ON THE INJECTIVE AND PROJECTIVE LIMIT OF COMPLEXES

Krishna Tewari*

(received June 13, 1964)

1. Introduction.

The projective system of algebras considered here is (A_k, φ_{k1}) $(k \le 1)$ where $A_k = K[y]/J_k$, K[y] being the polynomial ring in one indeterminate y over a field K of characteristic p

Canad. Math. Bull. vol. 8, no. 3, April 1965

The author wishes to express her thanks to Professor B.

Banaschewski for his guidance during the preparation of this work.

and J_k being the ideal generated by y^p in K[y]. The result that the projective limit of a projective system $((U_k, d_k), f_{k\ell})$ $(k \le \ell)$, where (U_k, d_k) is a universal complex over A_k for all k, is not a universal complex over $\lim_{k \to 0} A_k = K\{y\}$ which is the formal power series ring in one indeterminate, is obtained by proving that a universal complex over $K\{y\}$ is infinitely generated.

2. Preliminaries.

Let X and Y be two graded algebras over a commutative ring R with unit. Let $f: X \rightarrow Y$ be a graded R-algebra homomorphism. We recall that an R-linear mapping d: X→Y of X into Y is called an R-derivation of degree 1 if (i) d is a homogeneous R-linear mapping of degree 1; and (ii) for any x, x' in X, with x homogeneous of degree n, $d(xx') = dx \cdot f(x')$ + $(-1)^n$ f(x) dx'. In particular, if Y = X, then an R-derivation of degree 1 of X into itself is called an R-derivation of degree 1 of X. For any unitary commutative R-algebra A, a pair (X, d), where X is an anticommutative graded R-algebra such that $X_{\alpha} = A$ and where $d: X \rightarrow X$ is an R-derivation of degree 1 of X such that $d \cdot d = 0$, is called a complex over A. We call a complex (X,d) over A simple if X is generated by dA as an A-algebra. In this case we shall say that the complex (X,d) is generated by A. For any two complexes (X,d), (Y,δ) over A, a graded R-algebra homomorphism f:X→Y is called a complex homomorphism over A if (i) f maps A identically; and (ii) $f \circ d = \delta \circ f$. We write $f:(X, d) \rightarrow (Y, \delta)$. If $f: X \rightarrow Y$ is a graded algebra isomorphism then the complex homomorphism $f:(X,d)\rightarrow(Y,\delta)$ over A is called a complex isomorphism over A. If A and B are two unitary commutative R-algebras and $\varphi:A\to B$ an R-algebra homomorphism then, for a complex (X,d) over A and a complex (Y, δ) over B, $f:(X, d) \rightarrow (Y, \delta)$ is called a φ -complex homomorphism if (i) $f: X \rightarrow Y$ is a graded R-algebra homomorphism such that $f = \varphi$ on A; (ii) $f \circ d = \delta \circ f$. Finally, a homogeneous ideal $J \subset X$ is called a complex ideal iff $dJ \subset J$.

3. Universal Complexes.

<u>Definition 3.1:</u> A complex (U,d) over an R-algebra A is called <u>universal</u> [5] if, given any other complex (Y, δ) over A, there exists a unique complex homomorphism $f:(u,d) \rightarrow (Y,\delta)$ over A.

In the following we shall establish the existence of universal complex over A using the approach contained in Bourbaki's solution of the universal mapping problem [4]. For this we shall first define the product of a family of complexes over A. Let (X_{α}, d_{α}) ($\alpha \in I$) be a family of complexes over A. We know that the product $\prod X_{\alpha}$ is an R-algebra. Set $\overline{A} = \{(a_{\alpha}) | a_{\alpha} \in A \text{ and } a \in A \}$ $a_{\alpha} = a \text{ for all } \alpha \in I$. Then $\overline{A} \subseteq \prod_{\alpha \neq 0} X$ and \overline{A} is isomorphic to A under the natural isomorphism $(a_n) \rightarrow a$. Form the direct sum \overline{A} + Σ \prod X inside \prod X. Here X denotes the n>1 α homogeneous module of degree $n(n \ge 1)$ of X. One can easily verify that $\overline{A} + \sum_{n>1} \prod_{\alpha,n} X_{\alpha,n}$ is an anticommutative graded R-algebra containing an isomorphic copy of A as the module of homogeneous elements of degree 0. Denote by X the anticommutative graded R-algebra obtained from $\bar{A} + \Sigma \prod X_{\alpha,n}$ (dir) by identifying A with A under the natural isomorphism Now let d be the restriction of the product mapping $(d_{\alpha})_{\alpha \in I} : \prod_{\alpha} X_{\alpha} \to \prod_{\alpha} X_{\alpha}$ to X. Since, for an arbitrary element $x = (a) + (x_{\alpha,1})_{\alpha \in I} + \dots + (x_{\alpha,n})_{\alpha \in I}$ in X, $dx = (d_{\alpha})_{\alpha \in I} (a + (x_{\alpha,1})_{\alpha \in I} + \dots + (x_{\alpha,n})_{\alpha \in I})$ $= (d_{\alpha}a) + (d_{\alpha}(x_{\alpha})) + \dots + (d_{\alpha}(x_{\alpha})) = \dots + \dots + (d_{\alpha}(x_{\alpha})) = \dots$

