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ABSTRACT. To develop avalanche runoutmodels for short slopes, fieldmeasurements
were made at 48 short-slope avalanche paths located in the Coast, Columbia and Rocky
Mountains of western Canada, and at several paths in eastern Canada. Field studies in-
cluded detailed topographic surveys and estimation of the extreme runout position in
each path. A statistical runout model was developed using the runout ratio method, for
which runout ratios from the four mountain ranges are well fit by an extreme-value type I
(Gumbel) distributionwhen the � point is defined at the uppermost point where the slope
is 24‡. A second model was developed by regressing the � angle for the extreme runout
position on numerous terrain variables. This regression model uses three predictor vari-
ables that canbe easily measured in the field or on topographic maps. Length-scale effects
were noted in both models, but are more pronounced in the runout ratio model. A com-
parison of models developed using the two methods shows that the runout ratio model
estimates more conservative (longer) runout distances than the regression model for most
threshold probabilities. Data from 13 additional paths from Switzerland and Que¤ bec,
Canada, are used to test the models.

INTRODUCTION

In Canada, avalanche hazards to structures, transportation
corridors and residential areas are often mitigated by haz-
ard or risk mapping, whereby the element at risk is situated
in an area where avalanche return periods are acceptably
long, and/or potential impact pressures are acceptably small
(Jamieson and others, 2002, p.14^17). When the risk from
avalanches cannot be reduced to acceptable levels by
location planning, mitigation measures such as avalanche
control programs or defense structures may be applied.

The hazard- or risk-mapping process includes several
steps in defining the avalanche problem and hazard areas.
Some of the commonly applied methods include: terrain
analysis of maps and aerial photographs; field studies of ter-
rain; study of vegetation for signs of past avalanches; use of
oral and written records of avalanches; weather and snow
records; study of surficial materials; application of statistical
models; and application of dynamic models (Jamieson and
others, 2002, p.9^10).While not all of these methods may be
suitable for aparticular problem, experts will typically com-
bine several of these methods in their analysis, weighting
the estimates in which they have greater confidence. Thus,
application of statistical avalanche models is only one
method used for some avalanche problems. This method is
discussed in this paper for its applicability to a dataset con-
sisting of avalanche paths with small vertical fall heights,
hereafter called short slopes.

It has been found in practice that short slopes tend to run
proportionately farther than larger slopes, and therefore the
models developed for particular mountain ranges using

statistical methods may not be applicable to short slopes
(McClung and Lied,1987; Nixon and McClung,1993).This
finding motivated our study of short slopes, in which data
obtained from short avalanche paths in four Canadian
mountain ranges (Fig.1) are analyzed using the multiple re-
gressionmethod (e.g. Lied and Bakkeh�i,1980) and the run-
out ratio method (e.g. McClung and Mears, 1991). The
results of analyses using these two different methods are
compared and length-scale effects in the models are dis-
cussed. Finally, additional data from the Swiss Alps and
the Chic Choc Range in Que¤ bec, Canada, are used to test
the ability of the models to predict runout distances for
paths not used to build the models.
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Fig. 1. Location of study areas within Canada.
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The preferred method for estimating avalanche runout
distances in a path uses direct evidence from long-term
observations of avalanches (McClung and Schaerer, 1993,
p.115). In paths where little or no direct evidence of ava-
lanche activity is available (e.g. paths with no historical
records or no forest), runout models may be the preferred
or only method available to estimate extreme runout dis-
tances for avalanches. One commonly used modelling tech-
nique is called the regression method, which is a statistical
evaluation of known avalanche runouts in a mountain
range, applied to a given avalanche path within the range.
Bovis and Mears (1976) and Lied and Bakkeh�i (1980) first
used topographic terrain parameters to estimate runout dis-
tances for paths in the United States and Norway, respect-
ively. Lied and Bakkeh�i (1980) introduced the reference
� point in the runout zone fromwhich tomeasure runout dis-
tances, which they defined as the position at which the slope
angle first reaches 10‡ when proceeding downslope from the
starting position (Fig. 2). The corresponding � angle is
defined as the angle (measured from the horizontal) at the
� point to the starting position of the avalanche path. It is
common to quantify extreme runout distances by using the
� angle, defined as the angle (measured from the horizon-
tal) at the extreme runout position observed in the field to
the starting position of the avalanche path. The
parameter � is similar to that used by Scheidegger (1973) to
estimate the average friction coefficient for large landslides.
For a group of avalanche paths in Norway, Lied andToppe
(1989) showed that � was the only statistically significant
predictor for �, and developed regression equations relating
the � angle to the � angle. Similar expressions have been
developed in Canada and the United States (McClung and
others,1989), Iceland (Jo¤ hannesson,1998), Austria (Lied and
others,1995) andJapan (Fujisawa and others,1993).

A second statistical method used for estimating extreme
runout distances is known as the runout ratio method.
McClung and Mears (1991) found that the extreme runout
positions for avalanche paths in a particular mountain
range fit an extreme-value probability density function
similar to that used for water discharge from floods. They
defined the runout ratio, �x=X�, as the ratio of the hori-
zontal distance from the � point to the extreme runout pos-
ition,�x, to the horizontal reach from the starting position
to the � point, X� (Fig. 2). The runout ratio can take on

positive or negative values, with a negative value indicating
that the extreme runout position is located upslope of the
defined � point location (typically 10‡ slope angle). The
non-exceedance probability, P, is defined as the fraction of
runout ratios in a particular mountain range that do not ex-
ceed a given ratio. Studies conducted for several ranges
around the world (e.g. McClung and Mears, 1991; Nixon
and McClung, 1993) have found significant statistical rela-
tionships between the runout ratio and the extreme-value
non-exceedance probability (e.g. R2 > 0:95) when applied
to paths in a single mountain range (Mears, 1992, p.26).
These results also show that each mountain range com-
prises a different population and thus each range should be
analyzed separately.

