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GENERALIZED DIRECTIONAL DERIVATIVES AND 
SUBGRADIENTS OF NONCONVEX FUNCTIONS 

R. T. ROCKAFELLAR 

1. Introduction. Studies of optimization problems and certain kinds of 
differential equations have led in recent years to the development of a gen­
eralized theory of differentiation quite distinct in spirit and range of application 
from the one based on L. Schwartz's "distributions." This theory associates 
with an extended-real-valued function / o n a linear topological space E and a 
point x (E E certain elements of the dual space E* called subgradients or 
generalized gradients of/ at x. These form a set àf(x) that is always convex and 
weak*-closed (possibly empty). The multifunction àf : x —> àf(x) is the 
sub differential of / . 

Rules that relate àf to generalized directional derivatives of / , or allow àf 
to be expressed or estimated in terms of the subdifferentials of other functions 
(when/ = fi + f2,f = g o A, etc.), comprise the sub differential calculus. Such 
rules are used especially in analyzing the condition 0 £ àf(x), which typically 
means that x is some sort of "quasi-optimal" point for/. The extended-real-
valued nature of / is essential in such a context as a device for representing 
constraints. 

Subdifferential calculus began with convex functions on Rn. Rockafellar 
[43] defined àf for such functions, showed howr to characterize àf(x) in terms 
of one-sided directional derivatives f(x; y), and proved that under mild 
restrictions rules such as 

(1.1) d( / !+/ 2 ) (*) = àf1(x)+ d/2(x) 

are valid. This branch of convex analysis was developed further by Moreau, 
Rockafellar and others in the 1960's and applied to many kinds of optimization 
problems (cf. [42], [44], [45] for expositions). Besides convex functions, it 
covers concave functions and saddle functions (functions of two vector vari­
ables which are convex in one argument and concave in the other) ; for rules 
of type (1.1) for saddle functions, see McLinden [38]. 

The multifunctions àf in these cases yield, or are closely associated with, 
maximal monotone "operators" in the sense of G. Minty and L. E. Browder 
(cf. [41], [4], [46], [47]). The subdifferential calculus has served correspondingly 
as a model for results on when a sum of maximal monotone operators is again 
maximal monotone (cf. [48]). 
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258 R. T. ROCKAFELLAR 

F. H. Clarke in his 1973 thesis [6] made a major contribution in showing 
how the definition of àf could be extended to arbitrary lower semicontinuous 
functions / : Rn —* R VJ {+ co } in such a way that àf is the subdifferential 
of convex analysis when/ is convex or concave or a finite saddle function, and 
àf reduces to the ordinary gradient mapping Vf when / is continuously dif­
ferentiate. He showed that 

(1.2) à(f1+f2)(x) C àMx) + àf2(x) 

when / i and / 2 are Lipschitzian (Lipschitz continuous) in a neighborhood of x 
and proved another rule when/ is the maximum of a collection of continuously 
differentiable functions. He also characterized àf(x) by way of a generalized 
directional derivative expression /°(x; y) when/ is locally Lipschitzian. These 
basic results were published in [7]. In [8], [10] Clarke broadened the definition 
of the subdifferential to functions on Banach spaces and extended the subdif­
ferential calculus to continuous sums and pointwise maxima of locally Lip­
schitzian functions, as well as the composition of a locally Lipschitzian mapping 
and a differentiable mapping. The naturalness of this concept of àf has been 
underscored by a mean value theorem (Lebourg [37]) and an inverse mapping 
theorem (Clarke [9]). Aubin [1] has provided an account of the Lipschitzian 
case which also treats the operation of infimal convolution. 

Clarke did not characterize àf(x) in terms of any ''directional derivatives" 
in the non-Lipschitzian case, but his definition is connected with a certain 
tangent cone to the epigraph of/ at (x,f(x)). Hiriart-Urruty [26], [27], has 
observed that this cone is the epigraph of a sublinear function which must give 
the desired "derivatives," but until now no direct formula for this function, 
involving limits of difference quotients of some kind, has been discovered. 

Indeed, àf itself has not yet been given a direct definition in the general case: 
Clarke's approach has been to define àf for locally Lipschitzian functions in 
terms of certain limits, use this to define generalized tangent and normal cones 
to closed sets, and finally apply the latter to the epigraphs of l.s.c. functions. 
The lack of a more straightforward characterization of àf is one of the chief 
reasons why the subdifferential calculus for nonconvex functions has so far 
been limited mainly to the Lipschitzian case. 

Clarke's results do provide a direct formula for tangent cones in finite-dimen­
sional spaces [7, Proposition 3.7]. Thibault [55] has adopted this formula in 
separable Banach spaces in order to bypass the first of the three stages of 
Clarke's definition of àf, apparently without realizing that the formula implies 
the convexity of the cones in question. For Banach spaces, the equivalence 
with the initial form of Clarke's definition of tangent cones (and hence the 
convexity of the cones described by this formula) had been demonstrated by 
Hiriart-Urruty [27]. More recently, the convexity has been proved by 
Rockafellar [49] by a direct argument in Kn that easily carries over to any 
linear topological space. This opens the way to a direct definition of àf along 
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the lines proposed by Hiriart-Urruty, because the argument can be applied to 
epigraphs and translated into a statement about limits of certain difference 
quotients. 

The aim of the present paper is to carry out this project. Subderivatives 
P (x; y) are defined in terms of a "lim sup inf" which is a kind of minimax 
version of "lim sup" and "lim inf." It is shown that p(x; y) is always lower 
semicontinuous and sublinear in y, in particular convex. If / i s convex, p (#;•) 
is just the l.s.c. hull of the directional derivative function f (x\ •). If/ is Lip-
schitzian around x, p (x; y) reduces to Clarke's derivative /°(x; y). The latter 
fact is generalized to a large class of functions, said to be "directionally 
Lipschitzian" at x, through a broadened definition of /°(x; y)\ these functions 
have the important property that à(—f)(x) = — d/(x). 

The subderivatives p (x; y) thus furnish, by the duality between sublinear 
functions and convex sets, a new approach to àf(x) that covers the general 
nonconvex case in a more analytic manner and without appealing to the exis­
tence of a norm. This approach makes possible an extension of rules like (1.2) 
to cases where the functions are neither convex nor locally Lipschitzian, 
although the details will not be given here (see [50]). 

