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A CR Analogue of Yau’s Conjecture on
Pseudoharmonic Functions of
Polynomial Growth

Der-Chen Chang, Shu-Cheng Chang, Yingbo Han, and Jingzhi Tie

Abstract. In this paper, we ûrst derive the CR volume doubling property, CR Sobolev inequality,
and the mean value inequality. We then apply them to prove the CR analogue of Yau’s conjecture
on the space consisting of all pseudoharmonic functions of polynomial growth of degree at most d
in a complete noncompact pseudohermitian (2n + 1)-manifold. As a by-product, we obtain the CR
analogue of the volume growth estimate and the Gromov precompactness theorem.

1 Introduction

S.-Y. Cheng [16] and S.-T. Yau [44] derived thewell-known gradient estimate for pos-
itive harmonic functions and obtained the classical Liouville theorem, stating that
any bounded harmonic function is constant in complete noncompact Riemannian
manifolds with nonnegative Ricci curvature. Let Hd(M) be the space of harmonic
functions of polynomial growth of degree at most d in a complete noncompact Rie-
mannian manifold Mm . Yau conjectured that the dimension hd(M) of Hd(M) is
ûnite for each positive integer d and satisûes the estimate hd(M) ≤ hd(Rm). Colding
andMinicozzi [19] aõrmatively answered the ûrst question and proved that

hd(M) ≤ C0dm−1

for manifolds of nonnegative Ricci curvature with C0 depending on the Neumann–
Poincaré inequality and the volume doubling constant. Later, Li [33] produced an
elegant and shorter proof requiring only themanifold to satisfy the volume doubling
property (see Deûnition 1.2) and themean value inequality (see Deûnition 1.10). For
the latter question, the sharp upper bound estimate is still missing except for the spe-
cial cases m = 2 or d = 1 obtained by Li and Tam [34, 35]) and Kasue [28], and the
rigidity part is only known for the special case d = 1 obtained by Li [32] and Cheeger,
Colding, andMinicozzi [15]. Bymodifying the arguments ofYau [44], Cheng andYau
[16], and Chang, Kuo, and Lai [12], Chang, Kuo, and Tie [13] derived a sub-gradient
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estimate for positive pseudoharmonic functions in a complete noncompact pseudo-
hermitian (2n+1)-manifold (M , J , θ). _is sub-gradient estimate can serve as the CR
version of Yau’s gradient estimate. As an application of the sub-gradient estimate, the
CR analogue of Liouville-type theoremholds for positive pseudoharmonic functions.

In the current paper, we study the CR analogue of Yau’s conjecture on the space
Hd(M) consisting of all pseudoharmonic functions of polynomial growth of degree
at most d in a complete noncompact pseudohermitian (2n+ 1)-manifold (see Deûni-
tion 1.1). We will show that the ûrst part of the CR Yau conjecture holds for pseudo-
harmonic functions of polynomial growth as in _eorem 1.12 via Li’s method, which
is more adaptable to the case of pseudohermitian geometry.

_roughout the paper, we assume that (M , J , θ) is a complete pseudohermitian
(2n + 1)-manifold. A piecewise smooth curve γ∶ [0, 1] → M is said to be horizon-
tal if γ̇(t) ∈ ξ whenever γ̇(t) exists. We denote by Cp,q the set of all horizontal
curves joining p, q. _e Carnot–Carathéodory distance between two points p, q ∈ M
is deûned by dcc(p, q) = inf{l(γ) ∶ γ ∈ Cp,q}, where the length of γ is l(γ) =
∫

1
0 ⟨γ̇(t), γ̇(t)⟩

1/2
Lθ
dt.

SinceM is a complete pseudohermitian (2n+ 1)-manifold,we know that dcc exists
by one of Chow’s theorems [17].

Deûnition 1.1 Let Hd(M) be the space of all polynomial growth pseudoharmonic
real-valued functions deûned on M of order at most d, i.e.,

Hd(M) = { f ∣ ∆b f = 0 and ∣ f (x)∣ ≤ Cr(x)d for some constant C} ,

where r(x) is the Carnot–Carathéodory distance from x to a ûxed point p in M . We
also denote the dimension of the vector spaceHd(M) by hd(M).

Deûnition 1.2 A complete pseudohermitian (2n + 1)-manifold M has the volume
doubling property (Vµ) for some µ > 1 if there exists a universal constant CV > 0
such that for any σ > 1, 0 < ρ < ∞, x ∈ M, the volume of the geodesic ball centered
at x satisûes the inequality Vx(σρ) ≤ CVσ µVx(ρ). Here Vx(ρ) is the volume of the
geodesic ball Bx(ρ) centered at x with radius ρ.

In Section 2, for X = XαZα , we will deûne the pseudohermitian Ricci tensors Rαβ
and the pseudohermitian torsion tensors Aαβ as follows:

Ric(X , X) = RαβX
αXβ ,

Tor(X , X) = i∑
α ,β

(AαβX
αXβ − AαβXαXβ) = 2Re(iAαβX

αXβ),

(divA)2(X , X) = Aαγ ,γAσβ ,σX
αXβ .

We observe that the pseudohermitian Ricci tensors Rαβ (or Ric) are the mixed type
component of the Tanaka–Webster Ricci curvature tensors, and the pseudohermitian
torsion tensors i(n − 1)Aαβ (or Rαβ) are the purely holomorphic part of the Tanaka–
Webster Ricci curvature tensors. Hence, in order to make geometric assumptions for
theTanaka–Webster Ricci curvature tensors,wemake the equivalent assumptions (∗)
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and (∗∗) below on the pseudohermitian Ricci tensors Rαβ and the pseudohermitian
torsion tensors Aαβ , respectively.

_eorem 1.3 Assume that a complete pseudohermitian (2n+ 1)-manifoldM satisûes
the curvature assumptions

(∗) Ric(X , X) ≥ k0⟨X , X⟩Lθ ,

and

(∗∗) sup
i , j∈In

∣A i j ∣ ≤ k1 <∞, sup
i , j∈In

∣A i j, ı ∣2 ≤ k2 <∞,

for X = XαZα ∈ T1,0M, In = {1, 2, . . . , n} and where k0 , k1 , k2 are constants with
k1 , k2 ≥ 0. _en for any σ > 1, there exist positive constants κ,C1 ,C8 ,C9 such that

(1.1) Vx(σρ) ≤ C1σ 2C9 e(C1σ 2+C8)kρ2
Vx(ρ)

with κ = 2[−k0 + ∣n − 2∣k1 + єk2] ≥ 0, for a positive constant є and where C9 is the
constant in (3.8).

Remark 1.4 (i) If a complete pseudohermitian (2n + 1)-manifold M has the
properties supi , j∈In ∣A i j ∣ ≤ k1 <∞ and supi , j∈In ∣A i j, ı ∣2 ≤ k2 <∞, then the curvature
assumptions can be replaced by

[2Ric−(n − 2)Tor−2є(divA)2](X , X)
≥ −2(−k0 + ∣n − 2∣k1 + єk2)⟨X , X⟩Lθ ∶= −κ⟨X , X⟩Lθ

for X = XαZα ∈ T1,0M , a positive constant є.
(ii) _e nonnegativity of the pseudohermitian Ricci curvature i.e., κ = 0 is equiv-

alent to saying Ric(X , X) ≥ (∣n − 2∣k1 + єk2)⟨X , X⟩Lθ , which is

[2Ric(X , X) ≥ [(n − 2)Tor+2є(divA)2](X , X),

for X = XαZα ∈ T1,0M and a positive constant є.

In particular, M satisûes the following volume doubling property (Vµ) for some
µ = 2C9.

Corollary 1.5 A complete pseudohermitian (2n + 1)-manifoldM satisûes

sup
i , j∈In

∣A i j ∣ ≤ k1 <∞ and sup
i , j∈In

∣A i j, ı ∣2 ≤ k2 <∞,

where k1 , k2 arenonnegative constants. Assume also thenonnegativity of the pseudoher-
mitian Ricci curvature Ric(X , X) ≥ (∣n − 2∣k1 + єk2)⟨X , X⟩Lθ , for X = XαZα ∈ T1,0M
and where є is a positive constant. _en for any σ > 1, there exists a positive constant
CV = CV(n) such that Vx(σρ) ≤ CVσ 2C9Vx(ρ).

Furthermore, we obtain the following CR volume growth estimate.
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Corollary 1.6 Let (M , J , θ) be a complete pseudohermitian (2n + 1)-manifold with
Ric(X , X) ≥ k0⟨X , X⟩Lθ , and

sup
i , j∈In

∣A i j ∣ ≤ k1 <∞, sup
i , j∈In

∣A i j, ı ∣2 ≤ k2 <∞,

for X = XαZα ∈ T1,0M and where k0, k1, k2 are constants with k1 , k2 ≥ 0. _en for
any σ > 1, there exists a positive constant C̃1 such that Vx(σ) ≤ C̃1Vx(1)σ 2C9 eC1kσ 2

. In
particular, assume that the nonnegativity of the pseudohermitian Ricci curvature

Ric(X , X) ≥ (∣n − 2∣k1 + єk2)⟨X , X⟩Lθ ,

for a positive constant є. _en Vx(σ) ≤ C̃1Vx(1)σ 2C9 .

