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A CR Analogue of Yau’s Conjecture on
Pseudoharmonic Functions of
Polynomial Growth

Der-Chen Chang, Shu-Cheng Chang, Yingbo Han, and Jingzhi Tie

Abstract. In this paper, we first derive the CR volume doubling property, CR Sobolev inequality,
and the mean value inequality. We then apply them to prove the CR analogue of Yau’s conjecture
on the space consisting of all pseudoharmonic functions of polynomial growth of degree at most d
in a complete noncompact pseudohermitian (27 + 1)-manifold. As a by-product, we obtain the CR
analogue of the volume growth estimate and the Gromov precompactness theorem.

1 Introduction

S.-Y. Cheng [16] and S.-T. Yau [44] derived the well-known gradient estimate for pos-
itive harmonic functions and obtained the classical Liouville theorem, stating that
any bounded harmonic function is constant in complete noncompact Riemannian
manifolds with nonnegative Ricci curvature. Let :?(M) be the space of harmonic
functions of polynomial growth of degree at most d in a complete noncompact Rie-
mannian manifold M™. Yau conjectured that the dimension k% (M) of H% (M) is
finite for each positive integer d and satisfies the estimate h% (M) < h?(R™). Colding
and Minicozzi [19] affirmatively answered the first question and proved that

hY (M) < Cod™ !

for manifolds of nonnegative Ricci curvature with Cy depending on the Neumann-
Poincaré inequality and the volume doubling constant. Later, Li [33] produced an
elegant and shorter proof requiring only the manifold to satisfy the volume doubling
property (see Definition 1.2) and the mean value inequality (see Definition 1.10). For
the latter question, the sharp upper bound estimate is still missing except for the spe-
cial cases m = 2 or d = 1 obtained by Li and Tam [34, 35]) and Kasue [28], and the
rigidity part is only known for the special case d = 1 obtained by Li [32] and Cheeger,
Colding, and Minicozzi [15]. By modifying the arguments of Yau [44], Cheng and Yau
[16], and Chang, Kuo, and Lai [12], Chang, Kuo, and Tie [13] derived a sub-gradient
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estimate for positive pseudoharmonic functions in a complete noncompact pseudo-
hermitian (2#+1)-manifold (M, J, ). This sub-gradient estimate can serve as the CR
version of Yau’s gradient estimate. As an application of the sub-gradient estimate, the
CR analogue of Liouville-type theorem holds for positive pseudoharmonic functions.

In the current paper, we study the CR analogue of Yau’s conjecture on the space
H? (M) consisting of all pseudoharmonic functions of polynomial growth of degree
at most d in a complete noncompact pseudohermitian (27 +1)-manifold (see Defini-
tion 1.1). We will show that the first part of the CR Yau conjecture holds for pseudo-
harmonic functions of polynomial growth as in Theorem 1.12 via Li’s method, which
is more adaptable to the case of pseudohermitian geometry.

Throughout the paper, we assume that (M, ], 8) is a complete pseudohermitian
(21 + 1)-manifold. A piecewise smooth curve y:[0,1] — M is said to be horizon-
tal if y(t) € & whenever y(t) exists. We denote by C, 4 the set of all horizontal
curves joining p, q. The Carnot-Carathéodory distance between two points p, g € M
is defined by dcc(p,q) = inf{l(y) : y € Cp 4}, where the length of y is I(y) =
Jo i, 3 (D)7, de.

Since M is a complete pseudohermitian (27 +1)-manifold, we know that d. exists
by one of Chow’s theorems [17].

Definition 1.1 Let 3% (M) be the space of all polynomial growth pseudoharmonic
real-valued functions defined on M of order at most d, i.e.,

HYM) = {f | Apf = 0and |f(x)| < Cr(x)? for some constant C},

where r(x) is the Carnot-Carathéodory distance from x to a fixed point p in M. We
also denote the dimension of the vector space H9 (M) by h (M).

Definition 1.2 A complete pseudohermitian (27 + 1)-manifold M has the volume
doubling property (V) for some y > 1if there exists a universal constant Cy > 0
such that for any 0 > 1, 0 < p < o0, x € M, the volume of the geodesic ball centered
at x satisfies the inequality V,(op) < Cyo# Vi (p). Here Vi (p) is the volume of the
geodesic ball B, (p) centered at x with radius p.

In Section 2, for X = X*Z,, we will define the pseudohermitian Ricci tensors Rz
and the pseudohermitian torsion tensors A g as follows:

Ric(X, X) = RaﬁX“XE>
Tor(X, X) = i 3" (A X“XP - ApX“XF) = 2Re(id 5 X°XF),
ap
(div A)2(X, X) = Agy 74,5 , X XP.