it follows that d maps X into X and is a derivation of degree 1 of X such that d d = 0. Hence (X,d) is a complex over A. We call (X,d) the <u>product over</u> A <u>of the family</u> (X_{α},d_{α}) $(\alpha \in I)$ of complexes over A.

Remark: Let φ be the restriction of the natural projection $\varphi: \Pi X \to X_{\alpha}$ to $X = A + \sum \Pi X_{\alpha}$ (dir). Then $\alpha \to \alpha$ $\alpha \to \alpha$ $\alpha \to 1$ $\alpha \to 1$ $\alpha \to 1$ $\alpha \to 1$ $\alpha \to 1$ is a complex homomorphism over A. It is called the natural projection over A.

Now note that for any simple complex (X, d) over A, $|X| \leq |A| \approx 0$ Therefore, we can choose a representative family (X_{α}, d_{α}) (o f I) of simple complexes over A such that every simple complex over A is isomorphic to some (X,,d) ($\alpha \in I$). Now form the product (X, d) over A of the family (X_{α}, d_{α}) ($\alpha \in I$) of complexes over A. Denote by u the A-subalgebra of X generated by dA which is a set of homogeneous elements of degree 0. Since u is an anticommutative graded R-algebra such that u = A, the complex (u, δ) where δ denotes the restriction of d to u, is a complex over A. Clearly (u, δ) is a simple complex over A. We claim that (u, δ) is a universal complex over A. For this let (Y, 0) be any simple complex over A. Then (Y, ∂) is isomorphic to some $(X_{\alpha}, d_{\alpha}) (\alpha \in I)$. Denote this isomorphism by j. If $\pi_{_{\infty}}$ denotes the restriction of the natural projection $\varphi_{\alpha}:(X,d)\to(X_{\alpha},d_{\alpha})$ to (u,δ) then π_{α} is a complex homormorphism $(u, \delta) \rightarrow (X_{\alpha}, d_{\alpha})$ over A. So, $jo\pi = f$ is a complex homomorphism $(u, \delta) \rightarrow (Y, \partial)$ over A. Since u is generated by dA as an A-algebra, f is unique. Since every complex over A contains a simple complex over A, it follows that (u, δ) is a universal complex over A. (u, δ) is obviously unique up to isomorphism.

4. Complexes over the homomorphic image of an algebra.

Let A and B be two unitary commutative R-algebras and let $\Phi: A \to B$ be an R-algebra epimorphism. Let F be the kernel of Φ . Then for any complex (X,d) over A, $(X/J,\bar{d})$, where J = XF + XdF is the complex ideal generated by F in X and \bar{d} is the unique derivation induced by d on X/J, is a complex over B. Also, the natural graded algebra homomorphism $\Phi_X: X \to X/J$ is a Φ -complex homomorphism and, so, extends Φ . Now let (Y, δ) be another complex over A and $(Y/P, \bar{\delta})$ be the

corresponding complex over B. Then one readily sees that any complex homomorphism $f:(X,d)\to (Y,\delta)$ over A induces a unique complex homomorphism $\overline{f}:(X/J,\overline{d})\to (Y/P,\overline{\delta})$ over B such that $\overline{\Phi}_Y \circ f = \overline{f} \circ \overline{\Phi}_X$. Moreover, for any complex homomorphism f' from (Y,δ) over A, $\overline{f' \circ f} = \overline{f' \circ f}$. Thus, we have the following proposition.