The results in this paper are thus aimed ultimately at applications to diverse 
problems of optimization, finite-dimensional and infinite-dimensional, fol­
lowing the now-familiar pattern for subgradients in the convex case (cf. [45], 
[51], [52], [53], for example). As far as nonconvex (nonsmooth) problems are 
concerned, very important progress in this direction has been made by Clarke 
in mathematical programming [10] and optimal control and the calculus of 
variations [6], [8], [11], [12], [13], [14], [15], [16], [17], [18], [19] (for a recent 
survey of the subject see [20]). Hiriart-Urruty's substantial thesis [26] has 
included the first applications to nonconvex stochastic programming problems, 
as well as results in basic mathematical programming [28], [29], and the study 
of marginal functions [30] (an excellent term he has coined for functions/which 
express the optimal value in some optimization problem as a function of param­
eters on which the problem depends). Generalized gradients of certain noncon­
vex marginal functions have also been studied by Gauvin [23] and Aubin/ 
Clarke [2]. Applications of Clarke's concepts to algorithms for nonconvex 
optimization have been explored by Feuer [21], [22], Goldstein [25], Chaney/ 
Goldstein [5] and Mifflin [39], [40]. These concepts are also put to use in recent 
work of Ioffe on the stability of solution sets [32], [33], and general optimality 
conditions [34], [35], [36]. 

2. Limit concepts. Throughout this paper, the topology of the linear space 
E is assumed to be locally convex and separated (Hausdorff). The definition 
of upper and lower subderivatives of functions on E will depend on a new limit 
notion for functions g (s, y) of s Ç S and y G E, where S is any topological space. 
As geometric motivation for this notion, we begin by recalling Hausdorff's 
definition [25, p. 147] of the ulim inf" of a sequence of sets, or more generally 
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of a multifunction in terms of its a rgument (see also Berg [3, Chapte r VI ] ) . We 

denote hy^V{s)1^Y{y) the collection of all neighborhoods of s, y} etc. 
Let r be any multifunction from S to E. (Thus for each s £ S, T(s) is some 

subset of E, possibly empty . ) T h e set 

(2.1) A(s) = liminf T(s ') 

consists by definition of all y £ E such t ha t 

V F Ç ^ W , ] U e^V(s), \/s' £ U:YC\ r (s ' ) ^ 0. 

Equivalently, 

(2.2) A(s) Dve^o) L W o o Hs'eu [T(sf) + V]. 

Note tha t A(s) would not be affected if T(s') were replaced by c l r ( s ' ) for all 
sf, in which event T would be closed-valued. A closed-valued multifunction T 
is said to be lower semicontinuous if A (s) = T(s) for all s. 

Recall next t ha t the epigraph of a function g : E —> i? VJ { ± o o } is the set 

e p i g = {(y,P) e E XR\P ^ g(y)}, 

and this is closed if and only if g is lower semicontinuous on E: 

g(y) = lim inîy>^yg(y') = supYejr{y) infy>eY g(y') for all y. 

Consider now an arb i t rary extended-real-valued function g on S X E. We 
shall be interested in the expression "l im sup inf" defined as follows: 

(2.3) h(s, y) = lim s u p a ^ s i n f ^ y g(s', yf) 

^suprejriy) inf u MM s u p S ' € S inf? /€F g(s', y'). 

In terms of sequences (when the topologies on 5 and E can so be described), 
this expression can also be characterized as 

sup { ^ u , , i n f ( j y / c }^^({5^ , {yk}), where 6({sk}, {yk}) = \imsupk^œg(sk,yk), 

where the infimum is over the collection of all sequences converging to y, and 
the supremum is over the collection of all sequences converging to 5. 

PROPOSITION 1. For each s Ç S, let T(s) denote the subset of E X R which is 
the epigraph of the function y —> g(s, y), and let A(s) be the limit set in (2.1). 
Then A{s) is the epigraph of the function y —* h(s> y) in (2.3), and hence in 
particular h(s, y) is lower semicontinuous in y. 

Proof. I t suffices in E X R to consider neighborhoods of product form. Thus , 
to say t ha t (y, (3) £ A(s) is to say t ha t 

V F Ç ^ W , y* > 0,3 uejff(s), w e u, 
3 (/,£') e [ F X ( 0 - €fjs + € ) ] n r(s ' ) , 

where the final condition means simply t ha t there exists y' £ Y such t ha t 
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&<y, yf) < P + e. Therefore (y, f3) Ç A(s) if and only if 

V F G Jf'(y), Ve > 0, 3 U G ^ ( s ) such that 

s u p ^ t / i n f ^ y g ^ ' , / ) ^ jS + e. 

From this it is easy to see that A (s) consists of the pairs (y, ft) such that 
0 = h(s, y), which was the fact to be proved. 

Remark 1. It follows from Proposition 1 that h would not be affected if g 
were replaced by its lower semicontinuous hull in the y argument. (This would 
be equivalent to replacing T(s) by its closure.) 

Remark 2. The reader should not fall into the trap of thinking that when A is 
defined by (2.1), then A is itself lower semicontinuous. A counterexample is 
furnished below. Correspondingly in view of Proposition 1, it does not follow 
from (2.3) that h has the semicontinuity property 

(2.4) lim sups>_,s inîy^y ft (s', y') = h(s, y). 

One's first reaction to this state of affairs might be to reject the definition 
of lim inf T and to try to substitute for it another which does have the lacking 
property. As a matter of fact, it can be shown there does exist a maximal 
multifunction A C T that is lower semicontinuous (given by the union of the 
graphs of the l.s.c. multifunctions C r ) , and presumably this is what one really 
ought to define as lim inf T. The trouble is that A is hard to describe more con­
cretely. In particular, no formula is known which expresses the graph of A in 
terms of limits (of some sort) involving elements of the graph of I\ The implica­
tion for the epigraph setting is that, while there is indeed a natural function h 
which could be substituted for h and would be the least function majorizing g 
and having property (2.4), one does not know how to express h in some rela­
tively simple fashion analogous to (2.3). Without such an expression, it would 
be difficult to work with h in applications. We therefore turn our backs on the 
temptation of such an approach. 

Counterexample. Let Y be the multifunction from R to R2 defined by 

( [(0, 0), (1, 2)] (line segment) if |s| ^ 1, 
Y(s) = [(0,0), (1,1/*)] if l / (* + D ^ N < l / * (fe = l , 2 , . . . ) , 

([(0,0), (1,0)] if s = 0. 

Then T(s) is a nonempty closed convex set for each 5 £ R. One has 
A (s) = {(0, 0)j if 5 = 1/k (k = 1 ,2 , . . . ) , but A(s) = T(s) otherwise. Thus 

l i m i n f ^ o A ^ ) = {(0,0)} ^ A(0), 

and A is not lower semicontinuous at 5 = 0. 

Remark 3. It is useful and natural to extend the mixed limit notation beyond 
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the "lim sup inf" in (2.3). Thus 

(2.5) lim infs^s sup^ ? / g(s', y) = infF€i/r(î/) s u p c ^ u ) infs/6jS s up^yg fc ' , : / ) , 

(2.6) H m s u p ^ s u p ^ y g ^ ' , / ) = mîYe^(y) inft7€^(s) s u p ^ s s u p ^ y g f c ' , : / ) , 

and similarly "Km inf inf." Obviously "lim sup sup" is the same as "lim sup" 
with respect to (s', y') —* (s, y), but sometimes, as will be seen in § 5, there is 
advantage typographically in writing the limit in this way. In the context of 
Proposition 1, "lim inf inf" would correspond to taking the "lim sup" of the 
epigraph multifunction r , i.e., to closing the graph of T. (If T(s) is taken 
instead to be the hypograph of g(s,-), the "lim inf" and "lim sup" operations 
for r correspond to "lim inf sup" and "lim sup sup" for g.) From this it is an 
easy and unambiguous step to mixed limits involving "inf" and "sup" any 
number of times in any order, for instance, 

lim sup s ^ , s u p r ^ r mfy^y sup z ^ z g(s', r', y', z'). 