In contrast to previous studies of slopes with a mean ver-
tical fall height typically around 700m, McKittrick and
Brown (1993) analyzed a dataset of mostly shorter slopes in
southwestMontana, U.S.A., with ameanvertical fall height
of 248m. They defined the � point for their dataset as the
location where the slope angle first decreases to 18‡, rather
than the conventional 10‡. Although they offered no physi-
cal explanation of the improved fit of their data for a � point
at 18‡, other studies have found that locking of particles in
the avalanche flow may begin at slope angles of about 25‡,
and that large, dry avalanches may begin a decelerating
phase at this slope angle (Gubler and others,1986;McClung
and Mears, 1995). Considering this another way, most ava-
lanche dynamics models predict that the frontal velocity
will increase then decrease, approximating a semi-ellipse
along a parabolic path (e.g. Bartelt and Salm,1998). Conse-
quently, deceleration and locking should begin near the
halfway point, measured horizontally. For an extreme ava-
lanche running on a parabolic profile from a 38‡ slope in the
starting zone to a 5‡ slope in the runout zone, deceleration
should begin where the slope angle is approximately 21‡.
Based on these two observations, there may be a physical
basis for using higher slope angles for defining the location
of the � point, particularly for shorter slopes in which the
mass may not reach a high velocity (e.g. >30m s�1) before
beginning to decelerate.

As early as 1987, McClung and Lied (1987) noted that
their models likely did not apply well to paths with avertical
fall height of <350m, and scale effects were noted for both
their regression and runout ratio models. Mears (1989) and
McClung andMears (1991) noted the importance of length-
scale effects for data from the Colorado Rocky Mountains
and the Sierra Nevada Range of California. Their findings
and the work of Nixon andMcClung (1993) suggest that the
runout ratio decreases with increasing horizontal reach
(X�), and illustrate the importance of scale effects in statis-
tical runout modelling.These results support the hypothesis
that extreme avalanches on smaller slopes run out propor-
tionately farther than on taller slopes.

METHODS

Field studies included a detailed topographic survey and es-
timation of the extreme runout position for each path using
either vegetative indicators or historical records of extreme
avalanches. As with previous studies (e.g. McClung and
Mears, 1991; McKittrick and Brown, 1993), the goal of the
runout survey was to identify the location of the ‘‘100 year’’
return period event, commonly referred to as the ‘‘extreme’’

Fig. 2. Geometry of example avalanche path showing most

terrain variables used in analyses. x-y coordinate system is

shown with origin at lower left of figure.
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runout position. However, the true return period for the in-
terpreted extreme runout position likely represents return
periods of 30^300 years, introducing unavoidable random
variation in the data (McClung and Mears,1991).

Paths were selected in the four mountain ranges based
on several criteria, including: vertical fall height; reasonable
access by vehicle and foot; well-defined path characteristics
(e.g. starting and runout zones); well-defined extreme run-
out position; and no run-up on the opposite side of the valley
or runout into a water body. Data were collected at 48 ava-
lanche paths:16 in the Coast Mountains,10 in the Columbia
Mountains,15 in the Rockies and 7 paths in the Chic Choc
Range or other parts of Que¤ bec.The Coast, Columbia and
Rocky Mountain ranges are located in British Columbia
and Alberta in western Canada, and the remaining paths
are located in Que¤ bec, in the eastern part of Canada
(Fig. 1). The paths vary from 48‡470 to 51‡380 N latitude
and from 65‡550 to 123‡100 W longitude. Elevations of the
starting zones of the paths range approximately from 85 to
2500mabovemean sea level.Thus, a geographically diverse
sample set was obtained both in terms of latitude and lon-
gitude and in terms of elevation. See Jones (2002, p.31^48)
for a detailed discussion of field methods.

DESCRIPTIVE STATISTICS

The data used in this study consist of 19 terrain variables, for
which the mean, standard deviation, median and range of
the variables are shown onTable 1.Two of the 48 avalanche
paths were rejected from the analyses for reasons discussed
further below, and thus statistics for the remaining 46 paths
are presented.

The total number of sites (N) in this dataset, 48, is con-
sidered to be sufficiently large to analyze using both para-
metric and extreme-value statistical techniques. From the
central limit theorem (Kennedy and Neville, 1986, p.117^
121), if N � 30, the normal approximation for the mean
and variance of a response variable can be used with good
precision even for an extreme-value distribution. However,
the number of sites from the individual mountain ranges

varies from 7 to 16 paths, which is well below this recom-
mended sample size of 30.Thus, only statistics for the com-
bined ranges are presented.

Using the � and � angles as defined previously (Fig. 2),
we redefine the � point as the position at which the slope
angle first reaches 24‡ when proceeding downslope from
the starting zone. Jones (2002, p.58^61) provides a statistical
argument to support a � point at 24‡ for short slopes. We
also present statistics for � defined at 10‡ for comparison to
previous studies and testing in the multiple regression
model.