Remark 1.7 (i) For the (2n+ 1)-dimensional Heisenberg groupHn , it has been
shown [38] that

(1.2) Vx(σ) ≤ C̃1Vx(1)σ 2n+2 ,

where 2n + 2 is the homogeneous dimension.
(ii) _e best constant is expected to be C9 = n + 1, the same as in the Heisenberg

groupHn . However, at this step we only can show C9 = mn(1+ 6
ρ2 ) = n + 3 when the

torsion is vanishing. In general, it follows from (3.8) and (3.10) that we can choose
n + 3 < C9 < n + 3 + ε for any ûxed small ε > 0.

Now, applying the volume doubling constant and upper bound estimate of the heat
kernel as in Proposition 3.3,we can obtain the CR analogue of the Sobolev inequality.

_eorem 1.8 Let (M , J , θ) be a complete pseudohermitian (2n + 1)-manifold with

Ric(X , X) ≥ k0⟨X , X⟩Lθ ,

and
sup
i , j∈In

∣A i j ∣ ≤ k1 <∞, sup
i , j∈In

∣A i j, ı ∣2 ≤ k2 <∞,

for X = XαZα ∈ T1,0M and where k0 , k1, k2 are constants with k1 , k2 ≥ 0. _en

(∫
Bx(ρ)

∣φ∣
2Q
Q−2 )

Q−2
Q ≤ Csρ2eCkρ2

Vx(ρ)−
2
Q (∫

Bx(ρ)
∣∇bφ∣2 dµ + ρ−2 ∫

Bx(ρ)
φ2 dµ) ,

for any φ ∈ C∞0 (Bx(ρ)), x ∈ M . Here Q = 3C9.

_eorem 1.8 andMoser’s iteration method will yield themean value inequality.

_eorem 1.9 Let (M , J , θ) be a complete pseudohermitian (2n + 1)-manifold with

Ric(X , X) ≥ k0⟨X , X⟩Lθ ,

and
sup
i , j∈In

∣A i j ∣ ≤ k1 <∞, sup
i , j∈In

∣A i j, ı ∣2 ≤ k2 <∞,
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for X = XαZα ∈ T1,0M and where k0, k1, k2 are constants with k1 , k2 ≥ 0. _en there
exists a constant C2 > 0 such that for any ρ > 0, x ∈ M , and any nonnegative subpseu-
doharmonic function f deûned on M, we have

[ f (x)]2 ≤ C2V−1
x (ρ)eC2kρ2

∫
Bx(ρ)

f (y)2 dµ.

As a consequence, M satisûes themean value inequality (M).

Deûnition 1.10 A complete pseudohermitian (2n + 1)-manifold M satisûes the
mean value inequality (M) if there exists a universal constant CM > 0 such that for
any point x ∈ M, 0 < ρ < ∞, and any non-negative subpseudoharmonic function
f (x) deûned on M, we have

[ f (x)]2 ≤ CM

Vx(ρ) ∫Bx(ρ)
f (y)2 dµ.

Corollary 1.11 Let (M , J , θ) be a complete pseudohermitian (2n + 1)-manifold with
sup
i , j∈In

∣A i j ∣ ≤ k1 <∞ and sup
i , j∈In

∣A i j, ı ∣2 ≤ k2 <∞,

for X = XαZα ∈ T1,0M and k1 , k2 are nonnegative constants. Assume the nonnegativity
of the pseudohermitian Ricci curvature

Ric(X , X) ≥ (∣n − 2∣k1 + єk2)⟨X , X⟩Lθ ,

for X = XαZα ∈ T1,0M, where є is a positive constant. _en there exists a constant
CM > 0 such that for any ρ > 0, x ∈ M , and any nonnegative subpseudoharmonic
function f deûned on M, we have

[ f (x)]2 ≤ CMV−1
x (ρ)∫

Bx(ρ)
f (y)2 dµ.

As a consequence of Corollary 1.5 and Corollary 1.11, we have the following main
result on a CR analogue of Yau’s conjecture for pseudoharmonic functions of polyno-
mial growth.

_eorem 1.12 Let (M , J , θ) be a complete pseudohermitian (2n + 1)-manifold with
sup
i , j∈In

∣A i j ∣ ≤ k1 <∞ and sup
i , j∈In

∣A i j, ı ∣2 ≤ k2 <∞,

for X = XαZα ∈ T1,0M, where k1 , k2 are nonnegative constants. Assume the nonnega-
tivity of the pseudohermitian Ricci curvature

Ric(X , X) ≥ (∣n − 2∣k1 + єk2)⟨X , X⟩Lθ ,

for X = XαZα ∈ T1,0M, where є is a positive constant. _en the dimension ofHd(M)
is ûnite. Moreover, there exists a constant C0 = C(CM ,CV) > 0 such that

(1.3) hd(M) ≤ C0d
2n

2n+1 (2C9−1) ,

for all d ≥ 1. Here C9 is the constant in Corollary 1.5.

As a consequence of_eorem 1.12 and [13], we have the folowing.
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Corollary 1.13 Let (M , J , θ) be a complete pseudohermitian (2n + 1)-manifold of
vanishing torsion. Assume that Ric(X , X) ≥ 0 for X = XαZα ∈ T1,0M. _en there
exists a constant C0 = C(CM ,CV) > 0 such that

hd(M) ≤ C0d
2n

2n+1 (2C9−1)

for all d ≥ 1. In particular, hd(M) = 1 for d < 1.

Remark 1.14 (i) In the (2n+1)-dimensional Heisenberg groupHn ,we compute
explicitly (see Section 7) that

(1.4) hd(Hn) ≈
d2n

(2n)! .

On the other hand, it follows from Corollary 1.6 and (1.2) that the power 2C9 of vol-
ume in ρ is 2n + 2 ,and then (2C9 − 1) = 2n + 1 in Hn . _erefore, the power of the
right-hand side in (1.3) will be 2n

2n+1 (2C9 − 1) = 2n which is sharp as in (1.4) for the
Heisenberg group Hn .

(ii) It is not clear that if a complete pseudohermitian (2n+ 1)-manifoldwith non-
negative pseudohermitian Ricci curvature and vanishing torsion admits nonconstant
pseudoharmonic functions of polynomial growth. We refer to [37,43] for the related
topic.

(iii) However, similar results hold for a complete pseudohermitian (2n+1)-mani-
fold of nonnegative pseudohermitian Ricci and vanishing torsion (M , J0 , θ0). We
refer to [2] for more details.

(iv) By applying the volume doubling property (1.1) together with methods of
M. Gromov [26] and C. Villani [42], we have the following CR analogue of the Gro-
mov precompactness theorem. Let M(k0 , k1 , k2 ,D) be the space of compact pseu-
dohermitian (2n+ 1)-manifolds (M , J , θ) equippedwith theirCarnot–Carathéodory
geodesic distance and volumemeasure and

(a) Ric(X , X) ≥ k0⟨X , X⟩Lθ , supi , j∈In ∣A i j ∣ ≤ k1 < ∞, and supi , j∈In ∣A i j, ı ∣2 ≤ k2 <
∞, for X = XαZα ∈ T1,0M , where k0 , k1 , k2 are constants with k1 , k2 ≥ 0.

(b) diam(M) ≤ D. _en M(k0 , k1 , k2 ,D) is precompactness in the measured
Gromov–Hausdorò topology.
We will pursue this topic further in a forthcoming paper.

In Käehler geometry, one of the primary goals is to generalize the classical uni-
formization theorem in higher dimensions. Siu and Yau [41] initiated a program
of using holomorphic functions of polynomial growth to holomorphically embed a
completeKählermanifold into the complex Euclidean space. More precisely, thewell-
known uniformization conjecture asks if every complete noncompact Kähler mani-
fold with positive holomorphic bisectional curvature is biholomorphic to a complex
Euclidean space. For this reason, Yau [45] proposed to study the spaces of holomor-
phic functions of polynomial growth on complete noncompactKählermanifoldswith
nonnegative holomorphic bisectional curvature. In our forthcoming paper, we will
investigate the related CR analogue of Yau’s conjecture on the spaces of CR holomor-
phic functions of polynomial growth in a complete noncompact pseudohermitian
manifold with nonnegative pseudohermitian bisectional curvature.
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_e rest of the paper is organized as follows. In Section 2, we introduce some ba-
sic notions of a pseudohermitian (2n + 1)-manifold. In Section 3, we derive a CR
curvature-dimension inequality and the heat kernel estimate in a pseudohermitian
(2n+1)-manifoldunder some speciûc assumptions on thepseudohermitianRicci cur-
vature tensor and the torsion tensor. From these estimates, we obtain the CR volume
doubling property. _en the volume doubling property and the heat kernel estimate
yield the CR Sobolev inequality. In Section 4, by applying the volume doubling prop-
erty and CR Sobolev inequality obtained in Section 3, we derive the mean value in-
equality viaMoser’s iteration method. In Section 5, following Li’s method, we use the
CR volume doubling property and mean value inequality to prove the CR analogue
of Yau’s conjecture for the space of pseudoharmonic functions of polynomial growth
of degree at most d in a complete noncompact pseudohermitian (2n + 1)-manifold.
As a by-product, we obtain the CR volume growth estimate. In the last section, we
study the pseudoharmonic polynomials on theHeisenberg group and obtain a precise
estimate of the dimension of the linear space of the pseudoharmonic polynomials of
degree at most d.