3. Tangent cones. For any set C C E and any x £ C, the tangent cone 
to C at x is defined to be the set 

, n Tc(pc) = lim inf r ^ C - x'), 
W--U x'->cx 

tio 

where the notation is used that 
x' —>c x <=> xf —* x with xf (z C. 

The multifunction Tc : x —•» Tc(x) is thus generated by the "lim inf" opera­
tion (2.1) from the multifunction T defined on the topological space 
S = C X [0, oo ) by 

T(x, A / ^ ( C - * ' ) if * > 0 , 
i { X ' l ) ~ \E if t = 0. 

(Actually, Tc is the restriction of the corresponding A to the set of pairs (x, i) 
with x £ C, t = 0; for / > 0, A coincides with T, i.e., T is always lower semicon-
tinuous.) In terms of neighborhoods, (3.1) takes the form 

,„„. Tc(x) = n u n [r1(c-xf) + v\-, 
X > 0 Z£(0 ,A) 

in other wrords, y £ Tc(x) if and only if for every symmetric V 6 ^ ( 0 ) there 
exist X G JV{X) and X > 0 such that 

x' + t(y + V) meets C for all xr Ç C-C\ X7 t £ (0, X). 

An equivalent description in terms of convergence of (generalized) sequences 
is that Tc(x) consists of the vectors y such that whenever xk —>c x and tkl0 
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there exists yk —» y with yk + tkxk G C. Incidentally, it is easy to see that the 
right side of (3.2) is unaffected if C is replaced by cl C, and therefore 

(3.3) Tclc(x) = Tc(x) for all x G cl C. 

In particular, there is no harm in speaking of Tc(x) as defined by (3.1) even 
for points x G cl C with x g C. 

The tangent cone has not previously been recognized as coming from a 
"lim inf" or defined for general spaces E. Thibault [55] in the context of separ­
able Banach spaces used as a starting point the sequential form of the present 
definition, which in the case of Rw had been known to be equivalent to Clarke's 
definition (cf. [7, Proposition 3.7]). Hiriart-Urruty has verified in [27, Theorem 1] 
that the equivalence extends to all cases when Clarke's approach is applicable, 
namely when E is normable. It follows that in such cases Tc(x) is a closed 
convex cone containing the origin, since these properties are immediate from 
the original version of Clarke's definition. In [49, Theorem 1], we have demon­
strated these properties of Tc(x) by a direct argument based on (3.2); this 
argument is presented in terms of E = Rw but actually carries over a general E 
with little more than a broadening of notation. 

THEOREM 1. For any set C C E and any x £ C, Tc{x) is a closed convex cone 
in E containing 0. / / C is convex, Tc(x) coincides with the closed tangent cone to 
C at x in the sense of convex analysis. 

Proof. The first assertion follows by the argument of [49, Theorem 1], as just 
explained. For the second assertion, recall first that t~l(C — x) is nonin-
creasing in t > 0 when C is convex, so that (3.2) reduces to 

(3.4) Tc(x) = n ^ / ( o ) Ux>o [Ux^uo n.'.cnx [^(C - xf) + V]]. 

On the other hand, the closed tangent cone in the sense of convex analysis is 

(3.5) cl Ux>o X-KC - x) = fVorco) Ux>o [^(C - x) + V]. 

To prove equality between (3.4) and (3.5), it is enough to demonstrate for 
fixed V e ^V(0) and X > 0 that 

(3.6) U z w n ^ c n x t X - K C - * ' ) + V] = \-*(C - x) + V. 

Since E is locally convex, it can be supposed that Vis convex as well as open 
and symmetric. Trivially, the inclusion C holds in (3.6), so we may concen­
trate on the opposite inequality. For arbitrary 6 G (0, 1), the set 
Xe = (x + \dV) is a neighborhood of x such that 

x' e Xe^X-Hx' - x) + (1 - d)V C V. 

Then one has 

nx>ecnxe[^1(C-x') + V] 

= nz>scnxefr-l(C-x) + X - 1 ( * - x ' ) + V] 

D x-x(c - x) + (i - e)v. 
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Since this is true for all 6 £ (0, 1) and V is open, we obtain the desired conclu­
sion that Z) holds in (3.6). 

4. Subderivatives. Let / be any extended-real-valued function on E, and 
let x be any point where / is finite. Using the notation 

(4.1) {x\a!)ifx ^ (*',«') -» (x,f(x)) with a' ^ / (* ' ) , 

we define the upper subderivative of / at x with respect to y by 

(4.2) / (x\y) = hmsup mf — -— , 
(x',a')i/x v'-*v t 

tiO 

or in other words by the "lim sup inf" operation (2.3) in the case of the space 
S = (epi/) X [0, oo ) and the function 

(4.3) &.*>.*)-{*!%+*>-™ j l , ' . ^ 
at the point (x, /(x), 0, y). If/ happens to be lower semicontinuous at x, the 
definition can be expressed in the slightly simpler form 

(A A\ r\f N ,- . f f(x' + ty') -f(x') 
(4.4) / ' (x; y) = hm sup inf — ^ : L L - - , 

x'-*fx y'-*y t 

where 

(4.5) x' —>/ x <=> x' —» x and /(# ' ) —>/(x). 

Thus in the latter case one has the characterization 

( V F ^ W , ^ > £ , 3 ^ G^K(x),ô > 0, X > 0, 
(4.6) / ! ( x ; ^ ^ 7 ^ ( 0 , ^ x ^ 1 with f(x')^f(x)+Ô, 

[ly e Y with /(x r + ty') ^f(x') + 0. 

Of course if/ is continuous at x, it suffices to have x' —» x in (4.4), and the 
conditions in (4.6) involving <5 can be dropped. 

For the statement of the main result about /T(x; y), we recall that an 
extended-real-valued function / on E is sublinear if it is convex, positively 
homogeneous (satisfies l(\y) = M(y) for all y £ E and X > 0), and is not 
identically +oo . These properties hold if and only if epi I is a nonempty convex 
cone in E X R. 

We recall also that the one-sided directional derivative 

(4.7) / ' ( * ; y) = l im a o (/(x + ty) - f(x))/t 

exists for all y when/ is convex (although it may be infinite). Convexity implies 
that the difference quotient in (4.7) is nondecreasing in t > 0, and that 
/ ' (# ; y) is sublinear with respect to y. 
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THEOREM 2. The function y —» p' (x;y) is sublinear and lower semicontinuous, 
and its epigraph is the tangent cone Tm / (x, /(x)) . If f is convex, then 

(4.8) f(x;y) = limin{y>_>vf'(x;y') for all y Ç £ , 

and in fact p (x;y) = f (x; y) for any y such that f is bounded above in a neigh­
borhood of x + \y for some X > 0. 