Proposition 4.1. Every R-algebra epimorphism $\Phi: A \to B$ induces a covariant functor $T_{\overline{\Phi}}$ from the category of all complexes and complex homomorphisms over A into the category of all complexes and complex homomorphisms over B.

Proposition 4.2. Φ is onto and maps the universal complexes over A to the universal complexes over B.

Proof. Let (Y,δ) be any complex over B and Φ Y be the anticommutative graded algebra obtained from Y by the change of the basic ring to A. Then $X = A \oplus \sum_{\substack{i = 1 \ inner 1}} Y_i$ is an anticommutative graded R-algebra such that the module X_0 of homogeneous elements of degree 0 is A. Moreover, the mapping $\theta: X \to X$ given by $\theta_0 = \delta_0 \circ \Phi$ on A and $\theta_n = \delta_n$ on Φ is a derivation of degree 1 of X such that $\theta \circ \theta = 0$. Thus (X,θ) is a complex over A. Since $A \to A$ is follows $A \to A$ is a complex over A. Since $A \to A$ is follows $A \to A$ in $A \to A$ is a complex over A. Since $A \to A$ is follows that $A \to A$ is a complex over A. Since $A \to A$ is follows $A \to A$ in $A \to A$ is a complex over A. Note can also easily verify that $A \to A$ in $A \to A$ in $A \to A$ in $A \to A$ in $A \to A$ in the corresponding complex over B and $A \to A$ in $A \to A$ in

Thus $T_{\underline{\Phi}}$ is onto. The second part of the proposition is an immediate consequence of the ontoness of $T_{\underline{\Phi}}$.

Remark. We know that the collection of all R-algebras together with their epimorphisms forms a category $\mathcal{K}(R)$. We also know that with every R-algebra A we can associate the category $\mathcal{L}(A)$ of all complexes over A. Moreover, Propositions 4.1, 4.2 say that with every epimorphism $\Phi: A \to B$ between two R-algebras A and B we can associate a covariant functor $T_{\Phi}: \mathcal{L}(A) \to \mathcal{L}(B)$ which is again onto. Thus, we get a correspondence $\Phi \to T_{\Phi}$ which has the following two properties:

- (i) If Φ is the identity mapping $I:A \rightarrow A$, then $T_I: \mathcal{E}(A) \rightarrow \mathcal{E}(A)$ is the identity mapping.
- (ii) If C is another R-algebra, and $\psi:B\to C$ an R-algebra epimorphism, then the functors $T_{\psi\circ\bar{\Phi}}$ and $T_{\psi}\circ T_{\bar{\Phi}}$ are naturally equivalent, the natural equivalence being given by the canonical isomorphism $X/M\to \bar{\overline{X}}$ where M is the complex ideal generated by ker $(\psi\circ\bar{\Phi})$ in X; $\bar{\overline{X}}=(X/J)/N$, N being the complex ideal generated by the ker (ψ) in X/J.

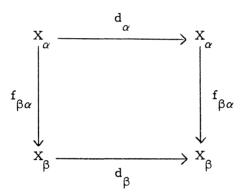
5. The Injective Limit of Complexes.

Let (X_{α}) ($\alpha \in I$) be a family of anticommutative graded R-algebras indexed by I. For each $\alpha \leq \beta$, let $f_{\beta\alpha}: X_{\alpha} \to X_{\beta}$ be a graded algebra homomorphism such that $(X_{\alpha}, f_{\beta\alpha})$ ($\alpha \leq \beta$) is an injective system. In [2] it is shown that $X = \sum_{\alpha \in A} \lim_{\alpha \in A} X_{\alpha}$ (dir) is an anticommutative graded R-algebra and is the injective limit of the system $(X_{\alpha}, f_{\beta\alpha})$ ($\alpha \leq \beta$).

Remarks. (1) Let $(A_{\alpha}, \varphi_{\beta\alpha})$ be an injective system of R-algebras indexed by a directed set I. If for each $\alpha \in I$, X_{α} is such that the module $X_{\alpha,0}$ of homogeneous elements of degree 0 of X_{α} is equal to A_{α} then $X_{\alpha} = \lim_{\alpha \to \alpha} A_{\alpha}$ and X is an anticommutative graded algebra over $\lim_{\alpha \to \alpha} A_{\alpha}$.

(2) For each $\alpha \in I$, the natural mapping $\varphi: X \to X$ is a graded R-algebra homomorphism.

