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1. Introduction.

Let R be a commutative ring with unit. Let (A ,¢‘3 )
o’ "Ba
(@ < B) (resp. (B , ¥ F3) (e < B)) be an injective (resp. projective)
- o -

system of R-algebras indexed by a directed set I; let
((Xa'da)'fﬁa) (e < B) (resp. ((Ya’ 60), gaﬁ) (a < B)) be an injective

{(resp. projective) system of complexes, indexed by the same set
1, such that for each o€ 1, (Xa,da) (resp. (Ya, 6«1)) is a com-

plex over Aa (resp. over Ba). The purpose of this paper is

to show that the covariant functor lim from the category of all
-
such injective systems of complexes and complex homomorphisms
over the R-algebra 1i_I‘£1 A is such that it associates with an
a

injective system ((Ua'da)'h ) of universal complexes a
a

S

universal complex over lim A whereas the same is not true
- a

of the covariant functor lim on the category of all such projective
systems of complexes and their maps.

The projective system of algebras considered here is

A, < = , . .
(A s 9, ,) (k<1) where A K[y]/.]’k K[y] being the polynomial

ring in one indeterminate y over a field K of characteristic p
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k
and Jk being the ideal generated by yp in K[y]. The result

,d ), f
k k) kf)

is a universal complex over Ak for

that the projective limit of a projective system ((U

k<), wh U ,d

{ __f) where { K k)
all k, 1is nota universal complex over lim Ak = K{y} which
is the formal power series ring in one indeterminate, is obtained
by proving that a universal complex over K{y} is infinitely
generated.

2. Preliminaries.

Let X and Y be two graded algebras over a commutative
ring R with unit. Let f: X—>Y be a graded R-algebra homo-
morphism. We recall that an R-linear mapping d:X->Y of X
into Y is called an R-derivation of degree 1 if (i) d is a homo-
geneous R-linear mapping of degree 1; and (ii) for any x, x'

in X, with x homogeneous of degree n, d(xx')=dx - f(x')

+ (—1)n f(x) dx'. In particular, if Y = X, then an R-derivation
of degree 1 of X into itself is called an R-derivation of degree
1 of X. For any unitary commutative R-algebra A, a pair
(X,d), where X is an anticommutative graded R-algebra such
that XO =A and where d:X-X is an R-derivation of degree 1

of X suchthat d-d =0, iscalled a complex over A. We call
a complex (X,d) over A simple if X is generated by dA as
an A-algebra. In this case we shall say that the complex (X, d)
is generated by A. For any two complexes (X,d), (Y, 5) over
A, a graded R-algebra homomorphism f:X-Y is called a com-
plex homomorphism over A if (i) f maps A identically; and
(ii) fed=086¢ f. We write {:(X,d)>(Y,8). If f:X-Y is a graded
algebra isomorphism then the complex homomorphism
f:(X,d)>{Y,8) over A is called a complex isomorphism over A.
If A and B are two unitary commutative R-algebras and

¢:A—-B an R-algebra homomorphism then, for a complex (X, d)
over A and a complex (Y,8) over B, f:(X,d)—>(Y,6) is called
a g-complex homomorphism if (i) £:X—+Y 1is a graded R-algebra
homomorphism such that f =¢ on A; (ii)fcd=¢c f. Finally,
a homogeneous ideal JC X is called a complex ideal iff dJC J.
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3. Universal Complexes.

Definition 3.1: A complex (U,d) over an R-algebra A
is called universal [5] if, given any other complex (Y, &) over A,
there exists a unique complex homomorphism {:(u,d) - (Y, &)
over A.

In the following we shall establish the existence of universal
complex over A using the approach contained in Bourbaki's
solution of the universal mapping problem [4]. For this we shall
first define the product of a family of complexes over A. Let
(on’da) (€ I) be a family of complexes over A. We know that

the product HXQ is an R-algebra. Set A={(a )]a €A and
a a
a
a =a forall o€ I}. Then EE nX and A is isomorphic
a o @O
to A under the natural isomorphism (a ) -a. Form the direct
a
sum A+ £ X inside MX . Here X denotes the
a,n a a,n
n>1 « a
homogeneous module of degree n(n> 1) of Xa, One can easily

verify that A+ T T X is an anticommutative graded
>l g 0

R-algebra contai;x—ing an isomorphic copy of A as the module of
homogeneous elements of degree 0. Denote by X the anti-
commutative graded R-algebra obtained from A + T I X

n>t o« 7
(dir) by identifying A with A under the natural isé_morphism
(aa)—>a. Now let d be the restriction of the product mapping