Proof. For each (x', a, t) the epigraph of the function g(x\ a , /, •) in (4.3) 
is the set 

v ( , , ,x _ir1[(epif)- (x',a')\ if t > 0 , 
n x , a , t ) ~\EXR i f t = o. 

Since/ is obtained from g by "lim sup inf," we have from Proposition 1 that 
P (x; •) is a lower semicontinuous function whose epigraph is 

lim inf F(x', a', t) — TeT)l f (x,/(x)). 
(x' a')\,/x 

tiO 

The latter is a convex cone by Theorem 1, so p (x; •) is sublinear. In the case of 
/ convex, Tevl f (x,/(x)) is by Theorem 1 the same as the closed tangent cone 
to ep i / at (x,/(x)) in the sense of convex analysis, i.e., the set 

cl L W ^ e p i / ) - (*,/(*))] = c lepi / ' (* ;• ) , 

and this equality is expressed by (4.8). If for some y there exist Y (z^(y), 
X > 0 and a G R such tha t / (x + \y') ^ a for all y' € Y, then 

/ ' ( * ; y') S [f(x + Ay') - /(x)]/X £ [« - f(x)]/\ for all y' € Y. 

Thus the convex function f(x;-) is bounded above in a neighborhood of y, 
hence continuous at y, and the "lim inf" in (4.8) is superfluous. This finishes 
the proof of Theorem 2. 

Theorem 1 can be recovered from Theorem 2 as the case where/is the indica­
tor function 

(A n\ i t \ J 0 if X Ç C, 
(4.9) Mx) = \ œ i î x ( Î C t 

because then 

' Oify 6 Tc(x), 
(4.10) Mx;y)- {aoi{y([Tc(pe). 

Another observation of some interest concerns the lower semicontinuous hull 

(4.11) cl ' / (*) = liminîx,_xf(x'). 

Namely, 

(4.12) (dlf)Hx\y) = f(x;y) i f / is l.s.c. at x. 

This is the version of (3.3) that holds for tangent cones to epigraphs. 
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Of course, the geometric proof of sublinearity in Theorem 2, based on 
Theorem 1, could be translated into a direct argument. 

Parallel to the above, we define the lower subderivative of / at x with respect 
to y by 

tA io\ At \ v • c f(x'+ty')—a' 
(4.13) / (x',y) = hm inf sup -— 

{%' , a ' ) î / x y'-^y * 
tiO 

using the notation 

(x\a')]fx <=> (xf,a) —> (x,/(x) with a' ^ f(x'). 

If/ is upper semicontinuous at x, this reduces to 

(4.14) f (x-,y) = hm inf sup — j 2 ^—^ . 
tio 

The obvious analog of Theorem 1 holds for f^(x; y) and concave functions. 
The relationship between / ^ and p is not trivial and will be addressed in the 

next section. 

5. Lipschitzian and directionally Lipschitzian functions. It will now 
be shown that in many of the most important cases both upper and lower 
subderivatives can be reduced essentially to the simpler expression 

(5.1) f(x',y)= hmsup — —- , 
{x' .a') {f x t 

no 
which will be called the generalized Clarke derivative of f at x with respect to y. 
(It is still assumed, of course, t h a t / is an extended-real-valued function on E 
which is finite at x.) If/ is l.s.c. at x, the formula becomes 

(o.2) / (x; y) = hm sup — , 
x ' - v x t 

tiO 

and if / is actually continuous at x the convergence x' —>f x can be simplified 
to x' —> x. The latter version of the formula is the one introduced by Clarke 
[6], [7], [8], who employed it only for locally Lipschitzian functions on normed 
spaces. 

In the general case, / is said to be Lipschitzian around x if there is a neigh­
borhood of x on which/ is finite and satisfies, for some continuous seminorm p 
on E and constant /x = 0, the inequality 

(5.3) \f(x") - f(xf)\ S »Pix" - x') for all x', x". 

(If £ is a normed space, p can always be taken to be the norm in question.) 
If/ is Lipschitzian around each point of a set C, it is said to be locally Lipschit­
zian on C. Obviously/ is continuous on a neighborhood of x if it is Lipschitzian 
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around x, so tha t formula (5.2) is applicable (with x' —» x) and yields via (5.3) 
the inequality 

f°(x;y) ^ vp(y) for all y e E. 

Locally Lipschitzian functions on general spaces have been treated in these 
terms by Lebourg [37]. 

We shall say tha t / is directionally Lipschitzian at x with respect to a vector y 
if ( / is finite a t x and) 

tr A^ v ffr' + ty') -a' 
(5.4) hm sup sup — — < oo , 

(x' a') If x y'->y t 

no 

a condition which can be simplified w h e n / is l.s.c. a t x to 
(5.5) hm sup sup - —f~ -—- < oo . 

tio 

An easy fact to verify, and which gives rise to this terminology, is t ha t / is 
Lipschitzian around x if and only if it is directionally Lipschitzian a t x with 
respect to y = 0. Accordingly, we shall say / is directionally Lipschitzian a t x 
if there is a t least one y, not necessarily 0, such t h a t / is directionally Lipschit­
zian a t x with respect to y. 

The geometric approach to this concept and its implications for the deriva­
tives f°(x; y) lies with the hypertangent cone Hc(x) to a set C a t a point x G C. 
This consists of the vectors y' such tha t there exist X G JV(x) and X > 0 with 

(5.7) x' + ty' G C for all x ' ^ C H I and t G (0, X). 

Expanding somewhat on the terminology in [49], we shall say tha t C 
is epi-Lipschitzian at x with respect to y if property (5.7) holds simultaneously 
for all y' in some neighborhood Y G <^(y). When C is closed and y ^ 0, this 
means tha t C can be represented locally as the epigraph of a Lipschitzian 
function (cf. [49, § 4]). 

T H E O R E M 3. For any extended-real-valued function f on E and any point x 
where f is finite, the function y—>f°(x; y) is sublinear. If f is directionally 
Lipschitzian at x, then so is —/, and one has 

(5.8) P(x',y) = — / ; ( ^ ; —y) = Vimmîy^yfix^^foreveryy G E. 

In this case the vectors y with respect to which f is directionally Lipschitzian at x 
are those belonging to 

(5.9) int{;y|/T(*;;y) < co}, 

and at each such y the function f°(x; •) is continuous with 

f(x' + ty') - a' 
(5.10) f(x;y) = -fl(x; -y) =f°(x;y) = Hm sup sup^ 

(x',a')lf cc ' 
llQ 
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Before proving Theorem 3, we state two consequences. 