2 Preliminaries

We introduce some basic notions of a pseudohermitian manifold (see [12, 20, 30] for
more details). Let (M , ξ) be a (2n+1)-dimensional, orientable, contactmanifoldwith
contact structure ξ. A CR structure compatible with ξ is an endomorphism J∶ ξ → ξ
such that J2 = −1. We also assume that J satisûes the integrability condition: if X and
Y are in ξ, then so are [JX ,Y]+[X , JY] and J([JX ,Y]+[X , JY]) = [JX , JY]−[X ,Y].
Let {T, Zα , Zα} be a frame of TM⊗C,where Zα is any local frame of T1,0 , Zα = Zα ∈
T0,1 and T is the characteristic vector ûeld. _en {θ , θα , θα}, the coframe dual to
{T, Zα , Zα}, satisûes dθ = ihαβθ

α ∧ θβ for some positive deûnite hermitian matrix
of functions (hαβ). If we have this contact structure, we also call such M a strictly
pseudoconvex CR (2n + 1)-manifold. _e Levi form ⟨ ⋅ , ⋅ ⟩Lθ is the Hermitian form
on T1,0 deûned by ⟨Z ,W⟩Lθ = −i⟨dθ , Z ∧ W⟩. We can extend ⟨ ⋅ , ⋅ ⟩Lθ to T0,1 by
deûning ⟨Z ,W⟩Lθ = ⟨Z ,W⟩Lθ

for all Z ,W ∈ T1,0. _e Levi form induces naturally a
Hermitian form on the dual bundle of T1,0, denoted by ⟨ ⋅ , ⋅ ⟩L∗θ , and hence on all the
induced tensor bundles. Integrating the Hermitian form (when acting on sections)
over M with respect to the volume form dµ = θ ∧ (dθ)n , we get an inner product on
the space of sections of each tensor bundle.

_e pseudohermitian connection of (J , θ) is the connection ∇ on TM ⊗ C (and
extended to tensors) given in terms of a local frame Zα ∈ T1,0 by

∇Zα = ωα β ⊗ Zβ , ∇Zα = ωα β ⊗ Zβ , ∇T = 0

and

(2.1) dθβ = θα ∧ ωα β + θ ∧ τβ , 0 = τα ∧ θα , 0 = ωα β + ωβ
α ,

where ωα β are the 1-forms uniquely determined by equations (2.1). We can write (by
Cartan’s lemma) τα = Aαγθγ with Aαγ = Aγα . _e curvature of the Tanaka–Webster
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connection, expressed in terms of the coframe {θ = θ0 , θα , θα}, is

Πβ
α = Πβ

α = dωβα − ωβγ ∧ ωγ
α , Π0

α = Πα
0 = Π0

β = Πβ
0 = Π0

0 = 0.

Webster showed that Πβ
α can be written as

Πβ
α = Rβα ρσθρ ∧ θσ +Wβ

α
ρθρ ∧ θ −Wα

βρθρ ∧ θ + iθβ ∧ τα − iτβ ∧ θα ,

where the coeõcients satisfy Rβαρσ = Rαβσρ = Rαβσρ = Rραβσ , and Wβαγ = Wγαβ .
Here, Rγ

δ
αβ is the pseudohermitian curvature tensor, Rαβ = Rγ

γ
αβ is the pseudoher-

mitian Ricci curvature tensor, and Aαβ is the pseudohermitian torsion. _eWebster
scalar curvature is R = Rα α = hαβRαβ . Moreover, we have

Rαβ = i(n − 1)Aαβ and Rα0 = R00 = 0.

Furthermore, we deûne the bi-sectional curvature Rααββ(X ,Y) = RααββXαXαYβYβ
and the bi-torsion tensor Tαβ(X ,Y) ∶= i(AβρX

ρYα − AαρXρYβ), where X = XαZα ,

Y = Y βZβ in T1,0. In particular, we have Ric(X ,Y) = RαβX
αY β and

Tor(X ,Y) ∶= hαβTαβ(X ,Y) = i∑
α ,β

(AαβX
αY β − AαβXαY β).

We also deûne the tensor A2 by A2(X ,Y) = ∑γ(AαγAβγX
αY β).

We will denote the components of covariant derivatives with indices preceded by
a comma; thus we write Aαβ ,γ . _e indices {0, α, α} indicate derivatives with respect
to {T , Zα , Zα}. For derivatives of a scalar function, we will o�en omit the comma;
for instance, uα = Zαu, uαβ = ZβZαu − ωα γ(Zβ)Zγu. In particular, we have

∣∇bu∣2 = 2∑
α

uαuα , ∣∇2
bu∣2 = 2∑

α ,β
(uαβuαβ + uαβuαβ),

∆bu = Tr((∇H)2u) =∑
α
(uαα + uαα).

Next we recall some commutation relations [30]. Let φ be a scalar function and
σ = σαθα a (1, 0) form. Let φ0 = Tφ; then we have

φαβ = φβα ,
φαβ − φβα = ihαβφ0 ,

φ0α − φα0 = Aαβφβ ,
σα ,0β − σα ,β0 = σα ,γAγ

β − σ γAαβ ,γ ,

σα ,0β − σα ,β0 = σα ,γAγ
β + σ γAγβ ,α .

Finally, we provide the real version of pseudohermitian geometry for completeness.
Write Zβ = 1

2 (eβ − ien+β) for real vectors eβ , en+β , β = 1, . . . , n. It follows that en+β =
Jeβ . We also write φeβ = eβφ and ∇bφ = 1

2 (φeβ eβ + φen+β en+β). Moreover, we have
φe j ek = ek e jφ −∇ek e jφ and ∆bφ = 1

2 ∑β(φeβ eβ + φen+β en+β).
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3 The CR Volume Doubling Property and Sobolev Inequality

In this section, we ûrst derive a CR curvature-dimension inequality and the heat ker-
nel estimate in a pseudohermitian (2n+1)-manifoldwhen the pseudohermitianRicci
curvature tensor and the torsion tensor satisfy some speciûc conditions. _en we ob-
tain the CR volume doubling property via the heat kernel estimate. Finally, by apply-
ing the volume doubling property and the heat kernel estimate, we prove the above
CR Sobolev inequality.

One of the key steps of Li andYau’s proof of gradient estimates of the heat equation
on a Riemannian manifold is the Bochner formula in terms of the Riemannian Ricci
curvature tensors. In the CR analogue of the Li–Yau gradient estimate, the crucial
step is the following CR Bochner formula [24]:

(3.1)
1
2
∆b ∣∇b f ∣2 = ∣Hess( f )∣2 + ⟨∇b f ,∇b(∆b f )⟩ + 2⟨J∇b f ,∇b f0⟩

+ (2Ric−(n − 2)Tor)((∇b f )C , (∇b f )C),

where (∇b f )c is the T1,0M-component of (∇b f ). Note that the right-hand side in-
volves a term ⟨J∇b f ,∇b f0⟩ that has no analogue in the Riemannian case. In the case
of vanishing torsion tensors, we are able to deal with the extra term ⟨J∇b f ,∇b f0⟩ as
in [11, 12] by using the arguments of [36]. In this paper, we will use gradient estimates
and some related results in a complete pseudohermitian manifoldwith nonvanishing
torsion tensor.

On the other hand, Bakry and Emery [1] pioneered the approach to generalize
curvature in the context of gradient estimates by the so-called curvature-dimension
inequality. We will deûne the CR version of the curvature-dimension inequality that
was ûrst introduced by Baudoin, Bonnefont, and Garofalo [2] in the context of sub-
Riemannian geometry.

Deûnition 3.1 Let (M , J , θ) be a smooth pseudohermitian (2n + 1)-manifold
and a real frame {eβ , en+β ,T} spanning the tangent space TM. For ρ1 ∈ R, ρ2 >
0, d ≥ 0, and m > 0, we say that M satisûes the CR curvature-dimension inequality,
CD(ρ1 , ρ2 , d ,m), if

1
m

(∆b f )2 + ( ρ1 −
d
ν
)Γ( f , f ) + ρ2ΓZ( f , f ) ≤ Γ2( f , f ) + νΓZ

2 ( f , f )

for any smooth function f ∈ C∞(M) and ν > 0.

Here we have

Γ( f , f ) ∶= ∑
j∈I2n

∣e j f ∣2 , ΓZ( f , f ) ∶= ∣T f ∣2 ,

Γ2( f , f ) ∶=
1
2
[∆b(Γ( f , f )) − 2 ∑

j∈I2n
(e j f )(e j∆b f )],

ΓZ
2 ( f , f ) ∶= 1

2
[∆b(ΓZ( f , f )) − 2(T f )(T∆b f )].
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Note that

Γ2( f , f ) = ∑
i , j∈I2n

∣e i e j f ∣2 + ∑
j∈I2n

(e j f )([∆b , e j] f ),

ΓZ
2 ( f , f ) = ∑

i∈I2n
∣e iT f ∣2 + (T f )([∆b ,T] f ).

Now we proceed to derive a CR curvature-dimension inequality in a closed pseu-
dohermitian (2n+1)-manifoldunder some speciûc assumptions on thepseudohermi-
tianRicci curvature tensor and the torsion tensor. Wewill ûrst prove the the following
key lemma.

Lemma 3.2 Let (M , J , θ) be a complete pseudohermitian (2n + 1)-manifold with
Ric(X , X) ≥ k0⟨X , X⟩Lθ , supi , j∈In ∣A i j ∣ ≤ k1 < ∞, and supi , j∈In ∣A i j, ı ∣2 ≤ k2 < ∞,
for X = XαZα ∈ T1,0M, In = {1, 2, . . . , n}, and where k0, k1, k2 are constants with
k1 , k2 ≥ 0. _en M satisûes the CR curvature-dimension inequalityCD(ρ1 , ρ2 , 4, 2mn)
for 1 < m < +∞, and N > 0 such that

ρ1 ∶= −κ and ρ2 ∶=
2n
m

− 8n
3N2

є
− 2mn2N2k1

2

m − 1
> 0,

for 0 < ν ≤ N and a positive constant є with κ = 2[−k0 + ∣n − 2∣k1 + єk2] ≥ 0.