(d ) :MX -IIX to X. Since, for an arbitrary element
aa€l @ a
o o
x:(a)+(xa’1)a€ I+ +(xoz,n)ar€1 X
dx = (da)aﬁ 1 (a + (xa,i)ae I+ e+ (Xa,n)are I)
- (daa)a €1 * (da/(xa,n))aé I+ et (da(xa,n))a €I,

it follows that d maps X into X and is a derivation of degree

1 of X suchthat d d=0. Hence (X,d) is a complex over A.

We call (X,d) the product over A of the family (X ,da) (€ 1)
a

of complexes over A.
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Remark: Let ¢ be the restriction of the natural projection
p:IX ~X to X=A% T nX _(dir). Then
a a a,n

a « n>1 a
¢ :(X,d)=>{X ,d ) is a complex homomorphism over A. Itis
a a a

called the natural projection over A.

Now note that for any simple complex (X,d) over
A, X< Al X Therefore, we can choose a representative
- o

family (X ,d ) (s ¢ I) of simple complexes over A su.h that
a a
every simple complex over A is isomorphic to some -_Xa,ﬁa)

(2 €1). Now form the product (X,d) over A of the family
(Xa,cia_) (zeI) of complexes over A. Denote by u the A-sub-

algebra of X pgenerated by dA which is a set of homogeneous
elements of degree 0. Since u is an anticommutative graded
R-algebra such that uo = A, the complex (u,8) where & denotes

the restriction of d to u, is a complex cver A. Clearly {u, 6}
is a simple complex over A. We claim that {(u, ) is a universal
complex over A. For this let (Y,9) be any simple complex
over A. Then (Y,8) is isomorphic to some (Xn,dg) lov e 1)

Dencte this isomorphism by j. I w denctes the restricticn

&

of tne natural projection » {X,d}~{X .d } to (u,§) then =
[+ & (54 o

ie = complex homormeoerphism {(u,8}~{X ,d ) over A. So,
& o
jor =f is a complex homomorphism (u, §)-~(Y,9) over A.
o4

Since u is generated by dA as an A-algebra, f is unique.
Since every complex over A contains a simple complex over A,
it follows that (u, 8) is a universal complex over A. (u,d) is
obviously unique up to isomorphism.

4. Complexes over the homomorphic image of an algebra.

Let A and B be two unitary commutative R-algebras and
let $:A—-B be an R-algebra epimorphism. Let F be the kernel
of &. Then for any complex (X,d) over A, (X/J,d), where
J = XF + XdF 1is the complex ideal generated by F in X and d
is the unique derivation induced by d on X/J, is a complex
over B. Also, the natural graded algebra homomorphism
§X: X—X/J is a $-complex homomorphism and, so, extends 3.

Now let (Y, 6) be another complex over A and (Y/P, &) be the
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corresponding complex over B. Then one readily sees that
any complex homomorphism f{:(X,d)={Y,8) over A induces
a unique complex homomorphism f:(X/J, a)—»(Y/P, §) over B
such that @Y ¢ f=fo §X‘ Moreover, for any complex homo-

morphism f{' from (Y,8) over A, f'¢ f= et Thus, we
have the following proposition.

Proposition 4.1. Every R-algebra epimorphism &:A-B
induces a covariant functor T_ from the category of all com-

3

plexes and complex homomorphisms over A into the category
of all complexes and complex homomorphisms over B.

Proposition 4.2. T_ is onto and maps the universal

3

complexes over A to the universal complexes over B.