Let I be a directed set and let $(A_{\alpha}, \varphi_{\beta\alpha})$ $(\alpha \leq \beta)$ be an injective system of R-algebras indexed by the set I. Let $((X_{\alpha}, d_{\alpha}), f_{\beta\alpha})$ $(\alpha \leq \beta)$ be an injective system of complexes such that for each $\alpha \in I$, (X_{α}, d_{α}) is a complex over A_{α} . Then $(X_{\alpha}, f_{\beta\alpha})$ is an injective system of anticommutative graded algebras. Set $X = \lim_{\alpha \to \alpha} X_{\alpha}$. By Remark 1, $X_{\alpha} = \lim_{\alpha \to \alpha} A_{\alpha}$ and X is an anticommutative graded algebra over $\lim_{\alpha \to \alpha} A_{\alpha}$. Also, for each $\alpha \leq \beta$ in I, the following diagram commutes:



(since $f_{\beta\alpha}$ are complex homomorphisms). So (d_{α}) ($\alpha \in I$) is an injective system of mappings. Now, for each $\alpha \in I$, set $\lambda_{\alpha} = \varphi_{\alpha} \circ d_{\alpha}$, where $\varphi_{\alpha} : X_{\alpha} \rightarrow X$ is the natural graded algebra homomorphism. Then, for $\alpha < \beta$ in I,

$$\lambda_{\beta} \circ f_{\beta \alpha} = \varphi_{\beta} \circ d_{\beta} \circ f_{\beta \alpha} = \varphi_{\beta} \circ f_{\beta \alpha} \circ d_{\alpha} = \varphi_{\alpha} \circ d_{\alpha} = \lambda_{\alpha}$$

implies the existence of the unique mapping $\lim_{\to} d_{\alpha} = d$ of X into itself such that $\varphi_{\alpha} \circ d_{\alpha} = d \circ \varphi_{\alpha}$ for all $\alpha \in I$. One can easily verify that d is an R-derivation of degree 1 of X such that

 $d \circ d = 0$. Therefore, (X, d) is a complex over $\lim_{\to} A_{\alpha}$.

Definition 5.1. We call (X, d) the injective limit of the injective system $((X_{\alpha}, d_{\alpha}), f_{\beta\alpha})$ $(\alpha \leq \beta)$, and we shall write $(X, d) = \lim_{\alpha \to 0} (X_{\alpha}, d_{\alpha})$.

Remark. If each (X_{α}, d_{α}) is a complex over A, then (X, d) is a complex over A.

For an injective system $(A_{\alpha}, \varphi_{\beta\alpha})$ $(\alpha \leq \beta)$ of R-algebras indexed by a set I, let $\mathscr I$ be the category whose objects are the injective systems $((X_{\alpha}, d_{\alpha}), f_{\beta\alpha})$ $(\alpha \leq \beta)$ of complexes (indexed by I) such that for each α in I (X_{α}, d_{α}) is a complex over A_{α} , and whose maps are the maps between these injective systems.

Proposition 5.1. The covariant functor $\lim_{n \to \infty} A_n$ into ξ . (A), the category of all complexes over $A = \lim_{n \to \infty} A_n$, is onto.

Proof. Let (X,d) be a complex over $A = \lim_{\alpha} A_{\alpha}$, and let $\psi_{\alpha} : A_{\alpha} \to A$ be the natural mappings $(\alpha \in I)$. We know that for each $\alpha \in I$, X can be made into an A_{α} -module by defining the scalar multiplication by the elements of A_{α} as follows:

 $a_{\alpha} x = \psi_{\alpha} (a_{\alpha}) x$ for each a_{α} in A_{α} and x in X.

Thus, for each $\alpha \in I$, (X_{α}, d_{α}) with $X_{\alpha \circ} = A_{\alpha}$; $X_{\alpha, n} =$ the A_{α} -module X_{n} $(n \ge 1)$; and $d_{\alpha, 0} = d_{\alpha} \circ \psi_{\alpha}$ on A_{α} , $d_{\alpha, n} = d_{n}$ on $X_{\alpha, n}$ $(n \ge 1)$ is a complex over A_{α} . So we have a family (X_{α}, d_{α}) $(\alpha \in I)$ of complexes such that for each $\alpha \in I$, (X_{α}, d_{α}) is a complex over A_{α} . Now, for each $\alpha \le \beta$ in I, $h_{\beta\alpha}: X_{\alpha} \to X_{\beta}$ be the mapping given by $h_{\beta\alpha} = \varphi_{\beta\alpha}$ on A_{α} and identity on $\sum_{\alpha \in I} X_{\alpha}$. Then, since each $x \in X_{\alpha}$ can be written as $a + x_{\alpha}$ with $n \ge 1$