Proof _e CR Bochner formula (3.1) implies

1
4
Γ2( f , f ) = ∣Hess( f )∣2 + (2Ric−(n − 2)Tor)((∇b f )c , (∇b f )c) + 2⟨J∇b f ,∇b f0⟩.

With the equality 1
2 Γ

Z
2 ( f , f ) = ∣∇b f0∣2 + f0[∆b , T] f , we have

(3.2)

Γ2( f , f ) + νΓZ
2 ( f , f ) = 4[ ∣Hess( f )∣2 + (2Ric−(n − 2)Tor)((∇b f )c , (∇b f )c)

+ 2⟨J∇b f ,∇b f0⟩] + 2ν∣∇b f0∣2 + 2ν f0[∆b , T] f .

On the other hand, we have

(3.3) ∣Hess( f )∣2 = 2( ∑
i , j∈In

∣ f i j ∣2 +∑ i , j ∈ In ∣ f i j ∣
2) ≥ 1

2n
∣∆b f ∣2 +

n
2
∣ f0∣2

and

(3.4) ⟨J∇b f ,∇b f0⟩ ≥ −
∣∇b f ∣2

ν
− ν

4
∣∇b f0∣2 .

Finally, it follows from the commutation relation [12] that

(3.5) ∆b f0 = (∆b f )0 + 2[(Aαβ f α)β + (Aαβ f
α)β] .
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_en (3.2), (3.4), and (3.5) yield that

Γ2( f , f ) + νΓZ
2 ( f , f ) ≥ 8[∑

α ,β
(∣ fαβ ∣2 + ∣ fαβ ∣

2)]

+ [4(k0 − (n − 2)k1) −
8
ν
] ∣∇b f ∣2

− 8ν∣ f0∣∑
α ,β

∣(Aαβ ,α fβ + Aαβ fβα)∣.

Next Young’s inequality implies that

∣ f0∣(∣Aαβ ,α fβ ∣ + ∣Aαβ fβα ∣) ≤
∣ f0∣2
4ε1

+ ε1∣Aαβ ,α fβ ∣
2 + ∣ f0∣2

4ε2
+ ε2∣Aαβ fβα ∣

2 ,

for any ε1 , ε2 > 0. We can choose ε2 = m−1
mNk12

for m > 1 and N with ν ≤ N . _is implies
that (1 − Nε2k1

2) = 1
m .

It follows from (3.3) that for є = 4Nε1n

Γ2( f , f ) + νΓZ
2 ( f , f ) ≥ 8∑

α ,β
∣ fαβ ∣

2 + 8∑
α ,β

(1 − νε2∣Aαβ ∣
2)∣ fβα ∣2

+ [4(k0 − (n − 2)k1) −
8
ν
] ∣∇b f ∣2

− 2ν∑
α ,β

( 1
ε1
+ 1
ε2

) ∣ f0∣2 − 8νε1∑
α ,β

∣Aαβ ,α fβ ∣
2

≥ 8
m ∑

α ,β
(∣ fαβ ∣

2 + ∣ fβα ∣2) + (−2κ − 8
ν
) ∣∇b f ∣2

− 2n2N( 1
ε1
+ 1
ε2

) ∣ f0∣2

≥ 4
m

( 1
2n

∣∆b f ∣2 +
n
2
∣ f0∣2) + (−2κ − 8

ν
) ∣∇b f ∣2

− 2n2N( 1
ε1
+ 1
ε2

) ∣ f0∣2

≥ 1
2mn

(L f )2 + (−κ − 4
ν
)Γ( f , f )

+ ( 2n
m

− 2n2N
ε1

− 2mn2N2k1
2

m − 1
)ΓZ( f , f ).

Now we can choose N suõciently small so that either

2n
m

− 2n2N
ε1

− 2mn2N2k1
2

m − 1
> 0 or

2n
m

− 8n
3N2

є
− 2mn2N2k1

2

m − 1
> 0.

_is completes the proof of the lemma.

We now apply the CR curvature-dimension inequality CD as in Lemma 3.2 and
the subgradient estimate in [3, 11] for the semigroup solution u(x , t) = Pt f (x) of
the heat �ow (3.9), and prove the following crucial estimate for the symmetric heat
kernel p(x , y, t) > 0 associated with the heat semigroup Pt . We also refer to [10, 11]
for similar results for the general solution of the heat �ow.
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Proposition 3.3 Let (M , J , θ) be a complete pseudohermitian (2n+1)-manifoldwith

Ric(X , X) ≥ k0⟨X , X⟩Lθ ,

sup
i , j∈In

∣A i j ∣ ≤ k1 <∞, and sup
i , j∈In

∣A i j, ı ∣2 ≤ k2 <∞,

for X = XαZα ∈ T1,0M, where k0, k1, k2 are constants with k1 , k2 ≥ 0.
(i) _ere exist positive constants C3(ρ2), C4(ρ2), C5(ρ2) such that for x , y ∈ M and

t > 0,

(3.6) p(x , y, t) ≤ C3

Vx(
√

t) 1
2 Vy(

√
t) 1

2
exp(−C5

d2
cc(x , y)

t
+ C4κt) .

(ii) _ere exist positive constants C6(ρ2), C7(ρ2), C8(ρ2) such that for x , y ∈ M and
t > 0,

(3.7) p(x , y, t) ≥ C6

Vx(
√

t)
exp[−C7

dcc2(x , y)
t

− C8κ(t + d2
cc(x , y))] .

(iii) _ere exist positive constants C9(ρ2), C10(ρ2) such that for 0 < s < t,

(3.8)
p(x , x , s)
p(x , x , t) ≤ ( t

s
)
C9

eC10κ(t−s) .

Here C9 = mn(1 + 6
ρ2 ), ρ2 > 0 and κ = κ(k0 , k1 , k2) ≥ 0 are constants as in

Lemma 3.2. In addition, if the torsion is vanishing, C9 = n + 3 with ρ2 = 2n and
m = 1.

Proof We will use the semigroup method from [3]. It is known that the heat semi-
group (Pt)t≥0 is given by Pt = ∫

∞
0 e−λt dEλ for the spectral decomposition of ∆b =

− ∫
∞
0 λ dEλ in L2(M). It is a one-parameter family of bounded operators on L2(M).

We deûne Pt f (x) = ∫M p(x , y, t) f (y) dµ(y). Here p(x , y, t) > 0 is the so-called
symmetric heat kernel associated with Pt . Due to the hypoellipticity of ∆b , the func-
tion (x , t) → Pt f (x) is smooth on M × (0,∞), f ∈ C∞0 (M). Moreover u(x , t) =
Pt f (x) is a solution of the CR heat equation

∂
∂t

u = ∆bu,(3.9)

u(x , 0) = f (x).

In [3, 11], the subgradient estimate was derived for the solution Pt f (x) of the CR
heat equation (3.9) on M × [0, T) for arbitrary T with v = (T − t)3, if M satisûes
the CR curvature-dimension inequality CD . However, we choose t suõciently close
to the arbitrary T so that 0 < ν ≤ N . It follows from Lemma 3.2 that M satisûes
the Baudoin–Garofalo type curvature-dimension inequality CD(ρ1 , ρ2 , 4, 2mn) for
1 < m < +∞, and smaller N > 0 such that

(3.10) ρ2 ∶=
2n
m

− 8n
3N2

є
− 2mn2N2k2

1

m − 1
> 0.

It follows from [3] that we have the desired upper and lower estimates for the CR
heat kernel on M × [0, T), as stated in the proposition.

1378

https://doi.org/10.4153/CJM-2018-024-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-024-3


Pseudoharmonic Functions of Polynomial Growth

As a consequence of the previous estimate,wewill derive the CR volume doubling
property.

_eorem 3.4 Under the hypotheses of Proposition 3.3, for any σ > 1, there exists a
positive constant C1 such that Vx(σρ) ≤ C1σ 2C9 e(C1σ 2+C8)κρ2

Vx(ρ).

Proof It follows from Proposition 3.3 that p(x , x , t) ≤ C3
Vx(

√
t) e

C4κ t . On the other
hand, by applying (3.8) for 0 < τ < t, we have

p(x , x , τ) ≤ p(x , x , t)( t
τ
)
C9

eC10κ(t−τ) .

Accordingly,

p(x , x , τ) ≤ ( t
τ
)
C9 C3

Vx(
√

t)
eC10κ(t−τ)+C4κ t ≤ ( t

τ
)
C9 C3

Vx(
√

t)
e(C10+C4)κ t ,

and then for ρ0 < ρ, we have Vx(ρ) ≤ ( ρ
ρ0 )

2C9 C3
p(x ,x ,ρ2

0)
e(C10+C4)κρ2

. _is implies

Vx(σρ) ≤ (σ)2C9
C3

p(x , x , ρ2) e
(C10+C4)κσ 2ρ2

.

But from (3.7), we have p(x , x , ρ2) ≥ C6
Vx(ρ) e

−C8κρ2
. Accordingly,

Vx(σρ) ≤ (σ)2C9
C3

C6
e[(C10+C4)σ 2+C8]κρ2

Vx(ρ),

and thenVx(σρ) ≤ C1σ 2C9 e(C1σ 2+C8)κρ2
Vx(ρ). _e proof of the theorem is, therefore,

complete.

