⊂ De+p,e+q is obvious. To prove the reverse inclusion De+p,e+q ⊂
Intertw{ p, q}, let x ∈ De+p,e+q be any element. Putting

cn = an
1xa−n

2 (n ≥ 0),

where a1 = e + p, a2 = e + q, we deduce that

‖cn‖ ≤ cx (n ≥ 0). (1)
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We have

cna2 = an
1xa−n

2 a2 = a1
(
an−1

1 xa−n+1
2

) = a1cn−1;

that is

cna2 = a1cn−1 (n ≥ 1). (2)

From (2) we obtain

cnan
2 = an

1c0 (n ≥ 1)

or

cn(e + q)n = (e + p)nc0 = (e + (2n − 1)p)x (n ≥ 1);

that is

cn = (e + (2n − 1)p) x (e − nq) (n ≥ 1).

From this equality, we deduce that

cn − x = (2n − 1)px − nxq − n(2n − 1)pxq, (3)

for all n ≥ 1. By taking the equality (1) into account, it follows from (3) that

‖pxq‖ ≤ ‖cn − x‖
n(2n − 1)

+ ‖px‖
n

+ ‖xq‖
2n − 1

→ 0

as n → ∞. Hence pxq = 0, and therefore

cn − x = (2n − 1)px − nxq.

From this we obtain

‖px‖ ≤ ‖cn − x‖
2n − 1

+ n
2n − 1

‖xq‖ → 0

as n → ∞. Hence px = 0. Therefore cn − x = −nxq, which implies that

‖xq‖ = ‖cn − x‖
n

→ 0 as n → ∞

and so xq = 0. Hence cn − x = 0 (n ≥ 1). In particular c1 = x, so that x =
(e + p) x (e − q). Hence, (e + p) x = x (e + q). Therefore px = xq, which means that
x ∈ Intertw{ p, q}, and so De+p,e+q ⊂ Intertw{ p, q}, which completes the proof of (a).

(b) The proof is very similar to that of (a) and is omitted.

COROLLARY 2. Let A be a complex Banach algebra with unit e. Let p be any
idempotent and q a nilpotent of order 2, respectively. We have

(De+p,e+q ∩ De+q,e+p) ∩ { p}′ = (De+p,e+q ∩ De+q,e+p) ∩ {q}′
.

Here {t}′
stands for the commutant of t.
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Let A be a Banach algebra with the idempotent p and with a unit e. Define the
set Sp as follows:

Sp = {x ∈ A : px (e − p) = 0}.

By analogy with the proof of Theorem 1, we can state directly the following theorem.

THEOREM 3. Let A be a Banach algebra with an idempotent p and with a unit e. Then
De+p,e+p is an algebra and De+p,e+p = Sp; thus the Deddens algebra De+p,e+p coincides
with the algebra Sp.

Proof. It follows from the definition of Deddens subspaces that De+p,e+p is an
algebra. For the second statement of the theorem, it is easy to check that (e + p)−1 =
e − 1

2 p. Therefore

(e + p)n = e + (2n − 1)p (n ≥ 0) (4)

and

(e + p)−n = e +
(

1
2n

− 1
)

p (n ≥ 0). (5)

By setting

cn = (e + p)n x (e + p)−n (n ≥ 0),

where x is any element of A, we obtain

cn(e + p) = (e + p)
[

(e + p)n−1 x
(

e − 1
2

p
)n−1]

= (e + p)cn−1,

for every n ≥ 1, which implies that

cn(e + p)n = (e + p)nc0 (n ≥ 0).

By applying equalities (4), (5) we have

cn = x +
(

1
2n

− 1
)

xp + (2n − 1)px + (2n − 1)
(

1
2n

− 1
)

pxp, (6)

n = 0, 1, 2, . . . . Then, for every x ∈ De+p,e+p, it follows that

0 = lim
n→∞

1

(2n − 1)
( 1

2n − 1
) (cn − x)

= lim
n→∞

(
1

1
2n − 1

px + 1
2n − 1

xp + pxp

)

= pxp − px,
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or equivalently

px(e − p) = 0,

i.e., x ∈ Sp.