Proof. Let (Y,5) be any complex over B and §Y be

the anticommutative graded algebra obtained from Y by the
change of the basic ringto A. Then X=A® X .Y isan
$'n
n>1
anticommutative graded R-algebra such that the module Xo

of homogeneous elements of degree 0 is A. Moreover, the
i 9:X-+X gi by 9 = A d 09 =%
mapping given by 9 600 $ on an N L on
Y (n > 1) is a derivation of degree 1 of X such that 9°¢ 0 =0.
nnz

d
Thus (X,9) is a complex over A. Since J=XF+ X0F

=A@ T _Y)F+(A® = _Y )dF=AF=F, itfollows
d n o n
n_>=_1 nzi
that X/J=B® Z Y =Y. One can also easily verify that
nzi n _
§X° 9 =60 §X. Therefore, by the uniqueness of 9, it follows

that 6 =0. Hence T§(x,8)=(Y,a). Next, let (Z,d) be any

other complexover B and (A ® =
n>1 :
ponding complex over A. Then, for a complex homomorphism
£:(Y,8)~2,d) over B,gi(A® = .Y ,0)~A® = ,Z ,D)
n>1 : n>1 ¢n
given by g = identity on A and fon = §Yn is a complex
n>1

homomorphism over A. One immedia?ely sees that T

Z ,D) be the corres-
n

={.
é(g)
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Thus 'Té is onto. The second part of the proposition is an
immediate consequence of the ontoness of T§
Remark. We know that the collection of all R-algebras

together with their epimorphisms forms a category A (R).

We also know that with every R-algebra A we can associate the
category = (A) of all complexes over A. Moreover, Proposi-
tions 4.1, 4.2 say that with every epimorphism ¢§:A->B between
two R-algebras A and B we can associate a covariant functor

T6: S(A)-» 5(B) which is again onto. Thus, we get a corres-

pondence §—>T$ which has the following two properties:

(i) If ¢ is the identity mapping I:A-A, then TI: E(A)—= E(A)
is the identity mapping.

(ii) If C is another R-algebra, and Y:B--C an R-algebra
epimorphism, then the functors qu 03 and TLpO T§ are
naturally equivalent, the natural equivalence being given by the
canonical isomorphism X/M«»}'.f_ﬁwhere M 1is the complex ideal
generated by ker (y© §) in X; X =(X/J)/N, N being the
complex ideal generated by the ker (y) in X/J.

5. The Injective Limit of Complexes.

Let (Xa) (o ¢ I) be a family of anticommutative graded

R-algebras indexed by 1. For each a <@g, let fﬁa: Xa»XB

be a graded algebra homomorphism such that (Xa’fﬁa) (a < B)
is an injective system. In [2] it is shown that X = £ lim Xa
-—> ,
n>0 «

(dir) is an anticommutative graded R-algebra and is the injective
limit of th t X ,f < B).
imit o e system ( a ﬁa) (a < B)

Remarks. (1) Let (Aa,q; ) be an injective system of
Semares. ; o

P

R-algebras indexed by a directed set I. If for each o€, Xa

is such that the module X o of homogeneous elements of
a’

degree 0 of X isequalto A then X =lim A and X is
a (24 (o] - o

an anticornmutative graded algebra over lim A .
- [24
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(2) For each o €1, the natural mapping ¢ X —=X is a
o«

graded R-algebra homomorphism.

Let I be a directed set and let (Aa,(p Q/) (¢ < B) be an

P

injective system of R-algebras indexed by the set 1. Let

(X ,d ), f‘3 ) (@ < B) be an injective system of complexes such
[24 o (24 -

that for each o €1, (Xa,d ) is a complex cver Aa. Then
o
(X ,f ) is an injective system of anticommutative graded
(o4 o
algebras. Set X=lim X . By Remark1, X =lim A and
- a o -
X is an anticommutative graded algebra over lim A . Also,

a
for each «a <p in I, the following diagram commutes:

d
a
a > X
£
ta Ba
W Vv
X y X
Ve
B 4 B
p

(since fﬁa are complex homomorphisms). So (da) (z€I) is an

injective system of mappings. Now, for each o€ I, set
N =¢ od, where ¢ :X -X is the natural graded algebra
a a a a a

homomorphism. Then, for a<f in I,

A f = d = f d = d =\
B fea T %% % Tha T %% Tea’ Y T %a® % T P

implies the existence of the unique mapping limd =d of X into
- a
itself suchthat ¢ od =dog¢p for all a€el. One can easily
a o o

verify that d is an R-derivation of degree 1 of X such that
257
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dod=0. Therefore, (X,d) is a complex over 1i_rz1 Aa

Definition 5.1. We call (X,d) the injective limit of the
injective system ((X ’da)’ fﬁa) (¢ < B), and we shall write
a =

(X,d) =lim (X ,d ).
- (o3 [0

Remark. If each (X ,d ) is a complex over A, then
f[emarx. o o

(X,d) is a complex over A.