We observe that the pseudohermitian Ricci tensors R (or Ric) are the mixed type
component of the Tanaka—Webster Ricci curvature tensors, and the pseudohermitian
torsion tensors i(n — 1) Aqp (or Ryp) are the purely holomorphic part of the Tanaka-
Webster Ricci curvature tensors. Hence, in order to make geometric assumptions for
the Tanaka—Webster Ricci curvature tensors, we make the equivalent assumptions ()
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and (**) below on the pseudohermitian Ricci tensors R and the pseudohermitian
torsion tensors A, B> respectively.

Theorem 1.3  Assume that a complete pseudohermitian (2n +1)-manifold M satisfies
the curvature assumptions

(%) Ric(X, X) > ko(X, X)1,

and

(%) sup |A;j| <ky< oo, sup |A;;z* <ky < oo,
i,jel, i, jel,

for X = X*Zy € Ty,oM, I, = {1,2,...,n} and where ky, ki, ko are constants with
ki, ky > 0. Then for any o > 1, there exist positive constants x, Cy, Cg, Co such that

(L1) Vi(op) < C102C9e(C‘”Z+C8)k"2Vx(p)

with k = 2[—ko + |n — 2|k + €k2]| > 0, for a positive constant € and where Cy is the
constant in (3.8).

Remark 1.4 (i) If a complete pseudohermitian (2# + 1)-manifold M has the
properties sup; i, |A;j| < ki < coand sup, ;. |Aiji|* < ky < oo, then the curvature
assumptions can be replaced by
[2Ric —(n - 2) Tor —2¢(div A)*](X, X)
> —2(—k0 + |1’l - 2|k1 +€k2)<X,X>Le = _K<X>X>Lo

for X = X*Z, € T} oM, a positive constant €.
(ii) The nonnegativity of the pseudohermitian Ricci curvature i.e., x = 0 is equiv-
alent to saying Ric(X, X) > (|n - 2|k; + €k2)(X, X)1,, which is

[2Ric(X, X) > [(n - 2) Tor +2¢(div A)*](X, X),
for X = X*Z, € T} oM and a positive constant €.

In particular, M satisfies the following volume doubling property (V) for some
un= 2C9

Corollary 1.5 A complete pseudohermitian (2n + 1)-manifold M satisfies

sup |Ajj| <kj<oo and sup |A;j5|* <ky < o0,
i,jel, i,jel,

where ki, k, are nonnegative constants. Assume also the nonnegativity of the pseudoher-
mitian Ricci curvature Ric(X, X) > (|n — 2|ky + ek )(X, X) 1, for X = X*Zy € T1,oM
and where € is a positive constant. Then for any o > 1, there exists a positive constant
Cy = Cy(n) such that Vy,(op) < Cya*®V,(p).

Furthermore, we obtain the following CR volume growth estimate.
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Corollary 1.6  Let (M, ], 0) be a complete pseudohermitian (2n + 1)-manifold with
Ric(X, X) > ko(X, X)1,, and

sup |A;j| <kjy< oo, sup |A;;z* <k; < oo,
i, jel, i, jel,

for X = X*Zy € T1,o0M and where ko, ki, ky are constants with ki, ky > 0. Then for

~ ~ 2
any o > 1, there exists a positive constant C, such that V,(a) < C,V,(1)a?©e“*?" In
particular, assume that the nonnegativity of the pseudohermitian Ricci curvature

Ric(X, X) 2 (|n - 2|ky + €k2)(X, X)L,

for a positive constant €. Then Vy(0) < CV, (1)0%%.

Remark 1.7 (i) For the (2n +1)-dimensional Heisenberg group H,,, it has been
shown [38] that

1.2) Ve(0) < C Ve (1)0*™*2,

where 2n + 2 is the homogeneous dimension.

(ii) The best constant is expected to be Cy = n + 1, the same as in the Heisenberg
group H,,. However, at this step we only can show Cy = mn(1+ %) = n+ 3 when the
torsion is vanishing. In general, it follows from (3.8) and (3.10) that we can choose
n+3< Co < n+3+ ¢ forany fixed small € > 0.

Now, applying the volume doubling constant and upper bound estimate of the heat
kernel as in Proposition 3.3, we can obtain the CR analogue of the Sobolev inequality.

Theorem 1.8 Let (M, ], 0) be a complete pseudohermitian (2n + 1)-manifold with
Ric(X, X) 2 ko(X, X)1,

and

sup [A;j| <kj< oo, sup |A;;z* <ks < oo,
i, jel, i, jel,

for X = X*Zy € T1,0M and where ko, ki, ky are constants with ki, ky > 0. Then

Q-2

2Q \ “Q 2 Cko? _2 2 -2 2

Q-2 < Cipelkry, a f \V/ du + f du),
(fo(p) lgle) P (p)"4( AL M u)

forany ¢ € C°(Bx(p)), x € M. Here Q = 3Cs.
Theorem 1.8 and Moser’s iteration method will yield the mean value inequality.
Theorem 1.9  Let (M, ], 0) be a complete pseudohermitian (2n + 1)-manifold with
Ric(X, X) > ko(X, X)1,,
and

2
sup |Al]| < kl < 00, sup ‘Aij,7| < k2 < o0,
i,jel, i,jel,
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for X = X*Z, € Ty,oM and where ko, ki, ko are constants with ki, ky > 0. Then there
exists a constant C, > 0 such that for any p > 0, x € M, and any nonnegative subpseu-
doharmonic function f defined on M, we have

FOF <V e [ 5 du

As a consequence, M satisfies the mean value inequality (M).