 $a_{\alpha} \in A_{\alpha}, x_{\alpha} \in \Sigma X_{n}$, it follows from the definitions of d_{α} and $h_{\beta\alpha}$, that $h_{\beta\alpha} = (X_{\alpha}, d_{\alpha}) \rightarrow (X_{\beta}, d_{\beta})$ is a $\varphi_{\beta\alpha}$ -complex homomorphism $(\alpha \leq \beta)$. Moreover, $((X_{\alpha}, d_{\alpha}), h_{\beta\alpha})$ $(\alpha \leq \beta)$ is an injective system of complexes indexed by I; since $\alpha < \beta$ and I directed implies the existence a of $\delta \in I$ with $\delta \geq \alpha, \beta$ and for this δ , $h_{\delta\beta} h_{\beta\alpha}(\mathbf{x}) = h_{\delta\beta} h_{\beta\alpha}(\mathbf{a}_{\alpha} + \mathbf{x}_{\alpha}) = \varphi_{\delta\beta} \varphi_{\beta\alpha}(\mathbf{a}_{\alpha}) + \mathbf{x}_{\alpha} = \varphi_{\delta\alpha}(\mathbf{a}_{\alpha}) + \mathbf{x}_{\alpha}$ = $h_{\delta,\alpha}(a_{\alpha} + x_{\alpha}) = h_{\delta,\alpha}(x)$. Thus $((X_{\alpha}, d_{\alpha}), h_{\delta,\alpha}) (\alpha \le \beta)$ belongs to \mathscr{A} . Now we claim that $\lim_{x \to a} (X_x, d_x) = (X, d)$. For this we recall that (i) $\lim_{\alpha} X_{\alpha} = \lim_{\alpha} A_{\alpha} + \sum_{\alpha} \lim_{\alpha} X_{\alpha,n} = \lim_$ = A $\bigoplus \sum_{n} X_{n} = X$; and (ii) the natural graded R-algebra homomorphism $\varphi_{\alpha}: X_{\alpha} \to X$ is given by $\varphi_{\alpha} = \psi_{\alpha}$ on A_{α} and identity on $X_{\alpha,n}$ (n \geq 1). From (ii) and the definition of d_{α} it follows that $\varphi_{\alpha} \circ d_{\alpha} = d \circ \varphi_{\alpha} \quad \alpha \in I.$ Therefore, by the uniqueness of $\lim_{\to} d_{\alpha}$, one has $d = \lim_{x \to a} d_x$ and, hence $\lim_{x \to a} (X_x, d_x) = (X, d)$. only remains to show that if (Y,δ) is another complex over A and $f:(X,d)\rightarrow(Y,\delta)$ is a complex homomorphism over A then there exists a map (g_{α}) $(\alpha \in I)$ from the injective system $((X_{\alpha}, d_{\alpha}), h_{\beta\alpha})$ to the corresponding injective system $((Y_{\alpha}, \delta_{\alpha}), g_{\beta\alpha})$ such that $\lim_{\alpha \to \alpha} g_{\alpha} = f$. This however follows from the fact that for each α in I, the mapping g_{α} : $A_{\alpha} \bigoplus_{n>1} \sum_{n} X_{n} \rightarrow A_{\alpha} \bigoplus_{n>1} \sum_{n} Y_{n}$ given by $g_{\alpha} = identity$ on A_{α} and f on $\sum_{n=1}^{n} X_n$ is a complex homomorphism $(X_{\alpha}, d_{\alpha}) \rightarrow (Y_{\alpha}, \delta_{\alpha})$ over A_{α} , such that $g_{\beta\alpha} \circ g_{\alpha} = g_{\beta} \circ h_{\beta\alpha}$ for each $\alpha \leq \beta$ in I; and that $f \circ \varphi_{\alpha} = \psi'_{\alpha} \circ g_{\alpha}$ ($\alpha \in I$) where $\psi'_{\alpha} : Y_{\alpha} \to Y$ is the natural graded algebra homomorphism. Hence \lim_{\longrightarrow} is onto.