Conversely, if x ∈ Sp, then again it is clear from the equality (6) that

‖cn‖ =
∥∥∥∥x +

(
1
2n

− 1
)

xp + 2n − 1
2n

pxp
∥∥∥∥

≤ ‖x‖ + ‖xp‖ + ‖pxp‖
= cx < +∞,

for any n ≥ 0. Hence x ∈ De+p,e+p.

Prior to stating two corollaries of Theorem 3, we require some terminology and
notation.

Let A be a complex Banach algebra with unit e. An element a ∈ A, is said to be a
regular von Neumann element if there exists b ∈ A, such that a = aba.

It is obvious that the invertible elements of A are regular von Neumann elements.
Also, in the special case in whichA = B(H), the algebra of bounded linear operators on
a complex Hilbert space H, all isometries of B(H) are regular von Neumann elements
of B(H).

For any non invertible regular von Neumann element a, define

qa = a(e − ab), pa = ab,

where b ∈ A and a = aba. Clearly q2
a = 0 and p2

a = pa.

COROLLARY 4. LetA be a complex Banach algebra with unit e. ThenDe+pa,e+pa = Spa .

Proof. This follows at once from Theorem 3.

Finally, we give one more result on quadratic elements qa and p⊥
a

def= e − pa.

PROPOSITION 5. Let A be a Banach algebra with unit e. Suppose that x, y, a ∈ A
are elements such that a is a regular element and

xa − ay = qax. (7)

If σ (x) = {0} (that is, x is a quasinilpotent element), then σ (p⊥
a x) = {0}.

Proof. By induction on n, we prove that

( p⊥
a x)n = p⊥

a xn, (8)

for every n ≥ 1. For n = 1, the assertion is obvious. Let n > 1 and let ( p⊥
a x)n−1 =

p⊥
a xn−1. The regularity of element a implies that p⊥

a a = 0. Then by using the condition
(7) we have

( p⊥
a x)n = p⊥

a x( p⊥
a x)n−1 = p⊥

a x p⊥
a xn−1 = p⊥

a x(e − ab)xn−1

= p⊥
a xn − p⊥

a xabxn−1 = p⊥
a xn − p⊥

a (ay + qax)bxn−1

= p⊥
a xn − p⊥

a a( y + p⊥
a x)bxn−1 = p⊥

a xn.

Thus, the equality (8) is proved. From (8) the assertion of the proposition is obvious.
This completes the proof.
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REMARKS (a). We recall that for any two elements x, a of the Banach algebra A, the
well-known “Kleinecke-Shirokov” condition [x, [x, a]] = 0 implies the quasinilpotency
of the commutator [x, a] def= xa − ax. See [5], [6]. In particular, the condition

[x, a] = x (9)

implies that [x, a] is a nilpotent element. It is known that (9) is not a necessary condition
for the nilpotency of [x, a]. The condition (7) of Proposition 5, in particular, gives such
an example. Indeed, the relation(7) implies that (xa − ay)2 = 0. Therefore, when y = x,

(xa − ax)2 = 0, but clearly xa − ax = qax �= x.

(b). It should be mentioned that the statement of the type “ σ (x) = {0} ⇒ σ (ax) =
{0}” is of importance in many problems of Banach algebra theory and operator theory.
The Shulman’s paper [6] is a good reference in this sense. In particular, in [6] the
following question is raised.

QUESTION. Let elements x, a of Banach algebra satisfy the conditions

[x, [x, a]] = 0

and σ (x) = {0} . Is it true that σ (ax) = {0}?