The delta angle, �, is defined by sighting from the ex-
treme runout position to the � point, with the angle meas-
ured from the horizontal. This is a measure of the average
slope angle in the runout zone.

The runout ratio relates the horizontal distances�x and
X� to the reference slope angles �, � and � (McClung and
Mears,1991)

�x

X�
¼ tan� � tan�

tan�� tan �
: ð1Þ

The vertical distance, H�, is measured from the starting
position to the � point, andH� is the vertical distance from
the starting position to the extreme runout position.

H0 is defined as the vertical distance measured from the
starting position to the lowest point on a polynomial para-
bolic curve y ¼ ax2 þ bxþ c fitted to the terrain profile of
a path (Fig. 2), the location where the first derivative (slope
of the polynomial curve), y 0, is zero.The secondderivative of
the polynomial curve, y 00 (Fig. 2), has a value of 2a and is the
radius of curvature of the path profile (Lied and Bakkeh�i,
1980). H0y

00 is the product of H0 and y 00, and serves as a di-
mensionless scale parameter (Lied and Bakkeh�i,1980).

The starting-zone inclination, �, starting-zone aspect
and starting-zone elevation, SZ Elev, are average values
measured in the starting zone. The runout-zone elevation,
RZ Elev, is an average value measured in the runout zone.
The surface roughness is an approximate measure of the
height of irregularity in the ground surface, measured in
metres. The wind index for each avalanche starting zone,

Table 1. Descriptive statistics for the short-slope database

Variable n Mean Std dev. Minimum Median Maximum

Beta angle, � (‡) (defined at 10‡) 46 27.5 3.4 19.1 27.5 34.1
Beta angle, � (‡) (defined at 24‡) 46 32.7 2.8 25.0 32.5 38.5
Vertical fall height to � point,H� (m) 46 180 107 27 183 512
Vertical fall height to � point,H� (m) 46 220 116 51 216 593
Horizontal reach to � point,X� (m) 46 276 153 52 267 643
Runout distance,�x (m) 46 162 129 �109 123 568
Runout ratio,�x=X� 46 0.746 0.562 �0.264 0.631 2.424
Delta angle, � (‡) 46 14.8 4.5 5.7 15.3 25.7
Alpha angle, � (‡) 46 26.3 4.1 18.8 26.3 34.1
Vertical height to low point on parabola,H0 (m) 46 239 127 51 232 584
Second derivative of the slope function, y00 (m�1) 46 0.0023 0.0019 0.00065 0.0018 0.0085
Scale parameter for path profile,H0y

00 46 0.393 0.136 0.135 0.380 0.715
Starting-zone inclination � (‡) 46 38.2 5.0 27.5 38.0 47.5
Starting-zone aspect, Aspect (‡) 46 141 114 2 97 360
Starting-zone elevation, SZ Elev (m) 46 1767 545 80 1879 2490
Runout-zone elevation, RZ Elev (m) 46 1478 615 10 1641 2381
Surface roughness, SR (m) 46 0.5 0.4 0.1 0.3 1.5
Wind index,WI (ordinal data) 46 3.5 1.2 2 4 5
Width of start zone,W (m) 46 99 90 17 65 500
Terrain profile,TP (ordinal data) 46 2.1 0.6 1 2 3
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WI, was assigned one of five ordinal values according to
Schaerer (1977).The average width of the starting zone, W,
was measured at the top of the starting zone.

The terrain profile variable,TP, is related to the radius of
curvature, y 00, but accounts for the very abrupt change in
curvature in hockey-stick profiles (Fig. 3). A value of 1 repre-
sents a slope with a nearly linear transition from the track to
the runout zone; 2 represents a path with a concave para-
bolic shape and a relatively smooth transition from the track
to the runout zone; and 3 represents a path with a hockey-
stick profile in which there is an abrupt transition from a
relatively steep slope to a slope at or near 0‡ in the runout
zone (Martinelli, 1986). This type of profile may be com-
monly found where a steep slope meets a gently sloping or
flat alluvial or glaciofluvial plain in a valley bottom.

The primary purpose of introducing the TP variable
was to distinguish between hockey-stick and non-hockey-
stick profiles in the dataset. However, better discrimination
between paths in the dataset was found, and better results
were obtained, when a three-class TP variable was used.
The three-class variable is a partially subjective categorical
variable, but we believe that different experts would classify
paths similarly, and thusTP is a reproducible variable. Paths
with hockey-stick profiles were common in the dataset, with
10 of the 48 paths (21%) classified as hockey sticks, 8 (17%)
classified as linear planar and 30 (62%) classified as con-
cave parabolas.

ALPHA-REGRESSION MODEL

Multiple regression was used to relate various independent
predictor variables to the response variable, in this case the
� angle used to define the extreme runout position. Fifteen
predictor variables for � were chosen for the regression
(Table 2).

Spearman rank correlations between the predictor vari-
ables and � are shown inTable 2, and significant variables
(p < 0:05) are highlighted. Seven of the 14 variables are
significant at the 5% level and these were used to build the
regression model.Two other predictor variables (� andTP)
showed correlations of borderline significance with �
(0:05 < p < 0:1) and were also used in the regression.
Backward-elimination multiple regression was used with

these nine predictor variables to obtain the best fit of the
predicted values of � to the observed values.