Proposition 4.2. Let $((U_{\alpha}, d_{\alpha}), f_{\beta\alpha})$ be an injective system of complexes such that for each α in I, (U_{α}, d_{α}) is a universal complex over A_{α} . Then $(U, d) = \lim_{\alpha} (U_{\alpha}, d_{\alpha})$ is a universal complex over $\lim_{\alpha \to \alpha} A_{\alpha} = A$.

Proof. Let (Y, δ) be any complex over A. Then by the ontoness of the covariant functor \lim there exists an injective system $((Y_{\alpha}, \delta_{\alpha}), g_{\beta\alpha})$ ($\alpha \leq \beta$) such that $(Y, \delta) = \lim_{\alpha \to \infty} (Y_{\alpha}, \delta_{\alpha})$. Since for each $\alpha \in I$, (U_{α}, d_{α}) is a universal complex over A_{α} , there exists a unique complex homomorphism $f_{\alpha} : (U_{\alpha}, d_{\alpha}) \to (Y_{\alpha}, \delta_{\alpha})$ ($\alpha \in I$) over A_{α} . It can easily be checked that for each $\alpha \leq \beta$ in I, $g_{\beta\alpha}$, $f_{\alpha} = f_{\beta}$ of $f_{\beta\alpha}$; thus (f_{α}) ($\alpha \in I$) is an injective system of mappings. Set $f = \lim_{\alpha \to \infty} f_{\alpha}$. Then, clearly, $f:(U, d) \to (Y, \delta)$ is a complex homomorphism over A. Uniqueness of f_{α} follows from the fact that U is generated by dA as an A-algebra.

6. The Projective Limit of Complexes.

Let (X_{α}) ($\alpha \in I$) be a family of anticommutative graded R-algebras. It is known that their cartesian product $\prod_{\alpha} X_{\alpha}$ is again an R-algebra. Inside $\prod_{\alpha} X_{\alpha}$, we form the sum $\sum_{\alpha = 1}^{\infty} \sum_{\alpha =$

Now, let $(X_{\alpha}, f_{\alpha\beta})$ ($\alpha \leq \beta$) be a projective system of anti-commutative graded R-algebras, and set $X = \{x \mid x \in \mathcal{T}, X_{\alpha}, \mathcal{P}_{\alpha}(x) = f_{\alpha\beta} \in \mathcal{P}_{\beta}(x)\}$. Then, from a straightforward computation it follows that $X = \sum_{n \geq 0} \lim_{\alpha \in \alpha} X_{\alpha,n}$ (dir) and X is an anti-commutative graded R-algebra.

Definition 6.1. $X = \sum_{n \geq 0} \lim_{\alpha \neq n} X_{\alpha,n}$ (dir) will be called projective limit of the projective system $(X_{\alpha}, f_{\alpha\beta})$.

Remark. Let $(A_{\alpha}, \varphi_{\alpha\beta})$ $(\alpha \leq \beta)$ be a projective system of R-algebras indexed by a directed set I. Let $(X_{\alpha}, f_{\alpha\beta})$ $(\alpha \leq \beta)$ be a projective system of anticommutative graded R-algebras also indexed by I. If each X_{α} is such that $X_{\alpha,0} = A_{\alpha}$, then $X_{\alpha} - \lim_{\alpha \to 0} A_{\alpha}$.

Next, let $((X_{\alpha}, d_{\alpha}), f_{\alpha\beta})$ ($\alpha \leq \beta$) be a projective system of complexes (indexed by a directed set I) such that for each $\alpha \in I$ (X_{α}, d_{α}) is a complex over A_{α} where $(A_{\alpha}, \varphi_{\alpha\beta})$ ($\alpha \leq \beta$) is a projective system of R-algebras indexed by I. We note that the restriction δ of the mapping $(d_{\alpha})_{\alpha \in I} : \prod_{\alpha = \alpha} X_{\alpha} \to \prod_{\alpha = \alpha} X_{\alpha}$ to $\mathcal{P}_{\alpha} X_{\alpha}$ is a derivation of degree 1 of $\mathcal{P}_{\alpha} X_{\alpha}$ such that $\delta \circ \delta = 0$; thus, $(\mathcal{P}_{\alpha} X_{\alpha}, \delta)$ is a complex over $\prod_{\alpha = \alpha} A_{\alpha}$ and the natural projections $\varphi_{\alpha} : \mathcal{P}_{\alpha} X_{\alpha} \to X_{\alpha}$ are such that $\varphi_{\alpha} \circ \delta = \delta_{\alpha} \circ \varphi_{\alpha}$ ($\alpha \in I$). Denote by d the restriction of δ to X. Then, for any x in X,