COROLLARY 1. If f is Lipschitzian around x, then the function y —> f°(x; y) is 
finite, sublinear and continuous with 

(5.11) p(x;y) = - / * ( * ; ~y) = fix^y) for ally G E. 

COROLLARY 2. For any set C C E and any x G C, £&e hyper tangent cone 
Hc(x) to C at x is a convex cone containing 0. If C is epi-Lipschitzian at x with 
respect to some y, then the vectors y with this property are precisely those belonging 
to mt Hc(x), and one has Tc(x) = c\Hc(x). If in addition x is a boundary 
point of C, then the set C = (E\C) U {x} is likewise epi-Lipschitzian at x} and 
TC'(x) = -Tc>(x). 

Corollary 1 is the case where/ is directionally Lipschitzian at x with respect 
to every y G E. The assertion in Corollary 1 about /°(x; •) being finite, sublinear 
and continuous when / is Lipschitzian is not new; cf. [6], [7], [8] and [37]. 
Corollary 2 is obtained by taking/ to be the indicator \[/c in (4.9). 

Proof of Theorem 3. We begin by demonstrating that the theorem can be 
derived in turn by applying Corollary 2 to C = epi / at (x, /(x)) , so that a 
direct proof of Corollary 2 will suffice. 

The hypertangent cone Hevi f(x, f(x)) consists of the vectors (y, fi) in 
E X R such that there exist X Ç JV(x), 8 > 0 and X > 0 with 

(5.12) (xf, af) + t(y, 0) G ep i / for all (x', a') G epi/ , t G (0, X), 

with xf G X, \af - f(x)\ g Ô. 

From this and the definition (5.1) of f° it is readily seen that 

(5.13) f°(x;y) = inf{£ G R| (y, /3) G Hmf(xJ(x))}, 

tfepi/(*,/(*)) D {(y,/3) G £ X R | f ( x ; y ) </3}. 

According to Corollary 2, i7epi / (x , / (x)) is a nonempty convex cone, hence 
so is epi /°(x; •) by (5.13), and this means that /°(x; •) is a sublinear function. 

In similar fashion, one sees that the vectors (y, /3) with respect to which 
epi / is epi-Lipschitzian are those satisfying 

(5.14) hmsup sup— —f^ < 0. 
t l o 

Corollary 2 tells us that when the set of such vectors (y, 0) is nonempty, it 
coincides with the interior of Hepi r (x , / (x) ) . This is by (5.13) the same as the 
interior of epi /°(x;-) , i.e., the set of (y, /3) G E X R such that /°(x;-) is 
bounded above by 0 on a neighborhood of y. Since /°(x; •) is a convex function, 
it is continuous at every point of the set 

(5.15) int{y' |/°(*;y') < ° ° } , 
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if it is bounded above in a neighborhood of one point. Of course, y satisfies 
(5.14) for some fi if and only if/ is directionally Lipschitzian a t x with respect 
to y. Therefore, such vectors (if any exist) are the ones belonging to (5.15), 
and a t each such y one has 

l imsup s u p ^ ^ + ^ — - - =f°(x\y) = l i m / ° ( * ; / ) . 
(x' ,a')\f x y'-^y t y'^>y 

tio 

We turn now to (5.8), which must be derived from Corollary 2 under the 
assumption tha t epif is epi-Lipschitzian a t (x, f(x)). The epigraph of the 
function 

y>->limmfy>^yf(x;y') 

is by the above the closure of Hevi f(x,f(x)). We already know from Theorem 
1 tha t epip(x;-) coincides with Tm f(x,f(x)), and by the same token the 
hypograph hyp f^(x;-) coincides with ThTP f(x,f(x)). Thus the epigraph of the 
function y —» — f^(x; —y) is —TF(x, / ( x ) ) , where F = (E X R ) \ ( e p i / ) 
(recall (3.3)), and (b.8) is the equation 

Tm f(xJ(x)) = -TF(x,f(x)) = c l i7 e p i f(x,f(x)), 

which follows from Corollary 2. Obviously (5.8) and the continuity of f°(x;-) 
on the set (5.15) imply tha t the lat ter set is the same as the one in (5.9), and 
with this observation we have covered all the assertions of Theorem 3. 

We are left now with the task of proving Corollary 2 directly. Clearly Hc{x) 
contains 0 and is closed under multiplication by positive scalars. If yi and y^ 
belong to Hc(x) there exist Xt G ^\x) and X* > 0 such tha t 

(5.16) xf + tytÇ: C for all x' t C H Xiy t G (0, X,) (i = 1, 2). 

Choose X G JV(x) and X > 0 small enough tha t X C Xly X < Xi and 

(5.17) X + tyi C X2 for all t £ (0, X). 

Then f o r x ' G C H I and / G (0, X) one has xf + tyx £ C C\ X2 by (5.16) and 
(5.17), so t ha t (x' + tyx) + ty2 G C by (5.16). Thus 

(5.18) x' + t(yi + y2) Ç C for all xf G C C\ X, t G (0, X), 

and it follows tha t Hc(x) is a convex cone. 
Let K denote the set of all y with respect to which C is epi-Lipschitzian a t x, 

and assume K ^ 0. I t is trivial t ha t i£ is an open set containing all positive 
multiples of its elements, and tha t K C Hc{x) C Tc(x). T o prove tha t 

K = intHc(x) and Tc(x) = c\Hc(x), 

it will be enough to prove int Tc(x) C K (because Tc(x) is convex 
by Theorem 1). 
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The inclusion int Tc(x) C K can be established by verifying 

(5.19) K+ Tc(x) CK, 

for if the latter holds and y G int Tc(x), then for arbitrary y0 G K there exists 
X > 0 with y — \y0 G int Tc(x) ; since also X3/0 G K and Xy0 + (y — \y0) = y, 
it follows from (5.19) that y G K. 

Let 3/1 G K and 3/2 6 Tc(x). In order to verify (5.19), we must demonstrate 
that y 1 + y2 G X, i.e., that there exist F G^K(O), X G ^ ( x ) and X > 0 
such that 

(5.20) (C H Z ) + % + y2 + F) C C for all t G (0, X). 

Since yi G i£, we know there exist V\ G ^ ( 0 ) , X ^_JV{x) and Xi > 0 such 
that 

(5.21) ( C n X O + * ( ? ! + F 0 C C for all * 6 (0, Xi). 

Select V G ^V(0) small enough that 

(5.22) F + F C Fi and * + F + /(;y2 - V) C ^ i for all t G [0, 1]. 

Since y2 G Tc(x), we have from (3.2) the existence of X2 G ^ ( x ) and X2 > 0 
such that 

(5.23) y2 G [ r x (C - x') + F] for all x' G C H X2, t G (0, X2). 

Now let 

(5.24) X = X2 P\ (x + F), X = min {Xi, X2, 1}. 

We claim that (5.20) holds, as desired. 
Indeed, suppose x' G C C\ X, t G (0, X). Then (5.23) is applicable, so there 

exists v G V such that y2 — v G t~l{C — x'), or in other words 

x' + % 2 - v) G C. 