Two significant outliers, excluded from Table 1, were
identified and removed from the analyses because they did
not reach a slope angle of <28‡ upslope of the interpreted
location of the extreme runout position (continuously steep
paths (McClung,2001)), and a thirdwas removed that had a
much greater vertical fall height (H� ¼ 593m) than the
other paths, leaving a subset (n) of 45 paths for the regres-
sion. Variables were then systematically removed from the
regression (backward elimination) when they were found
to have aminimal effect on the model (i.e. variable F values
less than a specified threshold at each regression step).
Using a threshold F value at the 1% significance level, all
variables but H0y

00, H0,TP, � (defined at 24‡) andX� were
eliminated from the regression. Additional analyses showed
that � and X� could also be removed from the regression
with minimal effect on the results.The remaining three pre-
dictor variables in the regression equation were H0y

00, H0

andTP. Removal of any of these three variables had a strong
adverse effect on the fit, and thus the preferred regression is

�P ¼21:11þ22:41H0y
00�3:02TPþ0:01H0�CPSE: ð2Þ

This model has an adjusted R2 of 0.65, a standard error of
regression (SE) of 2.5‡, a significance level of 10�4 and uti-
lizes 45 of the avalanche paths in the dataset.The subscript
P is used to denote a runout estimate in probabilistic terms,
in which it is assumed that runout distances expressed in
terms of �P are approximately normally distributed. A
chosen exceedance value of P (0 < P < 1) defines the num-
ber of � values for which P � 100% of the values in a
normal distribution will not be less than the given value of
�P . In order to avoid confusion with the similar (but oppo-
site) term used for the runout ratio model, we use the term
threshold probability to refer to the exceedance probability in
the case of the alpha-regression model and non-exceedance
probability in the case of the runout ratio model (McClung
andMears,1991).The term CP provides an estimation inter-
val for �P and is used to estimate an individual value of �P

for a given threshold probability P (0:5 < P < 1) (Walpole
and Myers, 1985, p.371). McClung (2001) notes that for

Fig. 3. Examples of terrain profile types used for defining the

TP variable.

Table 2. Spearman rank correlations between the response

variable, �, and the predictor variables used to develop the

alpha-regression model

Variable N R p1

� (‡) (defined at 10‡) 46 0.51 2.9 � 10�4

� (‡) (defined at 24‡) 46 0.48 7.0 � 10�4

H� (m) 46 0.61 6.7 � 10�6

X� (m) 46 0.57 3.8 � 10�5

H0 (m) 46 0.54 1.0 � 10�4

y00 (m�1) 46 �0.17 0.26
H0y

00 46 0.54 1.1 �10�4

� (‡) 46 0.26 0.081
Aspect (‡) 46 �0.081 0.59
SZ Elev (m) 46 0.086 0.57
RZ Elev (m) 46 0.025 0.87
SR (m) 46 0.067 0.66
WI (ordinal data) 46 �0.24 0.11
W (m) 46 �0.29 0.048
TP (ordinal data) 46 �0.28 0.063

1Rows for which p � 0:05 are marked in bold.

Jones andJamieson: Avalanche runout estimation for short slopes in Canada

366
https://doi.org/10.3189/172756404781814960 Published online by Cambridge University Press

https://doi.org/10.3189/172756404781814960


P > 0:9 and normally distributed data, CP reduces to the
z value of the normal distribution.

The three predictor variables chosen for this model are
relatively simple topographic parameters that can be de-
rived from a slope profile surveyed in the field or taken from
a topographic map if a suitably scaled and detailed map is
available. A summary of the regression is shown inTable 3.

Unlike previous studies (e.g. Bakkeh�i and others, 1983;
Nixon andMcClung,1993), we found that although � is sig-
nificantly correlated with � for this dataset when defined at
either 10‡ or 24‡ (R ¼ 0:51 and 0.48, respectively, from
Table 2), it does not provide a good single-variable regres-
sion for � (e.g. R2 ¼ 0:26, SE ¼ 3:6‡ regressing � on �
defined at 10‡ point). Four of the other predictor variables
have higher significance levels with �, and higher F values
in the regression.The final regression shown in Equation (2)
is independent of where one defines the � point, so this defi-
nition becomes unimportant once it is established that � is
not one of the top three predictors for multivariate regres-
sion for � for this dataset.

RUNOUT RATIOMETHOD

McClung and Lied (1987) and McClung and Mears (1991)
showed that a Gumbel distribution in the form

P ¼ exp � exp �ð�x=X�ÞP � u

b

� �� �
ð3Þ

provides a good model for extreme avalanche runout dis-
tances. In this model, the runout ratio, �x=X�, is the con-
tinuous random variable, u and b are the location and scale
parameters, respectively, and P is the non-exceedance prob-
ability (threshold probability). A chosen value of P repre-
sents the runout ratio for which P � 100% of the values in
the dataset will not exceed that given value. Equation (3)
can be rewritten as

�x=X�

� �
P
¼ u� b lnð�lnðP ÞÞ; ð4Þ

where �lnð�lnðP ÞÞ is termed the reduced variate. By as-
signing appropriate non-exceedance values P for each
observed runout ratio in the dataset based on their rank
order, it is possible to solve for u and b using least-squares
linear regression techniques (McClung and Mears,1991).