$$\mathcal{P}_{\alpha}(d\mathbf{x}) = d_{\alpha}(\mathcal{P}_{\alpha}(\mathbf{x}))$$
, (since d is the restriction of δ)
$$= d_{\alpha} f_{\alpha\beta} \mathcal{P}_{\beta}(\mathbf{x})$$

$$= f_{\alpha\beta} d_{\beta} \mathcal{P}_{\beta}(\mathbf{x})$$
, (since $f_{\alpha\beta}$ is a $\varphi_{\alpha\beta}$ -complex homomorphism)
$$= f_{\alpha\beta} \mathcal{P}_{\beta}(d\mathbf{x})$$
;

that is, $dx \in X$. Thus d maps X into itself. Clearly, d is a derivation of degree 1 of X such that $d \circ d = o$. Therefore, in view of the Remark 1, (X,d) is a complex over $\lim_{x \to a} A$.

Definition 6.2. We call (X,d), the projective limit of the projective system $((X_{\alpha},d_{\alpha}), f_{\alpha\beta})$.

We need the following lemma:

Lemma 6.1. Let k be a field and let K be a purely transcendental extension of k such that the degree of transcendence of K over k is infinite. Let (U,d) be a universal complex over K. Then the dimension of U₁, which is the module of homogeneous elements of degree 1 of U, over K is equal to the degree of transcendence of K over k.

<u>Proof.</u> K a purely transcendental extension of k implies K is isomorphic to the quotient field of a polynomial ring K[X] where X is a set of indeterminates such that cardinality of X = degree of transcendence of K over k. We recall that a universal complex (V, δ) over K[X] is such that V_1 is a free K[X]-module on the set $\{\delta x \mid x \in X\}$. Therefore, $U_1 = K \bigotimes_{k[X]} V_1$ is a free K-module on the set $\{1 \bigotimes \delta x \mid x \in X\}$ [1]. Hence, dimension of U_1 over K = degree of transcendence of K over k.

Remark. This lemma generalises Kähler's result [3] for finitely generated fields to the fields of arbitrary infinite degree of transcendence.

Now we are in a position to give the desired examples. Let K be a field of characteristic p, and let K[y] be a polynomial ring in one indeterminate y over K. Let J_k be the ideal generated by y^p in K[y], and let $A_k = K[y]/J_k$ (k = 1, 2, 3, ...). We know that for each $k \le l$, $J_l \subseteq J_k$; therefore, there exists a natural K-algebra homomorphism $\varphi_{kl}:A_l \to A_k$ such that φ_{kl} (a + J_l) = a + J_k for all a in K[y]. Clearly, (A_k, φ_{kl}) is a projective system of K-algebras. If $A = \lim_k A_k$, then it is known that A is the ring of formal power series in one indeterminate y over K([5]); that is, $A = K\{y\}$. For each $k \ge 1$, let (U_k, d_k) be a universal complex over A_k . Since, for each $k \ge 1$, A_k is generated over K_k by the single

element $y_k = y + J_k$, it follows that U_k is generated by the single element $w_k = d_k y_k$ as an A_k -algebra.