Furthermore, 

x' + t(y2 - v) G (x + F) + *(y2 - V) C Xi 

by (5.24) and (5.22). Then (5.21) and the first condition in (5.22) imply 

C D x' + t{y2 -v)+ t(yi + \\) D x' + % i + y2 + F), 

and this verifies (5.20). 
The only thing remaining is the assertion of Corollary 2 about C when x is a 

boundary point of C. Suppose y is a vector with respect to which C is epi-Lip-
schitzian at x: there exist Y G ^ ( y ) , X Ç_JV{X), X > 0 such that 

(5.25) x' + tY C C for all x^CC\X, t G (0, X). 

Choose open Y' e^(y), X' ^J/{x) and X' G (0, X) such that 

(5.26) Y' C Y and X' - tY' C X for all / G (0, X'). 
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Then 

(5.27) x' - tY' C C for all x' Ç C C\ X', t Ç (0, X'), 

for if not there would exist x' £ C C\ X' and t Ç (0, V) such that x' — tY' 
contains a point x" g C . In this event we would have x" Ç X by (5.26) and 
a" G C; furthermore s' Ç (x" + *F') H C. The latter implies x" + tY' (£ C, 
because the set x" + tY' is open and the only point of C not in C is x, which is 
a boundary point of C. This contradicts (5.25), since x" £ C f~\ X, Y' C Y 
and / 6 (0, X') C (0, X). Thus (5.27) is true, and since - Y' £Jf(-y) we 
conclude that C is epi-Lipschitzian at x with respect to —y. 

This argument can be reversed to show that in fact C is epi-Lipschitzian at 
x with respect to —y if and only if C is epi-Lipschitzian at x with respect to y. 
Applying to C the part of Corollary 2 already proved for C, we obtain 
mtHc>(x) = —int Hc(x) ^ 0 and TC'(x) = c\Hc>(x). Moreover He (x) is 
convex, like Hc(x), so 

c\HC'(x) = cl (int i ï c ' M ) = - c l ( i n t # c ( x ) ) = -c\Hc(x). 

Therefore —TC'(x) = cl Hc{x) = Tc(x), and the proof of Theorem 3 is 
finished. 

6. Criteria for directionally Lipschitzian behavior. As a complement 
to Theorem 3, we now furnish several conditions guaranteeing that / is Lip­
schitzian or directionally Lipschitzian at x. 

PROPOSITION 2. Suppose that E is finite-dimensional, and that f is lower 
semicontinuous in a neighborhood of x and finite at x. Then f is directionally 
Lipschitzian at x if and only if the set 

(6.1) D(x) = {y G E\f(x;y) < oo } 

is not included in some hyperplane of E. Furthermore, f is Lipschitzian around x 
if and only if D(x) = E. 

Proof. Since the conclusion involves only local properties of/ at x, we can 
replace/ by its l.s.c. hull cl */ if necessary and thereby reduce to the case where 
/ is l.s.c. on all of E. Then epi / is a closed set in E X R. We have shown in 
[49, Theorems 2, 3] that a closed set C in a finite-dimensional space is epi-Lip­
schitzian with respect to y at a point x if and only if y Ç int Tc(x). According 
to the proof of Theorem 3 , / is directionally Lipschitzian at x with respect to y 
if and only if epi / i s epi-Lipschitzian at (x,/(x)) with respect to (y, /3) for some 
j3 Ç R, and the latter condition is therefore equivalent to 

(6.2) (y,0) 6 int epi/ t (*;•),. 

because epi/T(x;-) is the cone Tm /(#,/(#)) (Theorem 2). Since P(x;-) is a 
sublinear function (Theorem 2), the set D(x) is a convex cone. Since E is 
finite-dimensional, (6.2) is equivalent to y £ mtD(x) and p{x\y) < /3 

https://doi.org/10.4153/CJM-1980-020-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-020-7


272 R. T. ROCKAFELLAR 

[44, § 6]. A convex set in a finite-dimensional space has nonempty interior if 
and only if it is not included in some hyperplane. 

Of course,/ is actually Lipschitzian around x if and only if/ is directionally 
Lipschitzian with respect to y = 0. Since D(x) is a cone, the condition 
0 Ç intD(x) is equivalent to D(x) = E. 

PROPOSITION 3. Suppose fis convex on E and finite at x. Then fis directionally 
Lipschitzian at x if and only if there is an open subset of E on which f is bounded 
above. 

More specifically, f is directionally Lipschitzian at x with respect to y if and only 
if f is bounded above on a neighborhood of x + \y for some X > 0. In particular, 
f is Lipschitzian around x if and only iff is bounded above on a neighborhood of x. 

Proof. This is just the epigraph version of the assertion that a convex set C 
is epi-Lipschitzian at a point x £ C relative to y if and only if x + X̂  G int C 
for some X > 0. In this geometric assertion, the necessity of the condition is 
trivial. For the sufficiency, suppose x + \(y + V) C C, where X > 0 and 
V ç ^ ( O ) . Choose U 6 ^ ( 0 ) such that X"1^ + U C V. Then x' G {x + U) 
implies 

x' + My + U) C x + \(y + X- 1 ^ + U) C x + \(y + V) C C. 

Since C is convex, it follows that 

x' + t(y + U) C C for all x' Ç C C\ (x + U), te (0, X). 

Therefore C is epi-Lipschitzian at x with respect to y. 

COROLLARY. The assertions in Proposition 3 hold for f concave, instead, of 
convex, if ''bounded above" is replaced by "bounded below," and y is replaced 
by —y. 

Proof. Apply Proposition 3 to —/ and invoke Theorem 3. 

PROPOSITION 4. Suppose f is nondecreasing with respect to the partial ordering 
induced on E by a nonempty closed convex cone K : f(x') ^ f(x") when x' ^K x". 
If int K 9^ 0 and f is finite at x, then f is directionally Lipschitzian at x with 

(6.3) f(x;y) S 0 for all y ^K0. 

Proof. Suppose —y £ int K. Then there exists Y £JV(y) such that 
- Y C K. For all y' £ Y and t ^ 0, one has -ty' £ K, so that x' + ty' SK X' 
for all x'. Therefore 

(/(*' + ty') - f{x'))/t ^ 0 for all y £ Y, x' £ E, X ̂  0, 

and consequently 

hm sup sup- —• ^ 0. 
{%' a') 4/ x v'->y t 
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In particular, / is directionally Lipschitzian at x with respect to y, 
and p(x\y) ^ 0. Since this holds for arbitrary y belonging to — intK, and 
since the function f{x;-) is l.s.c. (Theorem 2), we conclude that /T(x; y) ^ 0 
for every y belonging to the closure of — int K, which is just — K because K 
is convex and closed. 