Definition 110 A complete pseudohermitian (2# + 1)-manifold M satisfies the
mean value inequality (M) if there exists a universal constant Cy¢ > 0 such that for
any point x € M, 0 < p < oo, and any non-negative subpseudoharmonic function
f(x) defined on M, we have

T s 055 [, F0

Corollary 1.11  Let (M, ], 0) be a complete pseudohermitian (2n + 1)-manifold with

sup |A;j| <ki<oo and  sup |A;j5]* < ky < oo,
ijel, i,jel,

for X = X*Z, € Ty,oM and ki, k, are nonnegative constants. Assume the nonnegativity
of the pseudohermitian Ricci curvature

Ric(X, X) 2 (|n - 2]ky + €k2)(X, X) 1,

for X = X*Z, € T1,0M, where € is a positive constant. Then there exists a constant
Cy > 0 such that for any p > 0, x € M, and any nonnegative subpseudoharmonic
function f defined on M, we have

PGP < OV (p) [ FO)dp

As a consequence of Corollary 1.5 and Corollary 1.11, we have the following main
result on a CR analogue of Yau’s conjecture for pseudoharmonic functions of polyno-
mial growth.

Theorem 112  Let (M, ], 0) be a complete pseudohermitian (2n + 1)-manifold with

sup |Az]| <k <oo and sup |A,'j,7|2 <k, < oo,
i,jel, i,jel,

for X = X%Z, € T1,0M, where ki, k, are nonnegative constants. Assume the nonnega-
tivity of the pseudohermitian Ricci curvature

RiC(X, X) > (|7’l - 2|k1 + €k2)<X, X)Le’

for X = X%Z, € Ti,0M, where € is a positive constant. Then the dimension of H¢ (M)
is finite. Moreover, there exists a constant Cy = C(Cn, Cy) > 0 such that

(1.3) hd(M) < Cod%(ZCrl)’
forall d > 1. Here Cq is the constant in Corollary 1.5.

As a consequence of Theorem 1.12 and [13], we have the folowing.
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Corollary 113 Let (M,],0) be a complete pseudohermitian (2n + 1)-manifold of
vanishing torsion. Assume that Ric(X,X) > 0 for X = X*Z, € T,0M. Then there
exists a constant Co = C(Cyq, Cy) > 0 such that

h? (M) < Cod i (26D
forall d > 1. In particular, h* (M) =1 for d < 1.

Remark 1.14 (i) Inthe (2n+1)-dimensional Heisenberg group H,, we compute
explicitly (see Section 7) that
dZn
1.4 h(H,) » —.

On the other hand, it follows from Corollary 1.6 and (1.2) that the power 2Cy of vol-
ume in p is 21 + 2 ,and then (2Cy — 1) = 21 + 1 in H,,. Therefore, the power of the
right-hand side in (1.3) will be 23;’11 (2Cy — 1) = 2n which is sharp as in (1.4) for the
Heisenberg group H,, .

(ii) Itis not clear that if a complete pseudohermitian (27 +1)-manifold with non-
negative pseudohermitian Ricci curvature and vanishing torsion admits nonconstant
pseudoharmonic functions of polynomial growth. We refer to [37,43] for the related
topic.

(iii) However, similar results hold for a complete pseudohermitian (27 +1)-mani-
fold of nonnegative pseudohermitian Ricci and vanishing torsion (M, Jo, 89). We
refer to [2] for more details.

(iv) By applying the volume doubling property (1.1) together with methods of
M. Gromov [26] and C. Villani [42], we have the following CR analogue of the Gro-
mov precompactness theorem. Let M(ko, ki, k», D) be the space of compact pseu-
dohermitian (2n+1)-manifolds (M, J, 8) equipped with their Carnot-Carathéodory
geodesic distance and volume measure and

(a) Ric(X, X) 2 ko{X, X) 1, sup; je;, [Aij| < ki < oo, and sup, ;o |A;j]* < ka <
oo, for X = X*Z, € T oM , where ko, ki, k, are constants with k;, k, > 0.

(b) diam(M) < D. Then M(ko, ki, ko, D) is precompactness in the measured
Gromov-Hausdorff topology.

We will pursue this topic further in a forthcoming paper.