For an injective system (Aa,(p ) (@ < B) of R-algebras

, Ba
indexed by a set I, let \/ be the category whose objects are
the injective systems ((Xa’da)’ fﬁa) ( < B) of complexes

(indexed by 1I) such that for each o in I (Xa’da) is a com-

plex over A , and whose maps are the maps between these
o

injective systems.

Proposition 5.1.. The covariant functor lim from " into

¢ (A), the category of all complexes over A = lim A , 1is onto.
-

Proof. Let (X,d) be a complex over A =1lim A , and
——————— - fe3
let ¢ : A =A be the natural mappings (e €I). We kn that
a
for each @ € I, X can be made into an A -module by defining
o

the scalar multiplication by the elements of A as follows:
a

ax = y (a )x foreach a in A and x in X.
o a @ a a
Thus, for each ao€1, (X ,d ) with X =A ; X = the
o o a0 @ o,n
A -module X (n>1); and d =d o4 on A, d = d
@ n — a, 0 o o a a,n n
on Xa n (n >1) is a complex over A . So we have a family
) - o

(Xa’da) (o € I) of complexes such that for each o€ 1, (X ,d )
, o«

is a complex over A-. Now, for each ¢ <f in I, h :X =X
a =

pa e P
be the mapping given by hﬁa =¢f on A and identity on
@ a
2 X . Then, since each x¢€ X can e written as a + x with
>4 n [ [ o
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a €A, x € X X, it follows from the definitions of d and

a @ @ o, n a
hﬁa' that hﬁaﬂxa' da)»(Xﬁ, dﬁ) is a (pﬂa- complex homomorphism
(af f). Moreover, ((XQ, da)' hﬁa) (af B) is an injective system

of complexes indexed by I; since « <f and I directed implies

the existence a of 6€ I with & > o,B and for this 6,
h =h, h +x )= +x = +

héﬁ ﬁ0((x) 56 Ba(aa x ) Y55 ¢Qa(aa) X =052, T %,

= h6 (a +x )=h6 (x). Thus ((X ,d ),h_ ) (e <p) belongs
a o a a a a Pa -

tosd. Now we claim that Iiin (Xa’ da) =(X,d). For this we

recall that (i) Ilim X =Ilim A + Z lim X =limA + Z Iim X
ing o1 ing o -> a,n ind a -
n>1 « n>1 a
=A@ Z Xn = X; and (ii) the natural graded R-algebra homo-
n>1

. X =X i . - i denti
morphism ?, Xa X 1is given by e, HUG on Aa and identity on
X (n>1). From (ii) and the definition of da it follows that

,n
¢ od =de ¢ ae€l. Therefore, by the uniqueness of lim d ,
a o« a - «
one has d = li_rp da and, hence lim (Xa’da) =(X,d). Thus, it

only remains to show that if (Y,5) is another complex over A
and f:(X,d)—=(Y,5) is a complex homomorphism over A then
there exists a map (g ) (e € I) from the injective system

a

(X ,d ), h‘3 ) to the corresponding injective system
a 24 a
((Y ,6 ), g. ) suchthat lim g =f. This however follows
a «a Ba - To
from the fact that for each o in I, the mapping g :
o

A @ ZT X =-A @® Z Y givenby g =identityon A and
@ n a a

n a
n>1 n>1
f on £ X 1is a complex homomorphism (X ,d )= (Y ,6)
n a @ a «a
n>1
over Aa, such that gﬁa° g, =g[3° hﬁa for each a<B in I;

and that fogp =¢' og (z€lI) where ' :Y - 7Y is the
a a a a a

natural graded algebra homomorphism. Hence Ii_xp is onto.

Proposition 4.2. Let ((U ,d ), £ ) be an injective
a «a Ba

system of complexes such that for each o in I, (UQ, da) is a
universal complex over Aa. Then (U,d) =1lim (Ua'da) is a

universal complex over lim A =A.
- «
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Proof. Let (Y, &) be any complex over A. Then by
the ontoness of the covariant functor lim there exists an injective
system ((Y ,6 ), g. ) (a< P) such that (Y,6&) =lim (Y ,& ).
o a fa - - a
Since for each o€, (Ua,da) i¢ a universal complex over Au,

there exists & unique complex homomorphism f : (U ,d )->(Y ,6& )
(o3 [0 a [o3 (o3

(e € I} over A . It can easily be checked that for each o <
o =

g ¢ f =f ¢f ; thus (f ) (a€I) is an injective system
“Fa a B RPo @

of mappings. Set f= lim fa. Then, clearly, f{:(U,d) - (Y, &)

in 1,

is a complex homomorphism over A. Uniqueness of f follows
from the fact that U is generated by dA as an A-algebra.