Now, let (V, δ) be a universal complex over K[y]. Since $\delta(y^{p}) = 0$ for each k, the complex ideal generated by J_{k} in V is $J_{k} + J_{k}\delta y$; and, so by Propositions 4.1 and 4.2, (U_k, d_k) is isomorphic to $(V/J_k + J_k \delta y, \overline{\delta}_k) = (V_k, \overline{\delta}_k)$ which gives the linear independence of w_k over A_k $(k \ge 1)$. Moreover, for each $k \leq \ell$, there exists a $\varphi_{k\ell}$ -complex homomorphism f_{k} : $(V_{\ell}, \bar{\delta}_{\ell}) \rightarrow (V_{k}, \delta_{k})$ such that $f_{k\ell}$ ($\delta y + J_{\ell} + J_{\ell} \delta y$) = $\delta y + J_k + J_k \delta y$. So $((V_k, \overline{\delta}_k), f_{k\ell})$ ($k \le \ell$) is a projective system of complexes. Since for each ℓ , (U $_{\ell}$, d $_{\ell}$) is isomorphic to $(V_{\ell}, \overline{\delta}_{\ell})$, it follows that for each $k \leq \ell$ there exists a $\varphi_{k\ell}$ -complex homomorphism $g_{k\ell}: (U_{\ell}, d_{\ell}) \rightarrow (U_{k}, d_{k})$ such that $g_{kl}(w_l) = w_k$ and $((U_k, d_k), g_{kl})$ is a projective system of complexes. Let (U,d) be the projective limit of the projective system $((U_k, d_k), f_k)$. Then U is generated by the family $(w_k)_k$ as $\lim_{\leftarrow} A_k = K\{y\}$ algebra. For, let $u \in U$ be arbitrary. Then $u = (u_k)_k$, $u_k \in U_k$ $(k \ge 1)$ and $\varphi_k(u) = g_{kj} \gamma_j(u)$ for all $k \le j$. That is, $u_k = g_{kj}(u_j)$, and so $a_k w_k = g_{kj}(a_j w_j) = \varphi_{kj}(a_j)w_k$. Since w_k is linearly independent over A_k , it follows that $a_k = \varphi_{kj}(a_j)$; that is $\mathcal{P}_{k}((a_{k})_{k}) = \varphi_{kj} \mathcal{P}_{j}((a_{k})_{k}), \text{ and so } (a_{k})_{k} \in \lim_{\leftarrow} A_{k}.$ Thus $u = (a_k)_k (w_k)_k$ implies that U is generated by the single element $(w_{l_2})_{l_2}$ over $K\{y\}$. We claim that a universal complex over K{y} is infinitely generated. Since K{y} is an integral domain we can form its field of quotients, which we denote by K((y)). Then K((y)) is a purely transcendental extension of K and the degree of transcendence of K((y)) over K is equal to the cardinality of K where N is the set of natural numbers (see [3], ex. 13, Sec. 5). Now let (W, D)

be a universal complex over $K\{y\}$. If S denotes the set of all non-zero elements of $K\{y\}$, then (W_S, D_S) is a universal complex over K((y)) where $W_S = K((y)) \otimes W$ and $K\{y\}$ $D_S: W_S \to W_S$ is the derivation given as follows:

for any $\frac{1}{s} \otimes x$ in W_s , homogeneous of degree n,

$$D_{S}(\frac{1}{s} \otimes x) = \frac{1}{s} \otimes Dx - (-1)^{n} \frac{1}{s^{2}} \otimes D_{S}.$$

Since the degree of transcendence of K((y)) over K is infinite, by Lemma 6.1, the dimensions of the module $(W_S)_1$ of homogeneous elements of degree 1 of W_S over K((y)) is infinite. Thus, W_S is not finitely generated over K((y)). If W is finitely generated over $K\{y\}$, then $W_S = K((y)) \otimes W_S = K((y))$ will imply that W_S is finitely generated over K((y)); a contradiction. Hence W is not finitely generated over $K\{y\}$, and so (U,d) is not isomorphic to (W,D). Hence (U,d) is not a universal complex over $K\{y\}$.

Remark. This example also proves that if $((M_{\alpha}, \frac{1}{\alpha}), f_{\alpha\beta})$ ($\alpha \leq \beta$) is a projective system of universal derivation modules such that for each α , M_{α} is an A_{α} -module then the projective limit ($\lim_{\alpha \to \alpha} M_{\alpha}$, d) need not be a universal derivation module over $\lim_{\alpha \to \alpha} A_{\alpha} = A$.

REFERENCES

1. R. Berger, Über Verschiedene Differentenbegriffe. Sitzungsberichte der Heidelberger Akademie der Wissenschaften Mathematischnaturwissenschaftliche Klasse, 196.

- 2. N. Bourbaki, Algèbre Commutative, Chapter II, (Hermann and Cie, Paris).
- 3. N. Bourbaki, Algèbre, Chapter V, (Hermann and Cie, Paris).
- 4. N. Bourbaki, Theory of Sets, Chapter IV, (Hermann and Cie, Paris).
- 5. C. Chevalley, Fundamental Concepts of Algebra, Academic Press Inc., N.Y.
- 6. E. Kähler, Algebra und Differentialrechnung. Bericht über die Mathematiker Tagung in Berlin, Vol. 14, Bis. 18, January 1953.
- 7. O. Zariski and P. Samuel, Commutative Algebra, Vol. II. University series in Higher Mathematics.

Banaras Hindu University Varanasi U-P, India