Let HBx0 ,D(x , y, t) be the Dirichlet heat kernel on the geodesic ball Bx0 = Bx0(r)
with x , y ∈ Bx0(r).

_eorem 3.5 Under the hypothesis of Proposition 3.3, for r2 < T , we have

HBx0 ,D(x , y, t) ≤ C′

Vx0(r)
rQ t−

Q
2 eC

′κr2 ,

where Q = 3mn(1 + 6
ρ2 ).

Proof It follows from the volume doubling property that

Vx(
√

t) ≤ Vy(
√

t + dcc(x , y))

≤ C1e[2C1(1+
d2cc(x ,y)

t )+C8]κ t( 1 + dcc(x , y)√
t

)
2C9

Vy(
√

t)

≤ C1eC(d
2
cc(x ,y)+t)κ( 1 + dcc(x , y)√

t
)

2C9

Vy(
√

t).

On the other hand, (3.6) yields that

p(x , y, t) ≤ C3

Vx(
√

t) 1
2 Vy(

√
t) 1

2
exp(−C5

d2
cc(x , y)

t
+ C4κt) .
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All these imply that

p(x , y, t) ≤ C1
1

Vx(
√

t)
( 1 + dcc(x , y)√

t
)
C9

eCκ(t+d2cc(x ,y))−C5
d2cc(x ,y)

t .

_eorem 12.2 of [31] implies that

(3.11) HBx0 ,D(x , y, t) ≤ C1
1

Vx(
√

t)
( 1 + dcc(x , y)√

t
)
C9

eCκ(t+d2cc(x ,y))−C5
d2cc(x ,y)

t .

Now for t ≤ r2 and x , y ∈ Bx0(r), the doubling property yields

(3.12) Vx0(r) ≤ Vx(2r) ≤ C1eCκr2( r√
t
)

2C9

Vx(
√

t).

From (3.11) and (3.12), we have

HBx0 ,D(x , y, t) ≤ C′

Vx0(r)
r2C9 t−C9 eC

′κr2( 1 + dcc(x , y)√
t

)
C9

≤ C′

Vx0(r)
r3C9 t−

3C9
2 eC

′κr2

≤ C′

Vx0(r)
rQ t−

Q
2 eC

′κr2 ,

where Q ∶= 3C9 = 3mn(1 + 6
ρ2 ). _is completes the proof of the theorem.

Finally, applying the volume doubling property and the upper bound estimate of
the heat kernel, we can prove the CR analogue of the Sobolev inequality based on the
methods of Li [31] and Saloò-Coste [39].

_eorem 3.6 Under thehypothesis ofProposition 3.3, for any φ ∈ C∞0 (Bx(r)), x ∈ M,
we have

( 1
Vx(r) ∫Bx(r)

∣φ∣
2Q
Q−2 dµ)

Q−2
Q

≤ Cr2eCκr2[ 1
Vx(r)

(∫
Bx(r)

∣∇bφ∣2 dµ + r−2 ∫
Bx(r)

φ2 dµ)] ,

where Q = 3mn(1 + 6
ρ2 ).

Proof Let {ϕ i} be the set of orthonormal eigenfunctions with eigenvalues {µ i}
with respect to the sub-Laplacian operator. We have φ = ∑∞

i=1 a iϕ i , for any φ ∈
C∞0 (Bx(r)), x ∈ M , and then△bφ = −∑∞

i=1 µ ia iϕ i . We deûne thepseudo-diòerential
operator (−△b)α by (−△b)αφ = ∑∞

i=1 µαi a iϕ i , for any α ∈ R. So we have

∫
Bx(r)

∣∇bφ∣2 dµ = −∫
Bx(r)

φ△b φ dµ =
∞
∑
i=1

µ ia2
i = ∫Bx(r)

∣(−△b)
1
2 φ∣2 dµ.

Let A1 = C
Vx(r) r

Q eCκr2 ; that is HBx0 ,D(x , y, t) ≤ A1 t−
Q
2 . In the following, we ûrst

prove that

(3.13) ∫
Bx(r)

∣(−△b)
−1
2 φ∣2 dµ = ∫

Bx(r)
∣∇bφ∣2 dµ ≥ C1A

− 2
Q

1 (∫
Bx(r)

∣φ∣
2Q
Q−2 dµ)

Q−2
Q

.
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Let ψ = (−△b)
1
2 φ. _en formally φ = (−△b)

−1
2 ψ. It suõces to prove the following:

∫
Bx(r)

∣ψ∣2 dµ ≥ C1A
− 2

Q
1 (∫

Bx(r)
∣(−△b)−

1
2 ψ∣

2Q
Q−2 dµ)

Q−2
Q

.

_at is, the operator (−△b)−
1
2 ∶ L2(Bx(r)) → L

2Q
Q−2 (Bx(r)) is bounded and satisûes

the inequality (3.13).
Let ψ = ∑∞

i=1 b iϕ i . _en we have

(−△b)−
1
2 ψ(y) =

∞
∑
i=1

µ−
1
2

i b iϕ i(y) = ∫
Bx(r)

∞
∑
i=1

µ−
1
2

i ϕ i(y)ϕ i(z)ψ(y) dµz

= B∫
∞

0
∫
Bx(r)

t−
1
2 e−µ i tϕ i(y)ϕ i(z)ψ(z) dµzdt

= B∫
∞

0
t−

1
2 ∫

Bx(r)
HB0 ,D(y, z, t)ψ(z) dµzdt,

where B−1 = ∫
∞
0 s− 1

2 e−s ds = Γ( 1
2 ). For 0 < T <∞, deûne the functions T1 and T2 by

T1(ψ) = B∫
T

0
t−

1
2 ∫

Bx(r)
HBx0 ,D(y, z, t) dµzdt

and
T2(ψ) = B∫

∞

T
t−

1
2 ∫

Bx(r)
HBx0 ,D(y, z, t)ψ(z) dµzdt,

respectively. Hence, we have (−△b)−
1
2 = T1 + T2. _en, similar to part of the process

in the proof of [31,_eorem 11.4], we can prove that the inequality (3.13) holds.
To prove the Sobolev inequality, let ξ be a non-negative cut-oò function with the

following properties:

∣∇b ξ∣2 ≤ Cr−2 and ξ(y) =
⎧⎪⎪⎨⎪⎪⎩

1 if y ∈ Bx( 3r
4 ),

0 if y ∈ M/Bx(r).

_en (3.13) yields

2∫
Bx(r)

∣∇bφ∣2 dµ + 2Cr−2 ∫
Bx(r)

φ2 dµ ≥ ∫
Bx(r)

ξ2∣∇bφ∣2 dµ + 2∫
Bx(r)

∣ξφ∣2 dµ

≥ ∫
Bx(r)

∣∇b(ξφ)∣2 dµ

≥ C1A
− 2

Q
1 (∫

Bx(r)
∣ξφ∣

2Q
Q−2 dµ)

Q−2
Q

≥ C1A
− 2

Q
1 (∫

Bx( 3r
4 )

∣φ∣
2Q
Q−2 dµ)

Q−2
Q

.

If y ∈ ∂Bx( r
2 ), then {By( 3r

4 ) ∶ y ∈ ∂Bx( r
2 )} forms an open cover of the closure

of Bx(r). _ere exists a positive integer l such that Bx(r) ⊂ ⋃l
i=1 By i ( 3r

4 ). For any
φ ∈ C∞0 (Bx(r)), we have

2∫
Bx(r)

∣∇bφ∣2 dµ + 2Cr−2 ∫
Bx(r)

φ2 dµ ≥ C1A
− 2

Q
1 (∫

Bx(r)∩By i (
3r
4 )

∣φ∣
2Q
Q−2 dµ)

Q−2
Q

.
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_erefore, we have

2l ∫
Bx(r)

∣∇bφ∣2 dµ + 2lCr−2 ∫
Bx(r)

φ2dµ ≥ C1A
− 2

Q
1

l
∑
i=1

(∫
Bx(r)∩By i (

3r
4 )

∣φ∣
2Q
Q−2 dµ)

Q−2
Q

≥ C1A
− 2

Q
1 (∫

Bx(r)
∣φ∣

2Q
Q−2 dµ)

Q−2
Q

.

Finally, we conclude that

∫
Bx(r)

∣∇bφ∣2 dµ + r−2 ∫
Bx(r)

φ2 dµ ≥ C̃A−
2
Q

1 (∫
Bx(r)

∣φ∣
2Q
Q−2 dµ)

Q−2
Q

.

_is completes the proof of this theorem.

4 A Mean Value Inequality

In this section, we will apply the volume doubling estimate (1.1) and the CR Sobolev
inequality to obtain the following mean value inequality through the method of
Moser’s iteration [40].

_eorem 4.1 Under the hypothesis of Proposition 3.3, there exists a constant C2 > 0
such that for any ρ > 0, x ∈ M , and any nonnegative subpseudoharmonic function f
deûned on M, we have

[ f (x)]2 ≤ C2V−1
x (ρ)eC2κρ2

∫
Bx(ρ)

f (y)2 dµ.