Based on the poor fit of the regression line to the data
with the � point defined at10‡, additional linear regressions
were conducted by varying the � point definition from 10‡
through 27‡. For our short-slope dataset, the best fit of the
data to a Gumbel distribution occurs when the � point is
defined at 24‡ (Jones, 2002, p.58^61). Using this definition,
R2 is maximized at 0.98 and the standard error of regres-
sion, SE, is minimized at 0.080 (Fig. 4).The resulting regres-

sion equation relating the runout ratio to the non-
exceedance probability is

�x=X�

� �
P
¼ 0:494� 0:441 lnð�lnðP ÞÞ: ð5Þ

This regression uses data from 46 of the 48 avalanche
paths in the dataset (minus the two outliers discussed in
the previous section), combines paths from all four moun-
tain ranges and is hereafter termed the four-range model.
Similar analyses were done with individual mountain
ranges, but the fit for individual ranges was either equal to
or poorer than the fit obtained with the combined ranges
(Jones, 2002, p.62). Because the � point was redefined in this
study as the location where the slope first reaches 24‡, there
is little point in comparing the scale and location param-
eters from this model to parameters from previously devel-
oped models.

Two long-running avalanche paths (high runout ratios)
were noted during the analyses, both of which had runout
zones that were within partly confined stream channels.
Channelization of avalanche flow in the runout zone may
have contributed to the longer runout distances (McClung,
2001). These paths were included in the analyses since it is
important the models are applicable for estimating extreme
runout associated with long-running avalanche paths.

All previouswork in the fieldof statistical avalanche-run-
out estimation has emphasized, as one of its underlying
assumptions, that each region ormountain range constitutes
a separate population of extreme runout distances, and that
each regionmustbe analyzed separately (Mears,1992, p.26).
This analysis shows that a suitablemodel canbe developedto
represent short slopes in severalmountain ranges inCanada,
with allmeasuredpaths combined into one dataset.The four
mountain ranges used in this study have very different
climatecharacteristics, and representall threeof thegeneral-
ized snow climates: maritime, continental and intermoun-
tain (McClungandSchaerer,1993, p.17^18).

LENGTH-SCALE EFFECTS

As with previous studies (e.g. McClung and Mears, 1991),
the model developed for the short-slope dataset exhibits a
scale effect when the runout ratio is used to define runout
distance.The coefficients of the Spearman rank correlations
of the runout ratio, �x=X�, with either H� or X� are both
�0:55 (n ¼ 46), which are highly significant (p < 10�4).
The negative correlations with the runout ratio show that

Table 3. Results of multiple regression for �. Model-adjusted

R2 ¼ 0:65, n ¼ 45, SE ¼ 2:5‡, p < 10�4

Coefficient �i Standard error of �i p

Intercept 21.11‡ 1.9‡ 5 �10�14

H0y
00 22.41‡ 3.3‡ 3 �10�8

TP �3.02‡ 0.76‡ 3 �10�4

H0 0.01‡m�1 0.0040‡m�1 3 �10�3

Fig. 4. Runout ratio fitted to an extreme-value (Gumbel)

probability distribution for 46 avalanche paths in combined

mountain ranges. � point defined at 24‡.
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proportionately longer runout distances are associated with
shorter paths in the dataset, which is consistent with the
findings of McClung and Mears (1991) and Nixon and
McClung (1993).The relationship between the runout ratio
and the horizontal reach is clearly illustrated in Figure 5, in
which the runout ratio is seen as a decreasing function of in-
creasing horizontal reach. The vertical line drawn at
X� ¼ 300m shows that there is a smaller range of runout
ratios (�0:5 < �x=X� < 1:0) associated with paths with
horizontal reaches greater than approximately 300m than
with paths with horizontal reaches less than 300m. Thus,
although some of the scale effect between larger slopes and
short slopes is reduced with this model, there is still a scale
effect for the runout ratio in the short-slope dataset.

Both McClung and Lied (1987) and McClung and
Mears (1991) found that slopes with a vertical drop of
<350m did not fit well into their dataset, and consequently
trimmed these paths from their dataset. Additional analyses
with our dataset indicate that the best-fit linear regression is
found when the dataset is limited to slopes with a vertical
fall height (H�) of<275m, measured from the starting pos-
ition to the extreme runout position (Jones, 2002, p.64).This
may function as an approximate upper limit for which this
‘‘short-slope’’model may be most applicable.

The scale effect for the alpha-regression model,
although visually less pronounced than that observed with
the runout ratio method, is still significant (Fig. 6). The
Spearman rank correlation coefficients of H�, H� and X�

with � are 0.44 (p < 10�2Þ, 0.61 (p < 10�5Þ and 0.57
(p < 10�4Þ, respectively, indicating that decreasing � (in-
creasing runout distance) is associated with decreasing ver-
tical fall height and horizontal reach (smaller path size) for
this regression model. Thus, scale effects within the dataset
need to be considered when using models developed using
both the runout ratio and alpha-regression methods.

For the Canadian short-slope dataset, the mean � is
26.3‡ (standard deviation (SD) of 4.1‡, N ¼ 46). McClung
and Lied (1987) report a mean � of 31.1‡ (SD of 6.4‡,
N ¼ 212) for a dataset from western Norway, and
McClung and others (1989) report a mean � of 27.8‡ (SD of
3.5‡, N ¼ 127Þ for a dataset of taller Canadian paths. Con-
ducting t tests for the differences of the means, we find that
the mean � for the short-slope dataset is significantly lower
than mean values for both the Canadian taller slope
(t ¼ 2:2, 70 degrees of freedom (df ), p ¼ 0:02) and Nor-
wegian (t ¼ 6:4, df ¼ 180, p < 10�6Þ datasets.