In Kéaehler geometry, one of the primary goals is to generalize the classical uni-
formization theorem in higher dimensions. Siu and Yau [41] initiated a program
of using holomorphic functions of polynomial growth to holomorphically embed a
complete Kéahler manifold into the complex Euclidean space. More precisely, the well-
known uniformization conjecture asks if every complete noncompact Kihler mani-
fold with positive holomorphic bisectional curvature is biholomorphic to a complex
Euclidean space. For this reason, Yau [45] proposed to study the spaces of holomor-
phic functions of polynomial growth on complete noncompact Kéhler manifolds with
nonnegative holomorphic bisectional curvature. In our forthcoming paper, we will
investigate the related CR analogue of Yau’s conjecture on the spaces of CR holomor-
phic functions of polynomial growth in a complete noncompact pseudohermitian
manifold with nonnegative pseudohermitian bisectional curvature.
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The rest of the paper is organized as follows. In Section 2, we introduce some ba-
sic notions of a pseudohermitian (27 + 1)-manifold. In Section 3, we derive a CR
curvature-dimension inequality and the heat kernel estimate in a pseudohermitian
(2n+1)-manifold under some specific assumptions on the pseudohermitian Ricci cur-
vature tensor and the torsion tensor. From these estimates, we obtain the CR volume
doubling property. Then the volume doubling property and the heat kernel estimate
yield the CR Sobolev inequality. In Section 4, by applying the volume doubling prop-
erty and CR Sobolev inequality obtained in Section 3, we derive the mean value in-
equality via Moser’s iteration method. In Section 5, following Li’s method, we use the
CR volume doubling property and mean value inequality to prove the CR analogue
of Yau’s conjecture for the space of pseudoharmonic functions of polynomial growth
of degree at most d in a complete noncompact pseudohermitian (2# + 1)-manifold.
As a by-product, we obtain the CR volume growth estimate. In the last section, we
study the pseudoharmonic polynomials on the Heisenberg group and obtain a precise
estimate of the dimension of the linear space of the pseudoharmonic polynomials of
degree at most d.

2 Preliminaries

We introduce some basic notions of a pseudohermitian manifold (see [12,20,30] for
more details). Let (M, &) bea (2n+1)-dimensional, orientable, contact manifold with
contact structure . A CR structure compatible with £ is an endomorphism J: & - &
such that J? = —1. We also assume that J satisfies the integrability condition: if X and
Yarein ¢, thensoare [JX, Y]+[X,JY]and J([JX, Y]+[X,]JY]) = [JX,]JY]-[X,Y].
Let {T, Z,, Zz} be aframe of TM ® C, where Z, is any local frame of T} o, Zg = -
To.1 and T is the characteristic vector field. Then {6, 6%, 6%}, the coframe dual to
{T, Z4, Zz}, satisfies dO = ihaﬁe“ A 6F for some positive definite hermitian matrix
of functions (haﬁ)' If we have this contact structure, we also call such M a strictly
pseudoconvex CR (27 + 1)-manifold. The Levi form (-, -}, is the Hermitian form
on Ty defined by (Z, W), = —i(d6,Z A W). We can extend (-, - ), to Tp, by
defining (Z, W), = (Z, W) 1, forall Z, W € Ty o. The Levi form induces naturally a
Hermitian form on the dual bundle of Ty,o, denoted by (-, - )1+, and hence on all the
induced tensor bundles. Integrating the Hermitian form (when acting on sections)
over M with respect to the volume form du = 6 A (d0)", we get an inner product on
the space of sections of each tensor bundle.

The pseudohermitian connection of (J, 8) is the connection V on TM ® C (and
extended to tensors) given in terms of a local frame Z, € Ty o by

VZe=wl®2Z5 VZg=wi ®Z5; VI=0
and

(2.1) doP =0 Anw, P +0nTP, 0=1,n0% ozwaha){,

where w,” are the 1-forms uniquely determined by equations (2.1). We can write (by
Cartan’s lemma) 7, = A4, 07 with A, = A,,. The curvature of the Tanaka-Webster
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connection, expressed in terms of the coframe {0 = 6°, 0%, 6%}, is

Tp* = TI5% = dwp® - wp? Awy®,  To® =I1,° = TP = I15° = " = 0.

Webster showed that ITg* can be written as

" = Rp® 507 A 07 + Wg%,0° A O — W07 A0 +i0p AT" —iTp A O,
where the coefficients satisfy Rpz,5 = R 505
Here, Ry‘s‘xﬁ is the pseudohermitian curvature tensor, R= Ryyaﬁ is the pseudoher-

= Rapzp = Ryaps and Wz, = Wyap.

mitian Ricci curvature tensor, and A, is the pseudohermitian torsion. The Webster

scalar curvatureis R = R, % = h"‘BRaE. Moreover, we have
Ruﬁ = i(}’l - I)Aaﬁ and Ra() = R()() =0.

Furthermore, we define the bi-sectional curvature Ra&ﬁB(X ,Y) = R s XaXa¥p Yz
and the bi-torsion tensor T,z(X,Y) := i(ABFXﬁY,x — AapXPYg), where X = X“Z,,

Y = YPZs in Ty 0. In particular, we have Ric(X, Y) = R X* Y and

Tor(X, Y) i= P T 2(X, Y) = i 3 (A5 X"YF — AgpX“YF).
op

We also define the tensor A2 by A*(X,Y) = Zy(AayAﬁX"‘ Y#).