6. The Projective Limit of Complexes.

Let (X ) (¢ € I) be a family of anticommutative graded
o
R-algebras. It is known that their cartesian product II X
o

04
is again an R-algebra. Inside I X , we form the sum X
o o n_>-0
o X =7P X of the R-modules I X , where X denotes
a a,n a o o a,n a,n
the module of homogeneous elements of degree n of X (n>0).
o 2
Clearly, this sum is direct and TPaXa is an anticommutative
graded R-algebra. We call 7P0,X the product of the family
o 2o
(Xa) (o € I) of anticommutative graded R-algebras. If 7/0[
denotes the restriction of the natural projection T X - X to
a « a

JP X, then vy 1is a graded R-algebra epimorphism and we
a o a

call it the natural projection.

Now, let (X ,f ﬁ) (o< B) be a projective system of anti-
a -
commutative graded R-algebras, and set X ={x|xe7F’ X,
a o
')oa(x) :faﬁ c r*,oﬁ(x)}. Then, from a straightforward computa-

tion it follows that X = £ Ilim X (dir) and X is an anti-
. a,n
n>0 «

commutative graded R- a-fgebra .
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Definition 6.4. X = Z lim Xa A (dir) will be called
n>0 o !
srojective limit of the projective system (Xa'f ).

ap

Remark. Let (A 9, ) (¢ < B) be a projective system
Semar®. @ =

P

of R-algebras indexed by a directed set 1. Let (Xa' faﬁ)

(@ < B) be a projective system of anticommutative graded
R-algebras also indexed by 1. 1If each Xa is such that

X =A , then X -lim A .
a, 0 a o - a

Next, let ((X ,d ), f B) (o < B) be a projective system of
a a a -

complexes (indexed by a directed set I) such that for each
a€l (X ,d ) is a complex over A where (A ,¢ ) (a<B)
a o a a af -

is a projective system of R-algebras indexed by I. We note
that the restriction & of the mapping (d ) X -n0Xx
aa€l o a a «
to /P X is a derivation of degree 1 of 7P X such that
o a a

6o &=0; thus, (/P X ,6) isa complexover II A and the

a o o a
natural projections ¥ : /£ X - X are such that

a a «a a

-7’ac 6= 6& < ‘rb‘, (2 €I). Denote by d the restriction of 6§ to X.

Then, for any x in X,

,(dx) = d (¥ (x),. (since d is the restriction of ©)
= 4,00 R
= f,p9pFplx) » (since £ . isag  -complex
homomorphism)
= f,0 Tldx) s

that is, dxe X. Thus d maps X into itself. Clearly, d is
a derivation of degree. 1 of X such that dod =o0. Therefore,

in view of the Remark 1, (X,d) is a complex over lim A .
- o«
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Detinition o.2. We call (X,d), the projective limit of

th jecti t X,d) £ )
e projective system (( " a) 0(3)

We need the following lemma:

Lemma 6.4. Let k be a field anc let K be a purely
transcendental extension of k such that the degree of transcendence
oi K over k is infinite. Let (U,d) be 2 universal complex

over K. Then the dimension of Ui’ which is the module of

homogeneous elements of degree 1 of U, over K is equal to
the degree of transcendence of K over k.

Proof. K a purely transcendental extension of k implies
K is isomorphic to the quotient field of a polynomial ring K[X]
where X is a set of indeterminates such that cardinality of
X = degree of transcendence of K over k. We recall thata
universal complex (V,8) over K[X] is such that V1 is a free

K[X]J-module on the set {éx|xe X}. Therefore, U1 =K k%{] V‘1

is a free K-module on the set {1 ® 6x|xe X} [1]. Hence,
dimension of U‘1 over K =degree of transcendence of K over k.

Remark. This lemma generalises Kahler's result [3] for
finitely generated fields to the fields of arbitrary infinite degree
of transcendence.