Proof For any nonnegative subpseudoharmonic function f on M, we have

∫
Bx(ρ)

∇b f∇bϕ dµ ≤ 0,

where ϕ is a nonnegative function in C∞0 (Bx(ρ)). For ϕ = ψ2 f and ψ ∈ C∞0 (Bx(ρ)),
we have

0 ≥ ∫
Bx(ρ)

∇b f∇b(ψ2 f ) dµ = ∫
Bx(ρ)

ψ2∣∇b f ∣2 dµ + 2∫
M
fψ∇b f∇bψ dµ.

_us, we have

∫
Bx(ρ)

ψ2∣∇b f ∣2 dµ ≤ 2∣∫
M
fψ∇b f∇bψ dµ∣

≤ 2∫
Bx(ρ)

∣∇bψ∣2 f 2 dµ +
1
2 ∫M

ψ2∣∇b f ∣2 dµ.

It follows that

∫
Bx(ρ)

ψ2∣∇b f ∣2 dµ ≤ 4∫
Bx(ρ)

∣∇bψ∣2 f 2 dµ ≤ 4∥∇bψ∥2
∞ ∫

supp(ψ)
f 2 dµ.

We choose ψ such that

0 ≤ ψ ≤ 1, supp(ψ) ⊂ σBx(ρ), ψ = 1 in σ ′Bx(ρ), ∣∇bψ∣ ≤ 2((σ − σ ′)ρ)−1 ,

where 0 < σ ′ < σ < 1, so we have

∫
σ ′Bx(ρ)

∣∇b f ∣2 dµ ≤ C(ρω)−2 ∫
σBx(ρ)

f 2 dµ, ω = σ − σ ′ .
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Using the CR Sobolev inequality, set q = Q
Q−2 . From theHölder inequality, we have

∫
Bx(ρ)

f 2(1+
2
Q ) dµ ≤ (∫

Bx(ρ)
f 2q dµ)

1
q (∫

Bx(ρ)
f 2 dµ)

2
Q

≤ (∫
Bx(ρ)

f 2 dµ)
2
Q (E(B)∫

Bx(ρ)
[∣∇b f ∣2 + r−2∣ f ∣2] dµ) ,

for any u ∈ C∞0 (Bx(ρ)) and E(B) = Csρ2eCκρ2
Vx(ρ)−

2
Q . Hence, we have

∫
σ ′Bx(ρ)

f 2(1+
2
Q ) dµ ≤ E(B)(C(ρω)−2 ∫

σBx(ρ)
f 2 dµ)

(1+ 2
Q )

.

Setting θ = 1 + 2
Q , we have

(4.1) ∫
σ ′Bx(ρ)

f 2θ dµ ≤ E(B)(C(ρω)−2 ∫
σBx(ρ)

f 2 dµ)
θ
.

On the other hand, for p ≥ 1, we have

−△b f p = −p f p−1 △b f − p(p − 1) f p−2∣∇b f ∣2 ≤ 0.

_en for the function f p in (4.1), we have

(4.2) ∫
σ ′Bx(ρ)

f 2pθ dµ ≤ E(B)(C(ρω)−2 ∫
σBx(ρ)

f 2p dµ)
θ
.

Let ω i = (1 − δ)2−i such that ∑∞
i=1 ω i = 1 − δ. Set σ0 = 1 and σi+1 = σi − ω i =

1 −∑i
i=1 ω j . Applying (4.2) with p = p i = θ i , σ = σi and σ ′ = σi+1, we have

∫
σi+1Bx(ρ)

f 2θ
i+1
dµ ≤ E(B)(C i+1(ρ(1 − δ))−2 ∫

σiBx(ρ)
f 2θ

i
dµ)

θ
, C ≥ 4

and

(∫
σi+1Bx(ρ)

f 2θ
i+1
dµ)

θ−i−1

≤ E(B)∑
i+1
j=1 θ

− j−1
C∑

i+1
j=1( j+1)θ− j−1

(ρ(1 − δ))−2∑i+1
j=1 θ

− j

∫
Bx(ρ)

f 2 dµ.

Letting i tend to∞, we have

sup
δBx(ρ)

{ f 2} ≤ CE(B)
Q
2 [(1 − δ)]−Qρ−Q ∫

Bx(ρ)
f 2 dµ.

Taking δ = 1
2 , we have f

2(x) ≤ C2V−1
x (ρ)eC2κρ2

∫Bx(ρ) f
2(y) dµ.

5 Polynomial Growth Pseudoharmonic Functions

In this section, we will prove our main result. We ûrst recall [31, Lemma 28.3].

Lemma 5.1 LetK be a k-dimensional linear space of sections of a vector bundle E over
M. Assume that M has polynomial volume growth of order atmost µ, i.e.,Vp(ρ) ≤ Cρµ

for p ∈ M and ρ → ∞. Suppose each section u ∈ K is of polynomial growth at most
degree d, such that ∣u∣(x) ≤ Crd(x), where r(x) is the Carnot–Carathéodory distance
to the ûxed point p ∈ M. For any β > 1, δ > 0, and ρ0 > 0, there exists ρ > ρ0 such that
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if {u i}k
i=1 is an orthonormal basis of K with respect to the inner product Aβρ(u, v) =

∫Bp(βρ)⟨u, v⟩ dµ, then∑
k
i=1 ∫Bp(ρ) ∣u i ∣2 dµ ≥ kβ−(2d+µ+δ).

In the following, we prove themain result by applying the volume doubling prop-
erty and themean value inequality.

_eorem 5.2 Assume the hypothesis of Proposition 3.3 with κ = 0. Suppose E is a
rank-m vector bundle over M. Let Sd(M , E) ⊂ Γ(E) be a linear subspace of sections u
of E satisfying△b ∣u∣ ≥ 0 and ∣u∣(x) ≤ O(rd(x)) as r(x)→∞.

_en the dimension of Sd(M , E) is ûnite. Moreover, there exists a constant C > 0
depending only on C9 such that

(5.1) dim Sd(M , E) ≤ mCCMd
2n

2n+1 (2C9−1)

for all d ≥ 1.

Proof From the volume doubling property, we have the comparison inequality

(5.2) Vp(ρ2) ≤ C1Vp(ρ1)(
ρ2

ρ1
)

2C9

,

and then we have

(5.3) Vp(ρ) ≤ Cρ2C9 .

On the other hand, we also have themean value inequality

f 2(x) ≤ CMV−1
p (ρ)∫

Bp(ρ)
f 2(y) dµ.

Let K be a ûnite-dimensional linear subspace of Sd(M , E) with dimK = k and let
{u i}k

i=1 be any basis of K. _en for p ∈ M, ρ > 0, and any 0 < є < 1, to complete the
proof of the theorem, it suõces to show that

(5.4)
k
∑
i=1
∫
Bp(ρ)

∣u i ∣2 dµ ≤ mCCM sup
u∈{⟨A,U⟩}

∫
Bp((1+є)ρ)

∣u∣2 dµ,

where the supremum is taken over all u ∈ K of the form u = ⟨A,U⟩ for some unit
vector A = (a1 , . . . , ak) ∈ Rk with U = (u1 , . . . , uk). We will prove (5.4) later. To
ûnish the proof of_eorem 5.2, let {u i}k

i=1 be an Aβρ-orthonormal basis of any ûnite-
dimensional subspace K ⊂ Sd(M , E). By applying (5.3) and Lemma 5.1, there exists a
ρ > 0 such that

(5.5)
k
∑
i=1
∫
Bp(ρ)

∣u i ∣2 dµ ≥ kβ−(2d+2C9+δ) .

Since ∫B((1+є)ρ) ∣u∣2 = 1 for all u ∈ {⟨A,U⟩}, it follows from the inequality (5.4) that
by setting β = 1 + є, we have∑k

i=1 ∫Bp(ρ) ∣u i ∣2dµ ≤ mCCMє−(2C9−1). For d ≥ 1, setting

(5.6) є = (2d)− 2n
2n+1

combinedwith (5.5) gives us∑k
i=1 ∫Bp(ρ) ∣u i ∣2dµ ≥ Ck. _erefore, the estimate (5.1) on

k follows easily. Note that extra care for the power in (5.6) is used to obtain the order
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of the power 2n
2n+1 (2C9 − 1) in _eorem 5.2, because this is sharp on the Heisenberg

group Hn , as shown in the next section.
Finally, we prove 5.4 by following the method in [31]. For completeness, we will

outline it here. We ûrst observe that for any x ∈ Bp(ρ), there exists a subspace Kx ⊂ K
which is of, at most, codimension m, such that u(x) = 0 for all u ∈ Kx . Hence, by
an orthonormal change of basis, we can assume that u i ∈ Kx for m + 1 ≤ i ≤ k and
∑k

i=1 ∣u i ∣2(x) = ∑n
i=1 ∣u i ∣2(x). Since △b ∣u i ∣ ≥ 0, it follows from the CR mean value

inequality that
k
∑
i=1

∣u i ∣2(x) =
n
∑
i=1

∣u i ∣2(x)(5.7)

≤ CMV−1
x ((1 + є)ρ − r(x))

m
∑
i=1
∫
Bx((1+є)ρ−r(x))

∣u i ∣2 dµ

≤ CMV−1
x ((1 + є)ρ − r(x)) sup

u∈{⟨A,U⟩}
∫
Bx((1+є)ρ−r(x))

∣u∣2 dµ.

_e volume doubling property (5.2) and the fact that r(x) ≤ ρ imply that

C1Vp((1 + є)ρ − r(x)) ≥ Vp(2ρ)(
(1 + є)ρ − r(x)

2ρ
)

2C9

(5.8)

≥ Vp(ρ)(
(1 + є)ρ − r(x)

2ρ
)

2C9

.