We will denote the components of covariant derivatives with indices preceded by
a comma; thus we write A, ,. The indices {0, a, &} indicate derivatives with respect
to {T, Zy, Zg}. For derivatives of a scalar function, we will often omit the comma;
for instance, Uy = Z,u, Uyp = EZau - an(ZE)Zyu. In particular, we have

Voul® =23 uauz,  |Vyul® =23 (uaptigs + U guap),
a (x,ﬁ
Apu = Tr((VH)zu) = Z(“W + Ugzg).

Next we recall some commutation relations [30]. Let ¢ be a scalar function and
0 =0,0%a(1,0) form. Let ¢o = Te; then we have
Pap = Ppa>
Puf ~ Pha = i 590
Poa — Pa0 = A{xﬁq)'B;
0,08 — Oa,p0 = 0“,7A7[; - 07Aaﬁ5,

g - = V4 VA
008 ~ %aB0 = Og,yA B +0 A?ﬁ,a‘

Finally, we provide the real version of pseudohermitian geometry for completeness.
Write Zg = %(eﬁ —ieyp) for real vectors eg, e, p, f =1,...,n. It follows that e, . g =
Jeg. We also write Pes = €59 and V¢ = %((peﬁ eg + <Pen+,3€n+;3)- Moreover, we have

Pejer = €k€jP — Ve, €9 and Apgp = % Zﬁ(?%% + ¢en+ﬁen+ﬂ)'
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3 The CR Volume Doubling Property and Sobolev Inequality

In this section, we first derive a CR curvature-dimension inequality and the heat ker-
nel estimate in a pseudohermitian (27 +1)-manifold when the pseudohermitian Ricci
curvature tensor and the torsion tensor satisfy some specific conditions. Then we ob-
tain the CR volume doubling property via the heat kernel estimate. Finally, by apply-
ing the volume doubling property and the heat kernel estimate, we prove the above
CR Sobolev inequality.

One of the key steps of Li and Yau’s proof of gradient estimates of the heat equation
on a Riemannian manifold is the Bochner formula in terms of the Riemannian Ricci
curvature tensors. In the CR analogue of the Li-Yau gradient estimate, the crucial
step is the following CR Bochner formula [24]:

(€3)) %A17|Vzaf|2 = [Hess(f)[* + (Vo f, Vo (Auf)) +2(]Vs f, Vi fo)
+(2Ric~(n-2) Tor)((Vof)e, (Vof)c)

where (V;f), is the T} o M-component of (V, f). Note that the right-hand side in-
volves a term (JV; f, Vj fo) that has no analogue in the Riemannian case. In the case
of vanishing torsion tensors, we are able to deal with the extra term (JV; f, V; fo) as
in [11,12] by using the arguments of [36]. In this paper, we will use gradient estimates
and some related results in a complete pseudohermitian manifold with nonvanishing
torsion tensor.

On the other hand, Bakry and Emery [1] pioneered the approach to generalize
curvature in the context of gradient estimates by the so-called curvature-dimension
inequality. We will define the CR version of the curvature-dimension inequality that
was first introduced by Baudoin, Bonnefont, and Garofalo [2] in the context of sub-
Riemannian geometry.

Definition 3.1 Let (M,],0) be a smooth pseudohermitian (27 + 1)-manifold
and a real frame {eg, e,.4, T} spanning the tangent space TM. For p; € R,p, >

0,d > 0, and m > 0, we say that M satisfies the CR curvature-dimension inequality,
CD(p1, p2,d, m), if

L@+ (= S) T ) + 22l ) ST f) +VE )
for any smooth function f € C*°(M) and v > 0.

Here we have

L(fs )= X0 leif s T%(f, f)=ITfP,

J€lzn

L/, )= S8 D) =2 T (e esaf)])

j€lan

TS, )= 5 [T (S 1)) = 2TN(TA)]
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Note that

L(f, f)= Y. leiejfP+ Y. (e;f)([Avse;1f)

i,j€lz, j€lon

7 (f, )= 2 leTf]* + (Tf)([Ap, TIS).

iely,

Now we proceed to derive a CR curvature-dimension inequality in a closed pseu-
dohermitian (2n+1)-manifold under some specific assumptions on the pseudohermi-
tian Ricci curvature tensor and the torsion tensor. We will first prove the the following
key lemma.

Lemma 3.2 Let (M,],0) be a complete pseudohermitian (2n + 1)-manifold with
Ric(X, X) 2 ko(X, X)1,> sup; jep, |Aij| < ki < o0, and sup, ;; |Aij5* < ko < o0,
for X = X%Zy € Ty oM, I, = {1,2,...,n}, and where ko, ki, k, are constants with
ki, ky > 0. Then M satisfies the CR curvature-dimension inequality CD(py, p2, 4, 2mn)
forl<m < +oo, and N > 0 such that

2n 8n’N?  2mn’N’k’
p1:=—-k and pai= = -

>0,
€ m-—1

for 0 < v < N and a positive constant € with k = 2[-ko + |n — 2|k; + €k ] > 0.