Now we are in a position to give the desired examples.
Let X be a field of characteristic p, =znd let K[y] be a poly-
nomial ring in one indeterminate y over K. Let Jk be the
k
ideal generated by yp in K[y], and let Ak =K[y}/3k
(k. =1, 2, 3, ...). We know that for each k<¢, 51 C_:_Jk;
therefore, there exists a natural K-algebra homomorphism

0., B, A, suchthat ¢ (a + J, y=a+J, forall a in K[y].

Clearly, {Ak, 29

A =1lim A,, then it is known that A is the ring of formal power
X

-—

) is a projective system of K-algebras. if

series in one indeterminate y over X{[3]); thatis, A =K{y}.

Tar eact <> 1, let- (U ,d ) be a universal complex cver A _.

Z k' k k

“rge, c:zzch k>4, A_ is generzted over K by the single
— k <
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eleonent Vi =Y 4 Jk, it follows that Uk is generated by the

gin, ie element w, =d y as an Ak-algebra.

k k' k

Now, let (V,8) be a universal complex over K[y].
k
Since 6(3«'P ) =0 for each k, the complex ideal generated by
Jk in V is Jk + Jkéy; and, so by Propositions 4.1 and 4.2,

“Uk' dk) is isomorphic to (V/Jk + J. oy, 6k) = (Vk, 6k) which

k
gives the linear independence of W over Ak (k> 1). More-

over, for each k<{, there exists a P1g -complex homomor-

' : ,6 ) = (V., f +3J +
phism fkl (V! 61) (Vk 6k) such that kl(lSy J Jlby)

1

=6y + Jk + Jk 6y. So ((Vk, 6k)'fkl ) (k_<_ ) is a projective

system of complexes. Since for each (, (U 'dl) is isomorphic

JJ
to (Vl ’gl ), it follows that for each k < g there exists a

Cig -complex homomorphism gkl : (Ul ,dl ) - (Uk, dk) such

that gkl (w )=w, and ((Uk,dk),g ) is a projective system

2 k ke
of complexes. Let (U,d) be the projective limit of the pro-

jective system ((Uk, dk)’fkl ). Then U is generated by the

family (Wk)k as lim Ak=K{y} algebra. For, let ue U be
arbitrary. Then u-= (uk)k, uk€ Uk (k> 1) and
';ﬁk(u) = gkj 7>j(u) for all k< j. Thatis, uk = gkj(uj), and

S0 =gk'(a'w') =¢ .(a,)w, . Since w_ is linearly
SN k

a w
k k kKj'j k
independent over Ak, it follows that ak = ¢kj(aj); that is

k

u = (ak)k(wk)k implies that U is generated by the single

element (Wk)k over K{y}. We claim that a universal com-

pk((ak)k) =(pkj rj((ak)k), and so (ak)k€ IEn A . Thus

plex over K{y} is infinitely generated. Since K{y} isan
integral domain we can form its field of quotients, which we
denote by K((y)). Then K((y)) is a purely transcendental
extension of K and the degree of transcendence of K((y))

cver K 1is equal to the cardinality of KN where N is the set
of natural numbers (see [3], ex. 13, Sec. 5). Now let (W, D)
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be a universal complex over K{y}. 1If S denotes the set of
all non-zero elements of K{y}, then (WS, DS) is a universal

=K({{y) ® W and

K{y}

DS: WS - W_ is the derivation given as follows:
e

complex over K((y)) where WS

1 . .
for any —® x in W , homogeneous of degree n ,
s s

1 1 n 1
Ds(g®x) = :@Dx- (-1) :?:®Ds.

Since the degree of transcendence of K((y)) over XK is
infinite, by Lemma 6.1, the dimensions of the module (WS)
1

of homogeneous elements of degree 1 of W_ over K({y)) is

S
infinite. Thus, Ws is not finitely generated over K((y)). If
W is finitely generated over K{y}, then WS =K{(y)) @ W

K{y}
will imply that WS is finitely generated over K((y));

a contradiction. Hence W is not finitely generated over K{y},
and so (U,d) is not isomorphic to (W,D). Hence (U,d) is
not a universal complex over K{y}.

Remark. This example also proves that if
(M ,d ), £ £3) (¢ < B) is a projective system of universal
a «a @ -
derivation modules such that for each o, Ma is an

A -module then the projective limit (lim Ma, d) need not be
a - .

a universal derivation module over Ilim Aa =A.
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