From (5.7) and (5.8), we have

(5.9)
k
∑
i=1
∫
Bp(ρ)

∣u i ∣2 dµ

≤ mC1CM22C9

Vp(ρ)
sup

u∈{⟨A,U⟩}
∫
Bp((1+є)ρ)

u2 dµ∫
Bp(ρ)

( (1 + є)ρ − r(x)
ρ

)
−2C9

dµ.

Now we deûne f (r) = ((1 + є) − ρ−1r)−2C9 . It follows that f ′(r) ≥ 0 and then

∫
Bp(ρ)

((1 + є)ρ − r(x)
ρ

)−2C9 dµ = ∫
ρ

0
Ap(t) f (t)dt

= [ f (t)Vp(t)]∣ρ0 − ∫
ρ

0
f ′(t)Vp(t) dt

≤ [ f (t)Vp(t)]∣ρ0 − ρ−2C9Vp(ρ)∫
ρ

0
f ′(t)t2C9 dt

≤ [ f (t)Vp(t)]∣ρ0 − ρ−2C9Vp(ρ)

× ([ f (t)t2C9]∣ρ0 − 2C9 ∫
ρ

0
f (t)t2C9−1 dt)

≤ 2ρ−1Vp(ρ)C9 ∫
ρ

0
((1 + є) − tρ−1)−2C9 dt

≤ 2C9

2C9 − 1
Vp(ρ)є−(2C9−1) .

(5.10)

Hence, (5.4) follows from (5.9) and (5.10).
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Corollary 5.3 Under the hypotheses of_eorem 5.2, we conclude that the dimension
ofHd(M) is ûnite. Moreover, there exists a constant C0 = C(CM ,CV) > 0 such that
hd(M) ≤ C0d

2n
2n+1 (2C9−1), for all d ≥ 1.

6 Pseudoharmonic Functions of Polynomial Growth on
Heisenberg Groups

We startwith themost general deûnition of theHeisenberg group. _e non-isotropic
Heisenberg group Hn is the Lie group with underlying manifold

Cn ×R = {[z, t] ∶ z ∈ Cn , t ∈ R}

and themultiplication law

(6.1) [z, t] ⋅ [w, s] = [z +w, t + s + 2Im
n
∑
j=1
a jz jw j] ,

where a = (a1 , a2 , . . . , an) ∈ Rn
+.

It is easy to check that themultiplication (6.1) does indeedmakeCn×R into a group
whose identity is the origin e = [0, 0], and where the inverse is given by [z, t]−1 =
[−z,−t].

_eLie algebra hn ofHn is a vector space that, togetherwith aLie bracket operation
deûned on it, represents the inûnitesimal action ofHn . Let hn denote the vector space
of le�-invariant vector ûelds on Hn . Note that this linear space is closed with respect
to the bracket operation [V1 , V2] = V1V2 −V2V1. _e space hn , equipped with this
bracket, is referred to as the Lie algebra ofHn ._e Lie algebra structure of hn is most
readily understood by describing it in terms of the following basis:

X j =
∂

∂x j
+ 2a j y j

∂
∂t
, Y j =

∂
∂y j

− 2a jx j
∂
∂t
, and T = ∂

∂t
,

where j = 1, 2, . . . , n, z = (z1 , z2 , . . . , zn) ∈ Cn with z j = x j + iy j ; t ∈ R.
Note that we have the commutation relations

(6.2) [Y j ,Xk] = 4a jδ jkT for j, k = 1, 2, . . . , n.

Next we deûne the complex vector ûelds

Z j =
1
2
(X j + iY j) =

∂
∂z j

− ia jz j
∂
∂t
,(6.3)

Z j =
1
2
(X j − iY j) =

∂
∂z j

+ ia jz j
∂
∂t
,

for j = 1, 2, . . . , n. Here, as usual, we have

∂
∂z j

= 1
2
( ∂
∂x j

− i ∂
∂y j

) and
∂

∂z j
= 1

2
( ∂
∂x j

+ i ∂
∂y j

) .

_e commutation relations (6.2) then become [Z j ,Zk] = 2ia jδ jkT, with all other
commutators among the Z j , Zk and T vanishing.
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_eHeisenberg sub-Laplacian is the diòerential operator

La,γ = −
1
2

n
∑
j=1

(Z jZ j + Z jZ j) + γT = − 1
4

n
∑
j=1

(X2
j + Y2

j) + iγT

with Z j and Z j given by (6.3). In the case of a j = 1 for all j′, the operator Lγ was ûrst
introduced by Folland and Stein [22] in the study of ∂b complex on a non-degenerate
CR manifold. _ey found the fundamental solution of Lγ . Beals and Greiner [4]
solved the case that a′j may be diòerent. Readers can also consult [7, 8] for detailed
discussions.
For functions f , g ∈ S(Hn), theHeisenberg convolution is given by

f ∗ g(x) = ∫
Hn
f (y)g(y−1x)dV(y).

Here dV(y) is the Haar measure on Hn that is exactly the Euclidean measure on
R2n+1.

6.1 The Fundamental Solution

_e fundamental solution and heat kernel of La,γ can be derived using Laguerre cal-
culus. Following [5], we introduce the complex distance and volume element on the
Heisenberg group:

g(s; z, t) =
n
∑
j=1
a js∣z j ∣2 coth(2a js) − it and ν(s) =

n
∏
j=1

2a j

sinh(2a js)
.

_e fundamental solution of La,γ can be written in a closed form:

(6.4) Ψ(z, t) = 2(n − 1)!
(2π)n+1 ∫

∞

−∞
e2γs ν(s) ds

[g(s; z, t)]n .

If ∣z∣ = 0 and t /= 0, then g(s; z, t) = −it. _e integrand of (6.4) is not integrable
at s = 0. To regularize the integration we must deform its path of integration from
(−∞,∞) to

(−∞+ iε sgn t,∞+ iε sgn t), where 0 < ε < min
1≤ j≤n

π
2a j

.

We refer to [4] for the exact deûnition of this path. Finally, we have the formula

Ψ(z, t) = 2(n − 1)!
(2π)n+1 ∫

∞+iεsgnt

−∞+iεsgnt
e2γs ν(s) ds

[g(s; z, t)]n .

6.2 The Heat Kernel

In the isotropic case, the heat kernel was independently studied by Gaveau [23] via
a probability method and by Hulanicki [27] using the Fourier transform on Hn and
the basis of Laguerre functions. Later, Beals and Greiner [4] solved the general case
by the geometricmechanics method. We also refer readers to the the paper by Calin,
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Chang, and Tie [9] that used a diòerent method:
(6.5)

hs(z, t) =
1

2(πs)n+1 ∫
∞

−∞
[

n
∏
j=1

a jτ
sinh(a jτ)

] exp{ itτ
s
+ γτ − 1

s

n
∑
j=1

a jτ
tanh(a jτ)

∣z j ∣2} dτ.

In this case, we set a1 = a, n = 1, and γ = 0 in (6.5) and the heat kernel then has the
form

hs(z, t) =
1

2(πs)2 ∫
∞

−∞

aτ
sinh(aτ) exp{−

τ
s
[ a
tanh(aτ) ∣z∣

2 − it]} dτ.

6.3 Spherical Harmonics on H1

Greiner [25] initiated the study ofLγ-harmonic polynomials, i.e.,Lγ p = 0 onH1. He
found a basis and proved that the linear spaceH(γ)

m ofH-homogeneousLγ-harmonic
polynomials of degreem,m = 0, 1, 2, . . . , has dimension m+1. Dunkl [21] derived the
general formulas ofLγ-harmonic polynomials for the isotropicHeisenberg groupHn .
Below, we will follow Dunkl’s formulation ofH(γ)

m . A basis ofH(γ)
m can be deûned as

follows. First, we deûne the generalized ultraspherical polynomial C(α ,β)
N (z) of degree

N with the index (α, β) by its generating formula

(6.6) (1 − ρz)−α(1 − ρz)−β =
∞
∑
N=0

rNC(α ,β)
N (z) for ∣ρz∣ < 1.

From the generating function (6.6), we have

C(α ,β)
N (z) =

N
∑
j=0

(α) j(β)N− j

j!(N − j)! z
jzN− j , N ∈ N,

where the shi�ed factorial (a)N is deûned by

(a)0 = 1, (a) j+1 = (a) j(a + j) = a(a + 1)(a + 2) ⋅ ⋅ ⋅ (a + j) = Γ(a + j + 1)
Γ(a) .

For the problem we are working on, a is always a nonnegative integer and we have

(a)0 = 1 and (a)k = a(a + 1) ⋅ ⋅ ⋅ (a + k − 1) = (a + k − 1)!
(a − 1)! .

_en for k, l ∈ N, we can deûne Vk , l to be the set of harmonic and homogeneous
polynomials on Cn of bidegree (k, l), i.e., p(z, z) satisûes p(cz) = ckc l p(z) for all
c ∈ C, and∑n

j=1
∂2 p

∂z j∂z j
= 0. So Vk , l is an irreducible U(n)-module of dimension:

νk , l =
k + l + n − 1

n − 1
⋅ (n − 1)k(n − 1)l

k!l !
.