Proof The CR Bochner formula (3.1) implies

irz(f,f) = |Hess(f)* + (2Ric—(n -2) Tor) ( (vbf)c,(v;,f)c) +2(JVuf,Vifo)-
With the equality T7 (f, f) = [Vofol* + fo[As, T]f, we have
(3.2)
L(f, ) +vIE(f.f) = 4[|Hess(f)|2 + (2Ric=(n = 2) Tor)((Vo f)es (Vo f)e)
+20V 1, Vo fo)| + 20V fol? + 2vfo[ A, T1S.

On the other hand, we have

.. 1 n
63 IHes(NP=2( T 1P+ Xije LlfzP) > o |auff + S1AP
i jel,

and

Vo fI?
v

(3.4) (JVuf>Vofo) = - —£|be0|2'

Finally, it follows from the commutation relation [12] that

(3.5) Apfo=(Apf)o+2[ (Aapf*)F + (Agsf*)F].
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Then (3.2), (3.4), and (3.5) yield that
L(f, ) +vI7(f, f) 28] Z/;(|ftxﬁ|2 +11g1")]

 [4ko - (- 2)k0) = 1w P
- 8v|fo Z/; ((Agp oS8 + Agpfpa)l.

Next Young’s inequality implies that

I I
[l (g fol+ Wgfil) < 220 o e ol o LoD o e

for any €, &; > 0. We can choose ¢; =
that (1 - N£2k12) = #
It follows from (3.3) that for € = 4N¢n

() )+ )28 DU +8 T - vl

— Nk M= for m > 1and N with v < N. This implies

+ [4(ko - (n-2)k;) - %] Vo fI?
_zvz(.% o YU~ Tl

z<|faﬁ|2 pal) + (26 - ) 9P

—-2n N(E—l+—)|fo|2
4 2, 8 2
> 2 (A fP o+ SIAR) + (<26 2) 1vis]
~2n N(—+é)|f0|2

2oL+ (k- 2T )

2mn
2n 2n*N  2mn*N%k?*\ _,
+( = - - TZ(f, f).
) L)
Now we can choose N sufficiently small so that either
2n 2n*N  2mn?NZ?k? 2n  8n3N?  2mn?NZ?k,?
— - - >0 or — - - > 0.
m & m-—1 m € m-—1
This completes the proof of the lemma. ]

We now apply the CR curvature-dimension inequality CD as in Lemma 3.2 and
the subgradient estimate in [3,11] for the semigroup solution u(x,t) = P;f(x) of
the heat flow (3.9), and prove the following crucial estimate for the symmetric heat
kernel p(x, y,t) > 0 associated with the heat semigroup P;. We also refer to [10,11]
for similar results for the general solution of the heat flow.
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Proposition 3.3  Let (M, ], 0) be a complete pseudohermitian (2n+1)-manifold with
Ric(X, X) 2 ko(X, X)1,

sup |A;j| <kj<oo, and sup |A;j7]* <kj< oo,
ijel, ijel,

for X = X*Z, € Ty,oM, where ko, ky, k, are constants with ky, ky > 0.

(i)  There exist positive constants Cs3(pz2 ), Ca(p2), Cs(p2) such that for x, y € M and
t>0,

O (-
(I TP

(i) There exist positive constants Cs(p2), C7(p2), Cs(p2) such that for x, y € M and
t> 0,

d2.(x,y)

(3.6) plx, y,t) < + C4Kt).

Cs d.2(x,y)
-Cyp———=
Ve (\/1) eXp[ 7 t

(iii) There exist positive constants Co(p2), Cio(p2) such that for 0 <s < t,

(38) p(x,x,s) < ( E) Cgeclok(t—s)‘
plx,x,t) s
Here Cy = mn(1 + %), p2 > 0and k = k(ko, ki, ky) > 0 are constants as in
Lemma 3.2. In addition, if the torsion is vanishing, Co = n + 3 with p, = 2n and
m=1

(3.7) p(x,y,t) > —CSK(t+dc2c(x»}’))]-

Proof We will use the semigroup method from [3]. It is known that the heat semi-
group (P;) s is given by Py = f0°° e * dE, for the spectral decomposition of A; =
— /7 AdE) in L*(M). It is a one-parameter family of bounded operators on L*(M).
We define P, f(x) = [,,p(x,5,t)f(y) du(y). Here p(x,y,t) > 0 is the so-called
symmetric heat kernel associated with P;. Due to the hypoellipticity of A, the func-
tion (x,t) — P,f(x) is smooth on M x (0, 00), f € C3°(M). Moreover u(x,t) =
P, f(x) is a solution of the CR heat equation

(3-9) —u= Abu,

In [3,11], the subgradient estimate was derived for the solution P; f(x) of the CR
heat equation (3.9) on M x [0, T) for arbitrary T with v = (T - t)?, if M satisfies
the CR curvature-dimension inequality CD . However, we choose t sufficiently close
to the arbitrary T so that 0 < v < N. It follows from Lemma 3.2 that M satisfies

the Baudoin—Garofalo type curvature-dimension inequality CD(py, p2, 4, 2mn) for
1 < m < +00, and smaller N > 0 such that

_2n 8n’N?* 2mn’N2k} N
Cm € m—1

0.