3. Reducing subspaces. Let H be a complex Hilbert space and B(H) the algebra
of bounded linear operators on H.

COROLLARY 6. AlgLatQ = ⋂
E∈LatQ DI+PE ,I+PE , where Q is a subset of B(H), LatQ

the lattice of closed subspaces E of H invariant under Q, PE is the orthogonal projection
of H onto E and AlgLatQ = {T ∈ B(H) : TE ⊆ E for all E ∈ LatQ}.

Proof. This follows at once from Theorem 3.

We recall that a reducing subspace of a bounded linear operator T on H is a
common invariant subspace for T and T∗. It is known that a subspace E ⊂ H is
a reducing subspace for T if and only if TPE = PET, where PE is the orthogonal
projection of H onto E.

Allan and Zemanek proved in [2, Corollary 9] that every quadratic operator on
H has a reducing subspace. Our next theorem describes the reducing subspaces of a
nilpotent operator on a Hilbert space H in terms of CQ classes. We first recall the
definition of the CQ class. Let S be a positive linear operator on a Hilbert space H.
There are positive real numbers m and M and Q in B (H) such that 0 < mI ≤ S ≤ MI
and Q = S−1/2. Then

CQ = {T ∈ B(H) : QTnQ = PHUn|H, n = 1, 2, . . .},
where U is a unitary operator on some Hilbert space K ⊃ H. Note that T ∈ CQ if and
only if T satisfies the condition:

(Sh, h) + 2Re(z(I − S)Th, h) + |z|2((S − 2I)Th, Th) ≥ 0,

for any h ∈ H and z ∈ �, |z| ≤ 1. The classes CQ were defined by Langer. See [7, p. 55].

THEOREM 7. Let N ∈ B(H) be a nilpotent operator. The subspace E ⊂ H is a
reducing subspace of the operator N if and only if E = Tk−1H, for some operator
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T belonging to some class CQ and for some integer k ≥ 2 satisfying Tk = (I + N)T
(I + N)−1.

Proof. The first part of the theorem is obvious. Indeed, if E ⊂ H is a reducing
subspace of N, then PEN = NPE, where PE is the orthogonal projection of H onto
E, and hence, E = PEH, T = PE, Q = I and k = 2.

We now prove the “only part” of the theorem.
From the condition Tk = (I + N)T(I + N)−1 it is easy to see that

Tkn
(I + N) = (I + N)Tkn−1

, (10)

for all n ≥ 1 Since T ∈ CQ, for some Q, then we have that∥∥Tkn∥∥ ≤ ‖Q−1‖2, (11)

and hence, from (10) and (11) by the result of Deddens and Wong [8, Lemma 2] we
assert that Tk = T , see also [4, Lemma 2]. Therefore TN = NT, and hence, Tk−1N =
NTk−1. On the other hand,

T2(k−1) = TkTk−2 = TTk−2 = Tk−1;

that is, Tk−1 is a projection. Tk−1 is an orthogonal projection, by [9], since T ∈ CQ and
so the equality Tk−1N = NTk−1 means that the subspace Tk−1H reduces N; that is, E
reduces N which completes the proof of theorem.

Before passing to the next result, we recall the following definition.

DEFINITION ([10]). The operator T ∈ B(H) is called quasidiagonal if there exists
a non-decreasing sequence { Pn}n≥1 of finite-dimensional orthogonal projections, for
which Pn → I (strongly) and ‖TPn − PnT‖ → 0 as n → ∞.

Herrero [11] defined the notion of module of quasidiagonality:

qd(T) = lim inf
P∈P
P→I

‖TP − PT‖,

where P is an ordered (with respect to natural order) set of all finite-dimensional
orthogonal projections in H. It is known [11] that T is a quasidiagonal operator if and
only if qd(T) = 0. The following theorem was proved by Arora and Sahdev in [12].

THEOREM 8. Let T ∈ B(H), ker T∗ �= {0} and C = inf
‖x‖=1

‖Tx‖ > 0. Then

qd(T) ≥ C.