PROPOSITION 5. Suppose there is a neighborhood X of x such that, for all 
x' Ç X and y £ E, f(x') is finite and the one-sided derivative f(x'; y) exists. 
Suppose also that the function (xf, y) *—> f(xf; y) is bounded on a neighborhood 
of (x, 0). Then f is Lipschitzian around x. If in addition the function 
x' v~^ f (x' ; j) is continuous at xfor each y Ç E (and finite at x), then the function 
y -*f(x; y) is linear and continuous and 

(6.4) lim / (* ' + / / ) - / ( * ' ) =f^x;y) j o r a U y e K 

In this event f(x; y) = f°(x; y) = /T(x; y) = f^(x; y) for all y £ E. 

Proof. By hypothesis there exist convex X' ÇL-JV{X), Y d^Viy) and JLX > 0 
such t h a t / is finite on X' and 

(6.5) f'(x';y) g M for all x' U ' y G F. 

Choose l o ^ ( x ) , Y^JV{y), such that X0CX', Y0 C Y, and 
Xo + Yo C X'. Then for x' £ X0, y G F0, we have x' + ty £ X' for all 
t G [0, 1] (by the convexity of X'), so that the function <j)(t) = /(x r + ty) is 
right differentiate on [0, 1] with right derivative f'(xf + ty; y) ^ /x. Since a 
right differentiate function is the integral of its right derivative (cf. [54, p. 
271]), it follows that </>(t) - 0(0) ^ t for all t £ (0, 1). Thus 

[/(*' + ty) - / ( * ' ) ] / ' ^ M for all x' G Xo, / ^ Fo, * £ (0, 1). 

Therefore/ is Lipschitzian around x. 
If in addition / '(• ; y) is continuous at x, there exists for any e > 0 a neigh­

borhood X(y, e) of x on which / is finite and satisfies 

f(x;y) - e^f(x';y) ^ f(x;y) + e for all x'eX(y,e). 

By an integration argument like the one just given, we obtain that for x' 
sufficiently near x and for t > 0 sufficiently small, 

t[f(x;y) - e] Sf(x' + ty) - f(x') ^ t[f'(x;y) + e]. 

This being true for arbitrary e > 0, we have (6.4), at least in terms of the limit 
in x' —> x and / | 0 , with y' == y. The limit in y' —» y can be added harmlessly, 
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because/ is Lipschitzian around x. In particular, (6.4) implies 

/ (x; y) = lim s u p ^ =^ " = / (*î 30» 

r// N r • J(x") -f(x" ~ ty) .'0/ s 
f'(x;y) = hminF-1—^ -^ ^ = - / ° ( x ; -3/) . 

tio 

But /°(x; •) is a continuous sublinear function by Corollary 1 of Theorem 3, so 
these two equations imply f'(x; •) is continuous and linear. They also yield the 
last equation in Proposition 5 by way of the same corollary. 

7. Normal vectors and subgradients. Since the tangent cone Tc(x) to a 
set C C E at a point x Ç C is a nonempty closed convex cone (Theorem 1), it is 
polar to a certain nonempty weak*-closed convex cone Nc(x) in the dual 
space £*: 

(7.1) Nc(x) = {z e E*\(y,z) ^ 0 for all 3/ G r c ( x ) } , 

Tc(x) = {y£ E\(y,z) £0 for all s G iVc(x)| . 

The set Nc(x) is defined to be the normal cone to C at x. 
If C is convex, this definition of normal cone agrees with the one in convex 

analysis, because Tc(x) is the same as the tangent cone in convex analysis 
(Theorem 1); then 

(7.2) Nc(x) = {z £ E*\(z, x' - x) S 0 for all x' Ç C). 

If E is a normed space, Nc(x) is identical to Clarke's normal cone, even though 
he defined it quite differently, because Tc(x) is identical to the tangent cone 
he introduced in such spaces (as cited in § 3), and his normal and tangent cones 
were polar to each other. 

The duality between tangents and normals can be extended by Theorem 2 
into a duality between subderivatives and subgradients. There are only two 
possibilities for a sublinear function / on E which is lower semicontinuous: 

(i) (proper case): l(y) > — co for all y, 1(0) = 0; 
(ii) (improper case) : l(y) = ^zco for all y, 1(0) = — oo. 

In the improper case there is little to be said, except that the set 
{y\ Ky) = ~~ °° Î is a closed convex cone. The proper case, however, charac­
terizes the support functions of the nonempty weak*-closed convex sets in 
E* (cf. [31]): / is of this type if and only if there is a nonempty weak*-closed 
convex set G C E* such that 

(7.3) l(y) - s u p {<y,z>|z G G]. 

This set is unique and is determined from I by 

(7.4) G = {z e E*\ (y, z) ^ l(y) for all y £ E\. 
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Obviously G consists of a single element z if and only if / is linear, i.e., has the 
additional property that l(y) = —l(—y) for all y; then l(y) = (y, z). Further­
more, G is a bounded nonempty set if and only if / is finite on all of E; then G 
is weak*-compact and the "sup" in (7.3) can be strengthened to "max." 

Bearing this in mind, we define the set of subgradients of a function / a t a 
point x (where / is finite) by 

(7.5) àf(x) = {z G E*\ (y,z) S P(x;y) for all y £ E}. 

Theorem 2 then gives the following result. 

THEOREM 4. Let f be any extended-real-valued function on E, and let x be any 
point where f is finite. Then àf(x) is a weak*-closed convex subset of E* and 

(7.6) d/(x) = {z e E*\{z, - 1 ) 6 Nm , (* , / (*))} . 

If p (x; 0) = — oo , then àf(x) is empty, but otherwise àf(x) is nonempty and 

(7.7) P(x;y) = sup {(y,z)\z G àf(x)} for all y £ E. 

Proof. Since the function l(y) = p (x; y) is l.c.s. and sublinear by Theorem 
2, all these facts except (7.6) are immediate from the cited properties of such 
functions. As for (7.6), we recall from Theorem 2 that the epigraph of p (x; •) is 
^epi /(#, /(#)) , and hence the normal cone iVepi f(x,f(x)) consists of the pairs 
(z, T ) Ç £ * X R such that 

(y,z) + (3y S 0 for all (3/, 0) G ep i / T (*;•)• 

In particular, (z, —1) belongs to Nm f(x,f(x)) if and only if 

(y,z)^p forall (y, (3) e E X R with (3^p(x;y), 

and this means by definition (7.5) that z G àf(x). 

COROLLARY 1. The sub gradient set àf(x) consists of a single element z if and 
only if —p(x; —y) = p(x; y) for all y; then p(x; y) = (y, z). (This is true 
in particular if f satisfies the assumptions in Proposition 5.) 

COROLLARY 2. The subgradient set àf(x) is nonempty weak*-compact if and 
only if p (x; y) is finite for all y, in which event "sup" can be replaced by "max" 
in (7.7). (This is true in particular if f is Lipschitzian around x.) 

The parenthetical comment in Corollary 2 is based on Corollary 1 of Theorem 
3. More will be said about the Lipschitzian case in the next section. 