One important model limitation is that Equation (2) be-
gins to fail for relatively larger paths withH0 approximately
greater than 500m. Large paths may tend to have higher
values of � (e.g. 40‡ maximum observed for the Canadian
Purcell and Rocky Mountain ranges (McClung and others,
1989)), but values of H0 approximately greater than 500m
result in � > 45‡, which are unreasonably high values of �
for extreme avalanches, and much higher than those typic-
ally noted in the literature.

COMPARISONOF RUNOUT RATIOAND
ALPHA-REGRESSION METHODS

In the previous sections, avalanche runout models were de-
veloped using two different methods: the runout ratio
(Equation (5)) and the alpha-regression method (Equa-
tion (2)). Both methods yield models that provide reason-
ably good fits to the sample of avalanche paths from this
study. We follow the approach of Nixon and McClung
(1993) for quantitatively comparing runout estimates by
randomly selecting two avalanche paths from each moun-
tain range, for a total of eight avalanche paths (Table 4). To
compare the models in an unbiased manner, values for both
the runout distance, �xP, and the equivalent �P angle are
presented. The results inTable 4 show that at higher values
of P (0.9 and 0.99) the runout ratio method estimates longer
runout distances than the alpha-regression method for most
paths, with the exception of the Brohm Ridge and Mont
Jacques Cartier Saddle paths at P ¼ 0:90.This is consistent
with the findings of Nixon and McClung (1993), and is ex-
plained by the fact that runout estimates based on the
assumption that runout follows an extreme value distribu-
tion should be higher than estimates based on runout fol-
lowing a normal distribution. This result is most profound
for the highest threshold probabilities analyzed (P ¼ 0:99),
where the runout ratio method estimates runout distances
1.5^4 times the distance estimated with the regression
method. High threshold probabilities (e.g. P ¼ 0:90,
P ¼ 0:99) may be relevant for some engineering applica-
tions such as land-use planning.

At very high values of P (e.g. P � 0:90Þ, the runout
ratio method estimates equivalent � values that appear to
be unreasonably low (Table 4). A review of the literature
(e.g. Lied and Bakkeh�i, 1980; Martinelli, 1986; McClung
and Mears, 1991; Nixon and McClung, 1993; Jo¤ hannesson,

Fig. 5. Plot of the runout ratio vs the horizontal reach for the

short-slope dataset, illustrating the length-scale effect in the

runout ratio model.

Fig. 6. Plot of observed � vs the horizontal reach for the short-

slope dataset, illustrating the length-scale effect in the alpha-

regression model.
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1998) shows that minimum observed � values are in the
range 14^20‡ for most studies of avalanche runout. Excep-
tionally low values are in the range 14^16‡, with only one
recorded � angle of 14‡ in the Colorado Rocky Mountains
(Martinelli, 1986). The lowest observed � angle from the
short-slope dataset is 19‡ (Table 1). Table 4 shows that for
P ¼ 0:99 the runout ratio method estimates equivalent �P

angles of 12^15‡, implying that this model may be overly
conservative at high threshold probabilities. The alpha-
regression model estimates more realistic �P angles of 16^
23‡ for P ¼ 0:99.

PROPOSED PHYSICAL EFFECTS OF VARIABLES
IN MULTIPLE REGRESSION MODEL

The three independent variables used in the regression
model,H0y

00,H0 andTP, are topographic parameters taken
from the terrain profile for each path.While all three vari-
ables are statistically important parts of the regression
model, thephysicaleffectofeachvariable shouldbediscussed
to evaluate their individual contribution to themodel.

The variable H0y
00 was found to be statistically signifi-

cant in earlier studies (e.g. Lied and Bakkeh�i, 1980;

McClung and Lied, 1987; Lied and others, 1995; Jo¤ hannes-
son, 1998), but in all studies except for Lied and others
(1995) was left out of the regression since it did not substan-
tially improve the fit. In this study, H0y

00 is strongly and
positively correlated with � (Table 2), which means that
higher values of H0y

00 are associated with shorter runout
distances. By assuming that the extreme runout position
and the vertex of the fitted parabola for a path coincide, it
is possible to show that H0y

00 is directly proportional to
tan�. Thus, by geometry, H0y

00 is a promising predictor
variable for �, even without the tangent transformation
and allowing for statistical scatter of the extreme runouts
with respect to the vertex.This was shown to be true in this
study.

H0 is also strongly and positively correlated with �,
while y 00 is not significantly correlated with � (Table 2).
Interpretation of these correlations shows that paths with
higher values of y 00 (highly curved) and higher values of
H0 (taller slopes) are associated with higher values of �, or
relatively shorter runout distances.This agrees with the hy-
pothesis of this study that shorter slopes have relatively
longer runout distances than taller slopes in this dataset. In
terms of avalanche dynamics, highly curved paths have

Table 4. Comparison of runout distances and � angles for eight paths for the alpha-regression model �P ¼ 21:11
þ 22:41H0y

00 � 3:02TPþ 0:01H0 � CPSE (Equation (2)) and the four-range model ð�x=XP Þ� ¼ 0:494
� 0:441 lnð� lnðP ÞÞ (Equation (5))

Avalanche path P Regression model estimate Runout ratio model estimate Observed value1