According to a result of Allan and Zemanek [2, Example 6] there is an operator
R on H, with R2 = 0, but having no finite-dimensional reducing subspace. In the
remainder of this section, as an illustration of Theorem 8, we give an example (see
Example 10 below) of a family {Tα} of operators on a Hilbert space H, with no finite-
dimensional reducing subspace, converging to the nilpotent operator (with the index
of nilpotency2) with finite-dimensional reducing subspace. However, we first prove the
following proposition.

PROPOSITION 9. Let V, W ∈ B(H) be operators such that V is a nonunitary
isometry, VW = WV(i.e., W ∈ {V}′

) and ‖W‖ < 1. Let us consider the operator
NV,W

def= V (I − WVV∗). Then qd(NV,W ) ≥ 1 − ‖W‖.
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Proof. Since ‖W‖ < 1, the operators I − WVV∗ and I − VV∗W ∗ are invertible.
Then we have

ker N∗
V,W = ker(I − VV∗W ∗)V∗ = ker V∗ = (VH)⊥ �= {0}

and

C = inf
‖x‖=1

‖NV,W x‖
= inf

‖x‖=1
‖V (I − WVV∗)x‖

= inf
‖x‖=1

‖(I − WVV∗)x‖

≥ inf
‖x‖=1

‖x‖
‖(I − WVV∗)−1‖

= 1
‖(I − WVV∗)−1‖ > 0.

Hence, the conditions of Theorem 8 are valid for the operator NV,W . Then, by applying
Theorem 8, we have

qd(NV,W ) ≥ 1
‖(I − WVV∗)−1‖

= 1∥∥ ∑
n≥0(WVV∗)n

∥∥
= 1∥∥I + (

∑
n≥1(W nVV∗)

∥∥
= 1∥∥I + (

∑
n≥1 W n)VV∗∥∥

≥ 1∑
n≥0 ‖W‖n

= 1 − ‖W‖,
which completes the proof.

EXAMPLE 10. Let NV,α = V (I − αVV∗), where α is a scalar, |α| < 1 and V ∈ B(H)
is an isometry.

(i) Each of the operators NV,α (|α| < 1) does not have any finite-dimensional
reducing subspace.

(ii) NV,α converges to NV = V (I − VV∗) in the uniform operator topology as
α → 1−.

(iii) NV has a finite-dimensional reducing subspace.

Proof. (i) Indeed, by Proposition 9 qd(NV,α) ≥ 1 − |α|, and hence, by the
definition of the value qd(NV,α), each of the operators NV,α, where |α| < 1, has no
finite-dimensional reducing subspace.

(ii) From the equality

NV,α,= αNV + (1 − α)V
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it follows that NV,α → NV as α → 1− in the uniform operator topology. Evidently,
N2

V = 0.

(iii) For arbitrary fixed 0 �= x ∈ ker V∗ let Ex = span{x, Vx}. Then it is easy
to verify that NV Ex ⊂ Ex and N∗

V Ex ⊂ Ex. Indeed, NV x = V (I − VV∗)x = Vx ∈
Ex, NV Vx = V (I − VV∗)Vx = 0 ∈ Ex, and hence, NV span{x, Vx} ⊂ span{x, Vx},
i.e., NV Ex ⊂ Ex. On the other hand, N∗

V x = (I − VV∗)V∗x = 0 ∈ Ex, N∗
V Vx =

(I − VV∗)V∗Vx = (I − VV∗)x = x ∈ Ex, and so, N∗
V Ex ⊂ Ex. Hence Ex reduces

NV and dim Ex = 2, which completes the proof.

4. Other properties. In this section we collect some other properties of the
operators NV,W (W ∈ {V}′).

PROPOSITION 11. Let α be a scalar and V, W ∈ B(H) operators such that V is an
isometry and W ∈ {V}′

. Then the following statements are true.
(a) r(NV,W ) ≤ r(I − W ), where r(T) stands for the spectral radius of the operator T.