For all p ∈ Vk , l , we haveLγ([p(z)C(α ,β)
N (t + i∣z∣2)]) = 0, where α = n−γ

2 , β = n+γ
2 ,

N ∈ N, and every Lγ-harmonic polynomial is a linear combination of such terms for
all k, l ,N ∈ N.
For p ∈ Vk , l , p(z)C(α ,β)

N (t + i∣z∣2) is H-homogeneous of degree 2N + k + l . We
will ûnd the dimension of the linear space H(γ)

m of H-homogeneous Lγ-harmonic
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polynomials of degreem for n > 1 from the dimension of Vk , l . _e problem is to ûnd
how many (N , k, l) ∈ N3 satisfy 2N + k + l = m for a ûxed m ∈ N.

Koranyi and Stanton [29] proved that if ∣γ∣ < n and a Lγ-harmonic function f on
Hn is majorized by a polynomial, then f must be a polynomial.

We give an outline of the computations of theLγ-harmonic polynomials. Because
the space ofLγ-harmonic polynomials is aU(n)-module, it can be decomposed into
copies of Vk , l , with k, l ∈ N. And then every Lγ-harmonic function is a sum of
the terms like p(z)g1(z, t), where p ∈ Vk , l and g1 is invariant under U(n). Hence,
one has g1(z, t) = g2(∣z∣2 , t) for some g2(s, t). Furthermore, Greiner observed that
g2(∣z∣2 , t) = g(t + i∣z∣2) for some g. _en some simple calculations yield that for any
p(z) ∈ Vk , l , Lγ(p(z)g(t + i∣z∣2)) = 0 if and only if g(t + i∣z∣2) satisûes

(6.7) ((ζ − ζ) ∂2

∂ζ∂ζ
− (α + l) ∂

∂ζ
+ (β + k) ∂

∂ζ
) g(ζ) = 0,

where α = n−γ
2 and β = n+γ

2 . Here equation (6.7) can be derived from the change of
variable ζ = t+i∣z∣2. _en polynomial solutions can be split by degree of homogeneity.

Let g(ζ) = ∑N
j=0 a jζ jζ

N− j
. _en (6.7) leads to the two term recurrence relation

( j + 1)(β + k + N − j − 1)a j+1 − (N − j)(α + l + j)a j = 0,

which has a unique solution

a j = c
(α + l) j(β + k)N− j

j!(N − j)!
for any constant c. _is yields that the polynomial solutions for g are arbitrary linear
combinations of C(α ,β)

N (ζ).
Equation (6.7) has an interesting non-polynomial solution:

g(ζ) = (c − ζ)−α−l(c − ζ)−β−k , c ∈ C.

_is can be veriûed by direct computations. _is type of solution is also not smooth.
When n = 1, the dimension Dm of the linear space of Lγ-harmonic polynomials

of H-homogeneous degree m is m + 1. Hence the dimension of Lγ-harmonic poly-
nomials of H-homogeneous degree less than or equal to d is

1 + 2 + 3 + ⋅ ⋅ ⋅ + (d + 1) = (d + 1)(d + 2)
2

≈ d
2

2
.

Next we consider the case n ≥ 2. We ûrst compute the dimension Dm of the
linear space of Lγ-harmonic polynomials of H-homogeneous degree m. Since any
Lγ-harmonic polynomial of H-homogeneous degree m is a linear combination of
p(z)C(α ,β)

N (t + i∣z∣2) with p(z) ∈ Vk , l and k, l ,N ∈ N satisfying k + l + 2N = m, we
have

(6.8) Dm =
[m/2]
∑
N=0

∑
k+l=m−2N

νk , l =
[m/2]
∑
N=0

m − 2N + n − 1
n − 1

∑
k+l=m−2N

(n − 1)k(n − 1)l

k!l !
.

Here

[ m
2
] = integer part of

m
2
=
⎧⎪⎪⎨⎪⎪⎩

m
2 when m is even,
m−1
2 when m is odd.
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We will ûrst ûnd the sum over k + l = p = m − 2N by applying a trick from the
binomial formula for (1 − x)−(n−1). First we observe that

(1 − x)−(n−1) =
∞
∑
k=0

(n − 1)n(n + 1) ⋅ (n − 2 + k)
k!

xk =
∞
∑
k=0

(n − 1)k

k!
xk .

_is implies that the sum over k + l = p = m − 2N in (6.8) is the coeõcient of x p of
the Taylor series of (1 − x)−2(n−1), i.e.,

∑
k+l=m−2N

(n − 1)k(n − 1)l

k!l !
= (2n − 2)(2n − 1) ⋅ ⋅ ⋅ (2n − 2 +m − 2N − 1)

(m − 2N)!

= (2n − 2)m−2N

(m − 2N)! .

_is is because (1 − x)−(n−1)(1 − x)−(n−1) = (1 − x)−2(n−1). _e above formula is the
result of the product formula for the Taylor series.

Hence, we have

Dm =
[m/2]
∑
N=0

m − 2N + n − 1
n − 1

⋅ (2n − 2)m−2N

(m − 2N)!

=
[m/2]
∑
N=0

m − 2N + n − 1
n − 1

⋅ (2n − 2 +m − 2N − 1)!
(2n − 3)!(m − 2N)!

=
[m/2]
∑
N=0

(m − 2N) + n − 1
n − 1

⋅ (m − 2N + 1)(m − 2N + 2) ⋅ ⋅ ⋅ (m − 2N + 2n − 3)
(2n − 3)! .

6.4 Estimate of the Dimension Hd(Hn)

Recall that the dimension of the linear spaceofLγ-harmonicpolynomialsofH-homo-
geneous degree m is

Dm = 2
(2n − 2)!

[m/2]
∑
N=0

(m−2N+n−1)⋅[(m−2N+1)(m−2N+2) ⋅ ⋅ ⋅ (m−2N+2n−3)].

_e term (m − 2N + n − 1) ⋅ [(m − 2N + 1)(m − 2N + 2) ⋅ ⋅ ⋅ (m − 2N + 2n − 3)]
can be written as a polynomial of (m − 2N) of degree 2n − 2 with coeõcients being
polynomials in n, i.e.,

((m − 2N) + n − 1) ⋅ [(m − 2N + 1)(m − 2N + 2) ⋅ ⋅ ⋅ (m − 2N + 2n − 3)]

=
2n−2

∑
k=0

Ek(n)(m − 2N)2n−2−k .

In particular, we have E0(n) = 1 and E2n−2(n) = (2n − 3)! ⋅ (n − 1) = 1
2 (2n − 2)!. _is

implies that

Dm = 2
(2n − 2)!

[m/2]
∑
N=0

2n−2

∑
k=0

Ek(n)(m − 2N)2n−2−k =
2n−2

∑
k=0

Ek(n)
[m/2]
∑
N=0

(m − 2N)2n−2−k .
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_e dimension of the linear space of Lγ-harmonic polynomials of H-homogeneous
degree less than or equal to d is

D =
d
∑
i=0
D i =

2
(2n − 2)!

d
∑
i=0

[i/2]
∑
N=0

2n−2

∑
k=0

Ek(n)(i − 2N)2n−2−k

= 2
(2n − 2)!

2n−2

∑
k=0

Ek(n)
d
∑
i=0

[i/2]
∑
N=0

(i − 2N)2n−2−k

= 2
(2n − 2)!

2n−2

∑
k=0

Ek(n)
[d/2]
∑
N=0

d
∑
i=2N

(i − 2N)2n−2−k

= 2
(2n − 2)!

2n−2

∑
k=0

Ek(n)
[d/2]
∑
N=0

d−2N
∑
i=0

i2n−k−2 .

Here, we have exchanged the order of the last two sums. Now we apply Faulhaber’s
classical formula (see [6] for a proof)

1k + 2k + ⋅ ⋅ ⋅ + N k = 1
k + 1

N k+1 + 1
2
N k + k

12
N k−1 + O(N k−3)

to the above to estimate the sum over i to get

d−2N
∑
i=0

i2n−2−k = (d − 2N)2n−k−1

2n − k − 1
+ (d − 2N)2n−k−2

2
+ O((d − 2N)2n−k−3).

_is yields

D = 2
(2n − 2)!

2n−2

∑
k=0

Ek(n)
[d/2]
∑
N=0

(d − 2N)2n−k−1

2n − k − 1

+ (d − 2N)2n−k−1

2
+ O((d − 2N)2n−k−3).

To get the leading term, we need to consider the term k = 0 and note that E0(n) = 1:

D = 2
(2n − 2)!

[ d
2 ]
∑
N=0

(d − 2N)2n−1

2n − 1
+ O((d − 2N)2n−2).

When d = 2ν is even, we can reduce the above to

D = 22n

(2n − 1)!
ν
∑
N=0

(ν − N)2n−1 + O((ν − N)2n−2)

= 22n

(2n − 1)!
ν2n

2n
+ O((2ν)2n−1) = d2n

(2n)! + O((2ν)2n−1).
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When d = 2ν + 1 is odd, we can reduce the above to

D = 2
(2n − 1)!

ν
∑
N=0

((2(ν − N) + 1)) 2n−1 + O((2ν − 2N + 1)2n−2)

= 2
(2n − 1)![

2ν
∑
N=1

n2n−1 −
ν
∑
N=1

(2N)2n−1] + O((2ν + 1)2n−1)

= 2
(2n − 1)![

(2ν)2n

2n
+ (2ν)2n−1

2
− 22n−1( ν2n

2n
+ ν2n−1

2
)] + O((2ν + 1)2n−1)

= d2n

(2n)! + O(d2n−1).

Hence, the leading term of D is d2n
(2n)! . _is also coincides with the case n = 1. We

can also determine the lower terms by increasing the values of k. Note that D = 2n+ 1
when d = 1.
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