�P �xP �P �xP ð�x=X�ÞP � �x

‡ m ‡ m ‡ m

Wolverine Ridge 0.99 20.3 312 13.2 642 2.426
0.90 22.8 244 18.3 378 1.439

23.9 217
0.80 23.7 223 20.9 294 1.124
0.50 25.3 189 26.5 167 0.648

Shark Mountain 0.99 20.0 370 11.5 957 2.426
0.90 22.5 279 16.1 564 1.439

29.8 96
0.80 23.5 248 18.4 439 1.124
0.50 25.0 205 23.5 249 0.648

Apex Mountain east 0.99 23.2 281 12.8 815 2.426
0.90 25.8 212 17.9 480 1.439

30.3 115
0.80 26.7 191 20.4 373 1.124
0.50 28.3 158 25.8 212 0.648

Schroeder Shoulder 0.99 21.3 293 12.0 801 2.426
0.90 23.9 219 16.7 472 1.439

30.1 48
0.80 24.9 195 19.2 367 1.124
0.50 26.5 160 24.4 208 0.648

Brohm Ridge Col 0.99 16.1 441 14.7 504 2.426
0.90 18.7 347 20.4 279 1.439

22.5 247
0.80 19.7 317 23.3 231 1.124
0.50 21.2 277 29.2 131 0.648

Cornice Ridge north 0.99 17.6 338 13.9 488 2.426
0.90 20.2 265 19.3 288 1.439

19.5 282
0.80 21.1 243 22.0 224 1.124
0.50 22.6 211 27.7 127 0.648

MontJacques Cartier Saddle 0.99 17.2 472 14.3 628 2.426
0.90 19.7 374 19.8 370 1.439

21.6 314
0.80 20.7 341 22.6 288 1.124
0.50 22.2 298 28.4 163 0.648

Mont de la Passe west 0.99 20.2 468 13.7 889 2.426
0.90 22.8 366 19.0 524 1.439

25.3 287
0.80 23.8 332 21.7 407 1.124
0.50 25.3 286 27.4 231 0.648

1Observed values of � and�xwere estimated from vegetation damage during field studies or from historical records, corresponding to return periods of 30
to >100 years.
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higher energy losses associated with slope angles that
decrease markedly down the path, and consequently re-
duced runout potential. The lowest amount of energy loss
would be associated with a perfectly linear slope, for which
y 00 approaches 0.While shorter slopes have relatively longer
runout distances, as the strong positive correlation with �
suggests, there is also a curvature effect in the model with
respect to y 00.Thus, H0y

00 may be a more important predic-
tor variable for � than eitherH0 or y 00 alone.

The variableTP is negatively correlated with �, but only
at the 6% significance level. This variable is highly related
to the radius of curvature, y 00, but accounts for the very
abrupt change in slope associated with hockey-stick profiles.
Based on the negative correlation of TP with �, paths with
higher values ofTP (i.e. hockey-stick profiles) are associated
with lower values of �, and consequently longer runout dis-
tances (Fig. 7). This finding agrees with Martinelli (1986)
andMcClung and Lied (1987) who observed unusually long
runout distances associated with short-track, hockey-stick
profile paths. One possible physical interpretation for this
phenomenon is that fast-moving snow may become partly
fluidized upon reaching an abrupt slope transition asso-
ciated with paths with hockey-stick profiles (Martinelli,
1986; McClung and Lied, 1987; personal communication
from K. Lied, 2002). Consequentially, extreme avalanches
in these paths might flow greater distances because of en-
trained air and reduced frictional drag (Martinelli, 1986).
Another explanation for this phenomenon is that there is a
tendency for snow to be deposited at a sharp slope transition
and for the remaining snow to override the material
trapped in the transition area (McClung and Mears,1995).
The material trapped at the transition may serve to reduce
frictional forces at the transition, resulting in relatively
longer runout distances.

A third possible explanation is that the TP variable is
simply compensating for the quadratic fit of the curves to
the hockey-stick profiles. Both Lied and Bakkeh�i (1980)
andMartinelli (1986) fit their paths using parabolas, similar
to this study. It may be the case in these paths that the
� points for the fitted curves should be located farther up-

slope than the � point at the transition of the hockey stick.
Thus, when terrain parameters are taken from parabolas
fitted to path profiles, avalanche paths with hockey-stick
profiles run farther in relation to paths with other profiles.
From a practical perspective, higher values of TP (i.e.
TP ¼ 3 for hockey sticks) are associated with lower values
of �, as shown by the negative contribution of TP to the al-
pha-regression model (Equation (2)) and shown graphi-
cally in Figure 7. Therefore, for conservative estimates of
runout, one would prefer to choose higher values of TP in
the model if unsure of which category of TP to apply to the
path profile.

TESTINGTHE SHORT-SLOPE RUNOUTMODELS

In order to assess the usefulness of the runout models devel-
oped in this project, we analyzed 13 additional short-slope
avalanche paths that were not included in the development
of the models. Five of these paths are from the Chic Choc
Mountain range in Que¤ bec, and thus are geographically
within the area represented by this study. The other eight
paths are from the Swiss Alps, thus representing a different
sample in terms of geography and possibly climate. These
additional paths have vertical fall heights of 59^320m with
amean of 220m, which is the same mean vertical fall height
(H�) shown inTable 1.