THEOREM 5. If f is a convex function on E, and x is a point where f is finite, 
then àf(x) agrees with the sub gradient set in the sense of convex analysis: 

(7.8) ôf(x) = \z G E*\ (y,z) ^ f(x;y) for ally G E\ 

= jzC E*\f(x') è / ( x ) + (x1 - x,z)jorallx' e E). 
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Proof. The first equality is immediate from définition (7.5) and the assertion 
in Theorem 2 that (4.8) holds in the convex case. The second equality is well 
known in convex analysis and corresponds to the fact that the difference 
quotient in (4.8) is nondecreasing in / > 0. 

While Theorem 5 shows that the definition of àf(x) by (7.5) is in harmony 
with the well established definition in the case where / is convex, Theorem 4 
has the same effect relative to Clarke's definition in the case where £ is a 
normed space (cf. [6], [7], [8]). Clarke's approach involves first defining sub-
gradients in a special way for locally Lipschitzian functions, applying this to 
the distance function associated wTith a set C to get a concept of the normal 
cone Nc(x), and finally using (7.6) as the definition of àf(x) ; the tangent cone 
Tc(x) is defined by Clarke as the polar of Tc(x) (so that (7.1) holds). The net 
result for àf(x) must be the same, thanks to Hiriart-Urruty's proof [33] that 
Clarke's cone Tc(x) can be described directly (when E is normed) by the 
sequential form of the present definition. 

Of course, in the case of an indicator function \pc one has 

(7.9) à^c(x) = Nc(x) for all x G C. 

8. Lower versus upper subgradients. The set df(x) has been defined in 
terms of /T (x; y), but the subderivatives f^ (x; y) are capable of an equal role. 
W h e n / is finite, we define 

(8.1) bf(x) = \z G E*\ (y,z) è fl(x;y) for all y 6 £ } . 

Parallel to Theorem 4 wre then have the fact that àf(x) is a weak*-closed 
convex subset of E*. If fl(x;y) = +oo, then àf(x) is empty; otherwise àf(x) 
is nonempty and 

(8.2) fl(x;y) = M{(y,z)\z G àf(x)} for all y G E. 

The elements of d/(x) could be called "upper" subgradients, to distinguish 
them from the "lower" subgradients in àf(x). But it is clear that 

(8.3) àf(x) = -à(-f)(x), 

so no really new concept is involved and a systematic insistence on "lower" 
and "upper" would be tedious. Comparing the sets in geometric terms by way 
of (7.6) with 

(8.4) F = epif and F' = [(£ X R) \ (ep i / ) ] U {(x,/(x))}, 

one has 

(8.5) àf(x) = {z\(z, - 1 ) G NF(x,f(x))}, 

àf(x) = {z\(z, - 1 ) 6 -NF,(x,f(x))}. 

It is not necessarily true that ô(— f)(x) = — d/(x), and therefore àf(x) 
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and àf(x) can sometimes be different sets, neither included in the other. This 
somewhat unsatisfactory state of affairs has led Hiriart-Urruty ([26], [27]) to 
introduce the symmetrized subgradient set Df(x) corresponding to the lower 
semicontinuous sublinear function / on E for which 

(8.6) epi / = TF(x,f(x)) r\ -TF>(x,f(x)) 

(with F, F' as in (8.5)). This means that 

(8.7) Df{x) = {z\(y,z) g l(y) for all y G E], where 

l(y) = max{f(x;y)} -fl(x; - ? ) } • 

While / (and by implication Df(x)) does have a description of sorts in terms of 
limits of "difference quotients" of/, it is a rather complicated one and hard to 
work with, and this disadvantage must be weighed against the good effects 
wrought by the property D(-f)(x) = -Df(x). Note from (8.5), (8.6), (8.7) 
that if both àf(x) and àf(x) are nonempty, then 

Df(x) = cl co [àf(x) \ J àf(x)l 

It will now be demonstrated that the cases where àf(x) andâ/(x) are both 
nonempty, but different, must be regarded as somewhat pathological. For 
most purposes, therefore, a single concept of the subgradient set will suffice. 

To state the result, we say that a nonempty weak*-closed convex set 
Z C £* is nonasymptotic relative to a vector y £ E if for some ft £ R the set 
{z 6 Z\ (y, z) ^ f3} is nonempty and weak*-compact. 

THEOREM 6. Let x be a point where f is not only finite but directionally Lipschit-
zian. Then 

(8.8) àf(x) = àf(x) = Df{x) 

= | z ^ E*\ (y,z) g P(x\y) for ally G £ } , 

(8.9) sup {(y, z)\z e àf(x)} = lim inf ,^ f(x; y'). 

If àf(x) j£ 0, then the vectors y with respect to which àf(x) is nonasymptotic are 
those with respect to which f is directionally Lipschitzian at x, and for each such y 

(8.13) f(x;y) = max{(y,z)\z G àf(x)}. 

Proof. Formulas (8.8) and (8.9) are immediate from Theorem 3 and defi­
nitions (8.1) and (8.7). For a nonempty weak*-closed convex set Z (Z E* and 
its support function 

(8.11) l(y) = sup l(y,z)\zeZ\, 

it is known that Z is nonasymptotic with respect to y (and hence "sup" can 
be replaced by "max" in (8.11)) if and only if / is finite and continuous at y. 
In the present case of Z = àf(x) and l(y) = P (x; y), these vectors y are by 
Theorem 3 the ones with respect to which/ is directionally Lipschitzian at x, 
and for each such one has /T(x; y) = f°(x;y). 
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COROLLARY 1. If E is finite-dimensional and àf(x) is nonempty and non-
asymptotic with respect to some vector y, then f is directionally Lipschitzian at x 
and the properties in the theorem hold. 

Proof. This follows via Proposition 2 and the fact about the "nonasymptotic" 
property that is cited in the preceding proof. 

COROLLARY 2. Suppose f is a concave function on E, and let xbe a point where f 
is finite. In general one has 

bf(x) = {z e E*\f(xf) Sf(x) + (xf - x,z)forallxf Ç E), 

but if f is bounded below on some nonempty open set, it is also true that 
^f(x) — ty(x) and 

f(x;y) = liminfy^y -f'(x; -y') for ally £ E. 

(If f is not bounded below on any nonempty open set, then àf(x) = 0 
and P (x; y) = — GO for all y.) 

Proof. Apply Proposition 3 and Theorem 5 to —/. The validity of the final 
assertion is seen from the fact that cl(epi/) = £ X R under this assumption, 
so that 

epi /T(x;-) = Tej>lf(x,f(x)) = E X R 

by (3.3). 

COROLLARY 3. Suppose f is nondecreasing with respect to the partial ordering 
on E induced by a closed convex cone K with nonempty interior. Let 

K* = {z G E*\ (y, z) ^ Ofor ally G K] {dual nonnegative cone). 

Then at each point x where f is finite, one has 

d/(x) = bf(x) C K*. 

Proof. This follows from Proposition 4. 
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