(3.10) p2:

It follows from [3] that we have the desired upper and lower estimates for the CR
heat kernel on M x [0, T), as stated in the proposition. ]
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As a consequence of the previous estimate, we will derive the CR volume doubling
property.

Theorem 3.4  Under the hypotheses of Proposition 3.3, for any o > 1, there exists a
positive constant Cy such that V,(ap) < C102C ¢ (C1o™+Co)rp” (p)-

Proof 1t follows from Proposition 3.3 that p(x,x,t) < %\%)ec““. On the other

hand, by applying (3.8) for 0 < 7 < ¢, we have

£\ C
p(x,x,7) < p(x, x, t)( ;) 7 Cro(t-1)

Accordingly,

>

t ) G G eCloK(t—T)+C4Kt < ( E) © G e(C10+C4)Kt

ree < () ) v

T
and then for py < p, we have V,(p) < (:%))ZC9 We(cl‘“’c‘*)“”z. This implies

Cs Cio+Cyq)x0*p?
Vi(op) < (0)2¢ ——_(Cu+Ca)rop”,
p(x,x,p?)

But from (3.7), we have p(x, x, p?) > #GP)

x

e Csep’ Accordingly,
Vil0p) < (025 Ll 0D p),
6
and then V, (op) < C;0%¢ e(C1o*+Co)rp” (p)- The proof of the theorem is, therefore,
complete. ]

Let HBx0>P(x, y, t) be the Dirichlet heat kernel on the geodesic ball B,, = By, (1)
with x, y € By, (7).

Theorem 3.5  Under the hypothesis of Proposition 3.3, for r* < T, we have

HP0P(x, y,1) < Q3 Cer,

r
X0 T’)

- 6
where Q =3mn(1+ o ).

Proof It follows from the volume doubling property that

Ve(Vt) <V, (Vt+dee(x,9))

< Cle[zcl(u”’ij"”)Jr(:g]m(1Jr dcc(xJ’))zcg V,(V1)

Vi

, 2Cy
< Clec(d“(x’y)+t)x(l+ dccf/_x’)’)) Vy(\/z)-
t

On the other hand, (3.6) yields that
2
_CS dCC (x’ y)

Cs
plx, y,t) < Vx(\/z)%vy(\/;)% exp( +C4Kt).
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All these imply that

dec(x,y) ) Cger(t+d2 (x,9))-Cs "“(" ») .

1
p(x,y,t)SCIVx(\/z)(l+ i

Theorem 12.2 of [31] implies that

(B1)  HEP(x,y,1)<C

(s declo )\ © cutira -yt
1+ o Crlt+dc (x,y))-Cs ==
Vx(\/?)( Vi )

Now for ¢ < r* and x, y € By, (), the doubling property yields

(3.12) Vi (1) < Vi(2r) < Cre®"'( %) VL (VD).

From (3.11) and (3.12), we have

HB""’D(x,)/, t) < 26 t_CQecl’”z(1+ dec(x,y) (x,) ) ©

VXo (l’) \/z
< c 3Cs t—?ec'mz
VXo (I’)
< l’_7 eC kr?
on (7’)
where Q :=3Cq = 3mn(1+ —) This completes the proof of the theorem. ]

Finally, applying the volume doubling property and the upper bound estimate of
the heat kernel, we can prove the CR analogue of the Sobolev inequality based on the
methods of Li [31] and Saloff-Coste [39].

Theorem 3.6  Under the hypothesis of Proposition 3.3, forany ¢ € Cg°(Bx (7)), x € M,
we have
Q-2

( Vxl(r) B.(r) ol d#) N

< Crzec"’z[%(r)(fmr)IVMpIZd#H‘Z fo(r) ¢ du)],

- 6
where Q =3mn(1+ > ).