A plot of residuals (observed� predicted) for � vs pre-
dicted � for the alpha-regression model shows that observed
� angles arewithin one standard error of regression for all of
the Que¤ bec paths and five of the eight Swiss paths (Fig. 8).
Measured � angles are within two standard errors of regres-
sion for all of the paths. One notable trend in Figure 8 is that
the model consistently underestimated runout for the Swiss
paths, although only three of these estimates were more
than one standard error of regression from the observed
values. The most likely explanation for this trend is that
these three Swiss data represent avalanches with longer re-
turn periods than the majority of paths in the short-slope
dataset (personal communication from S. Margreth, 2002).
On average, the Swiss paths may have longer return periods
than the paths used to develop the Canadian regression
model, which have return periods more likely in the range
30 to >100 years.This would explain why the model consis-
tently underestimates runout for the Swiss data. Another
possible reason is that the Swiss data represent a different

Fig. 7. Box-and-whisker plot showing the relationship

between observed � and the terrain profile variable, TP.
Maximum, minimum, 25th and 75th percentiles and median

are shown for each range of TP.

Fig. 8. Plot of residuals (observed minus predicted �) vs

predicted � using the alpha-regression model Equation (2)),

withP ¼ 0:50. Dashed lines show the mean�1 SE (2.5‡).
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statistical population than the Canadian dataset, and thus
the regression model does not work well for predicting run-
out for paths outside of the four tested Canadian mountain
ranges. Additional data from other mountain ranges would
be useful for testing whether the applicability of these
models is limited to the four Canadian mountain ranges.

Whenthe four-rangerunout ratiomodel isusedtopredict
runout for the13 additional paths, a trend similar to that for
the regression model can be observed (Fig. 9). The results
shown in Figure 9 represent a non-exceedance probability of
0.5, since this is ameanvalue for the paths in the dataset.The
model provides good runout estimates for all of the Que¤ bec
paths, within15mof the observed runout in three cases.

Similar to the alpha-regression model, the runout ratio
model underestimates runout for three or four of the Swiss
paths. However, the runout estimates for four of the eight
paths were within 80m of the observed runout distances,
which are reasonably good estimates given the amount of
uncertainty associated with avalanche runout modelling.

SUMMARY

In this paper, we presented and compared two methods for
estimating runout distances for short-slope avalanche paths:
one using the alpha-regression and the other using the run-
out ratio method. For both models, the reference � point
from which to measure runout distances was redefined for
short slopes to be the position where the slope in the path
first reaches 24‡ proceeding downslope from the starting
zone. This definition provided better fits of the short-slope
data using both normal and extreme-value probability dis-
tribution functions. Two avalanche paths with very steep
runout zones were removed from the analyses, leaving 46
paths available to develop the runout models.

A runoutmodelwas developedby regressingeight poten-
tial predictor variables on the � angle.This model uses three
of these variables, H0y

00,TP and H0, for the regression and
provides a significant fit of the data to a normal distribution
(adjusted R2 ¼ 0:65, SE ¼ 2:5‡). Scale effects and the pro-
posed physical explanations of the independent predictor
variables onthe alpha-regressionmodelwere discussed.

The runout ratio method was used to develop a model
for estimating runout distances that fit a Gumbel extreme-
value distribution function. The four-range model includes
data from the four Canadian mountain ranges and is well
fit by a Gumbel distribution (R2 ¼ 0:98, SE ¼ 0:080). Use
of all four ranges in this analysis shows that there is little dif-
ference between mountain ranges in terms of runout dis-
tances for short slopes using the runout ratio method. Two
long-running avalanche paths with runout zones within
partly confined stream channels were noted in the analyses
for the models. Channelization of the avalanche flow in the
runout zone probably contributed to longer runout dis-
tances in these paths, and should be considered when esti-
mating runouts.

A comparison of the two statistical methods shows that
the runout ratio method estimates more conservative (long-
er) runout distances than the alpha-regression method for
most threshold probabilities.This effect is very pronounced
for the higher-threshold probabilities (e.g. P ¼ 0:99Þ,
where the runout ratio method estimates runout distances
up to four times that estimated by the alpha-regression
method.

When terrain parameters are taken from parabolas
fitted to path profiles, avalanches in paths with hockey-stick
profiles tend to run farther in relation to paths with para-
bolic or almost linear profiles. This has important implica-
tions for estimating runout distances for short slopes,
particularly when applied to land-use planning.

The models were tested using data from 13 additional
short-slope avalanche paths, eight from the Swiss Alps and
five from the Chic Choc range in Que¤ bec. Both models pro-
vide good runout estimates for the five Que¤ bec paths. Both
models tend to underestimate runout distances for the Swiss
paths when compared to the observed runout. However,
both models provide reasonable estimates of runout for four
of the eight Swiss paths, showing that these models may be
used with caution for other ranges, taking into account the
uncertainty associated with the models (i.e. using appropri-
ate threshold probabilities). Additional studies would be
required to assess the suitability of the models for individual
mountain ranges not represented in this study.

This study included 48 avalanche paths, whichwas suffi-
cient to buildmodels for combinedmountain rangesbut was
not sufficient data for properly assessing each range indi-
vidually. Thus, a larger dataset could be developed that in-
cludes more paths in the individual ranges. There also may
be important climatic variations within these ranges that in-
fluence runout distances. Further studies could look into speci-
fic climate variables (e.g. 30 year maximum water equivalent
of snowfall) and assess their effect on runout distances.
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