(b) If ‖W‖ < 1, then ker Nn
V,W = ker NV,W and ker N∗n

V,W = ker V∗, for any integer
n ≥ 1.

(c) r(NV,α) = |1 − α|.
(d) ‖NV,α‖ ≥ |1 − α|.
(e) If |α|2 − 2Reα ≥ 0, then ‖NV,α‖ = (|α|2 − 2Reα + 1)

1
2 .

( f ) ω(NV,α) ≤ |α|
2 + |1 − α|, where ω(T) stands for the numerical radius of the

operator T.
(g) If 0 < α < 1, then 1 − α ≤ ω(NV,α) ≤ 1 − α

2 .

(h) If α > 2 is any real number, then r(NV,α) = ω(NV,α) = ‖NV,α‖ = α − 1.

Proof. (a) Since NV,W = WNV + (I − W )V, WV − VW = 0 and NV V = 0, we
have

N2
V,W = [WNV + (I − W )V ]2

= (I − W )WVNV + (I − W )2V2

= (I − W )V [WNV + (I − W )V ]

= (I − W )VNV,W ,

so that N2
V,W = (I − W )VNV,W . After these simple calculations we conclude that

Nn
V,W = (I − W )n−1Vn−1NV,W , (12)

for each n ≥ 1. Since V is an isometry, by the last equality, it follows that r(NV,W ) ≤
r(I − W ).

(b) From (12), it is clear that

N∗n
V,W = (I − VV∗W ∗)(I − W ∗)n−1V∗n, (13)

for each n ≥ 1. The condition ‖W‖ < 1 ensures invertibility of the operators
(I − W )n−1 and (I − VV∗W ∗)(I − W ∗)n−1, so that the equalities (12),(13) apply.

(c) If W = αI, then (12) directly implies that r(NV,α) = |1 − α|.
(c) ⇒ (d).
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(e) In fact, for every x ∈ H, ‖x‖ = 1, we have

‖NV,αx‖2 = ‖V (I − αVV∗)x‖2

= ‖(I − αVV∗)x)‖2

= ((I − αVV∗)x, (I − αVV∗)x)

= ((I − αVV∗ − ᾱVV∗ + |α|2VV∗x), x)

= ((I − (2Reα)VV∗ + |α|2VV∗)x, x)

= 1 + (|α|2 − 2Reα)(VV∗x, x).

Since |α|2 − 2Reα ≥ 0, we obtain ‖NV,α‖ = (|α|2 − 2Reα + 1)
1
2 by taking the

suprema of both sides over all unit vectors x in H.
(f ) It is known [3] that the numerical range of the nilpotent operator NV is a

closed circular disc with center 0 and radius 1
2 . (Note that in the work of Tso and

Wu [13] a more general theorem was proved, describing the numerical range of any
quadratic operator on a complex Hilbert space.) Then, taking into account the equality
NV,α = αNV + (1 − α)V, we get the required inequality.

(c), (f) ⇒ (g).
(h) Since r(NV,α) ≤ ω(NV,α) ≤ ‖NV,α‖, from (c) and (e) follows (h). The proof of

Proposition 11 is completed.

Now we apply the operator NV to estimate the angle between subspaces of a
Hilbert space H. The angle between subspaces E1 ⊂ H and E2 ⊂ H is determined as
follows:

〈E1, E2〉 ∈ [
0, π

2

]
, cos〈E1, E2〉 = sup

{ |(x,y)|
‖x‖‖y‖ : x ∈ E1, y ∈ E2

}
.

From the definition it immediately follows that

cos〈E1, E2〉 = sup

{∥∥PE2 x
∥∥

‖x‖ : x ∈ E1

}
= ∥∥PE2 PE1

∥∥,

sin〈E1, E2〉 = inf

{∥∥(
I − PE2

)
x
∥∥

‖x‖ : x ∈ E1

}
= ∥∥PE1‖E2

∥∥−1
,

where PEi (i = 1, 2) are orthogonal projections of H onto Ei(i = 1, 2) and PE1‖E2 is the
projection onto E1, parallel to E2.

PROPOSITION 12. Let K be an arbitrary subspace of a Hilbert space H and let
V1, V2 ∈ B(H) be isometries. Then

| cos〈R(V1)⊥, K〉 − cos〈R(V2)⊥, K〉| ≤ ∥∥NV1 − NV2

∥∥. (14)

Proof. We use the arguments of the reference [14]. (See also [15].) Indeed,

cos〈R(V2)⊥, K〉 = sup
x∈K

∥∥P(V2H)⊥x
∥∥

‖x‖

= sup
x∈K

∥∥V2P(V2H)⊥x
∥∥

‖x‖
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= sup
x∈K

‖V2(I − V2V∗
2 )x‖

‖x‖

= sup
x∈K

∥∥NV2 x
∥∥

‖x‖

≤ sup
x∈K

∥∥(
NV2 − NV1

)
x
∥∥ + ∥∥NV1 x

∥∥
‖x‖

≤ ∥∥NV1 − NV2

∥∥ + sup
x∈K

∥∥NV1 x
∥∥

‖x‖

= ∥∥NV1 − NV2

∥∥ + sup
x∈K

∥∥V1P(V1H)⊥x
∥∥

‖x‖

= ∥∥NV1 − NV2

∥∥ + sup
x∈K

∥∥P(V1H)⊥x
∥∥

‖x‖
= ∥∥NV1 − NV2

∥∥ + cos〈(V1H)⊥, K〉
= ∥∥NV1 − NV2

∥∥ + cos〈R(V1)⊥, K〉.

Similarly, it can be shown that

cos〈R(V1)⊥, K〉 ≤ ∥∥NV1 − NV2

∥∥ + cos〈R(V2)⊥, K〉.

From these inequalities, we get (14), which completes the proof.
We say that an isometry V ∈ B(H) has a finite defect if dim(VH)⊥ < +∞. Let us

denote by IFD the set of isometries, with finite defects. Put NIFD = {NV : V ∈ IFD},
which is a subset of the set of all finite-dimensional operators in H.

COROLLARY 13. Let V ∈ B(H) be an isometry. Then the following inequalities are
valid:

inf
U∈IFD∩{V}′

cos〈R(U)⊥, R(V )〉 ≤ dist
(
NV ,NIFD∩{V}′

)
≤ 4dist

(
V, IFD ∩ {V}′)

. (15)

Proof. The simple calculations show that∥∥NV1 − NV2

∥∥ ≤ 4‖V1 − V2‖, (16)

for every pair of commuting isometries V1 and V2. In fact,∥∥NV1 − NV2

∥∥ = ‖V1(I − V1V∗
1 ) − V2(I − V2V∗

2 )‖
= ∥∥V1 − V2 + V2

2 V∗
2 − V2

1 V∗
1

∥∥
≤ ‖V1 − V2‖ + ∥∥V2

2 V∗
2 − V2

1 V∗
2 + V2

1 V∗
2 − V2

1 V∗
1

∥∥
≤ ‖V1 − V2‖ + ∥∥(

V2
2 − V2

1

)
V∗

2

∥∥ + ∥∥V2
1 (V∗

2 − V∗
1 )

∥∥
≤ ‖V1 − V2‖ + ‖(V2 − V1)(V2 + V1)‖ + ‖V∗

2 − V∗
1 ‖

≤ ‖V1 − V2‖ + 2‖V1 − V2‖ + ‖V1 − V2‖
= 4‖V1 − V2‖.
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By inequality (14) we have

| cos〈R(U)⊥, K〉 − cos〈R(V )⊥, K〉| ≤ ‖NV − NU‖,
for any U ∈ IFD ∩ {V}′

and K ⊂ H. Then, by choosing K = VH and using (16), from
the last inequality we get (15). This completes the proof.
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