Proof Let {¢;} be the set of orthonormal eigenfunctions with eigenvalues {yu;}
with respect to the sub-Laplacian operator. We have ¢ = Y72, a;¢;, for any ¢ «
C3°(Bx(r)),x € M,andthen Ay = — 372 y;a;¢;. We define the pseudo-differential
operator (—2)* by (—A,)%¢ = Y72, uta;¢;, for any a € R. So we have

2d:—/ Ad:wi?:f —a)) el du.
fo(r Vool du by P 9 Z;w, BMI( b)2 ol du

Let A; = —)rQ €%’ that is HPx’ Px,p,t) < At™% . In the following, we first
prove that
Q-2

3.13 —0y)7 ol d :f 2du> CA R f S dy) .
( )fm)l( p)2oldu= | Vool du ll(Bx(r)l(PIQ u)
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Lety = (—A})2¢. Then formally ¢ = (—2;) y. It suffices to prove the following:

) Q-2
2 “q _A) S uleE @
J P duzca ([ o) tEde) 7

That is, the operator (—=2;)"2: L2(B,(r)) — L= (Bx(r)) is bounded and satisfies

the inequality (3.13).
Lety = Y72, bi¢;. Then we have
(2p)72y(y) = Y p; 2 bidi(y) = . o bi(1)9i(2)y(y) dp.
i=1 <) j=1

= ” ~3 o Hit . )

Bfo fx(r)t e "i(y)¢i(2)v(z) du.dt
= “ Bo,D

-7 /; t [me H™(y,2,t)y(z) du.dt,

where B! = [* sT2e S ds = I'(3). For 0 < T < oo, define the functions T; and T, by

T 1
Ti(y) =B / 2 f HBXO’D(y, z,t) dy,dt
0 B, (r)
and

T(y) =B fTw = HPP(y,z,t)y(z) dy.dt,

By (r)

respectively. Hence, we have (-2, )‘% = Ty + T5. Then, similar to part of the process
in the proof of [31, Theorem 11.4], we can prove that the inequality (3.13) holds.

To prove the Sobolev inequality, let & be a non-negative cut-off function with the
following properties:

1 ifyeB (%),

2 -2 =
[VpEF<Cr™ and §(y) = {0 if y € M\B, (7).

Then (3.13) yields

2[ Vyol*d +2Cr’2f 2d zf EIVyeltd +2f Eol d
Bx(r)l vl du PRSI P [Veol* du Bx(r)lsvl p

> 2d

> fo(T) Vo (Ep)|"du

Q-2
Q

> CIAI%(fo(r) [Epl 2 du)

_2 2Q
> CA, Q(L o0 |¢|Q—2 d/l)

If y € 0B<(%), then {B,(3) : y € dB((%)} forms an open cover of the closure

-2

off

of B,(r). There exists a positive integer ! such that B, (r) c Ui_, By, (31). For any
¢ € C3°(By(r)), we have

2f 24 +2c*2f 2du s> A2 /
Bx<r>|v”¢| HEET Jo @ = ( B.(r)nBy, (3)

Q-2
Q

gla= dﬂ)
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Therefore, we have

2, 1 R o2
2 [ (wiglduraicr? [ grdu>cia Y [ s dy) °
oy Vool b ¥ ez Gy 21( p—_ u)
Q-2
_2 2Q “q
2Ca ([ lol@ du)
Finally, we conclude that
2 -2 2 ~. 29 T
duer? [ grduxCat( [ jeld%d
/;x(r)IVWI R ( b |7 4
This completes the proof of this theorem. ]

4 A Mean Value Inequality

In this section, we will apply the volume doubling estimate (1.1) and the CR Sobolev
inequality to obtain the following mean value inequality through the method of
Moser’s iteration [40].

Theorem 4.1 Under the hypothesis of Proposition 3.3, there exists a constant C, > 0
such that for any p > 0, x € M, and any nonnegative subpseudoharmonic function f
defined on M, we have

T <OV (e [ g2 du
Proof For any nonnegative subpseudoharmonic function f on M, we have

du<o,
fo(p) Vo fVepdyu <

where ¢ is a nonnegative function in C3° (B, (p)). For ¢ = w2 f and y € C° (Bx(p)),
we have

26) dy = 29, fI2 d 2f du.
Oszx( )vbfvb(v/ f)du fB,(p>"’ VeflPdu+2 | fyvefveydu
Thus, we have

~[Bx(p)w2|vhf|2d”SZ“/A‘/Ifwvbbellld‘u‘

1
<2 Pau+ [ yI9ufEdp
S [TobE S w5 [y d

It follows that
2 2 202 2 2
v d§4f v du < 4|V Mf dy.
Jo pivetduss [P dusalvivl [ fdu
We choose y such that

0<y<l, supp(y)coBu(p), w=1ino'Bulp), [Voy]<2((o-0a")p)™
where 0 < ¢’ < 0 <1, so we have

f Vo fI* dp < C(pw)’zf frdp, w=0-0.
o’Bx(p) 0B, (p)
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Using the CR Sobolev inequality, set g = Q— From the Hoélder inequality, we have

Zq é
i)
([, ) (E®) [ [19asP+r i) du),
forany u € C5°(By(p)) and E(B) = Cspzec"" Vx(p)’a. Hence, we have
2 (1+3)
*Me) duy < E(B)( C w_zf 2du) .
Loy PP dusE®(Clo)? [ du)

Setting 0 =1+ 5’ we have

f2(1+%)d[l S( f2 d‘u)ﬁ

B:(p) ( Bx(p)

(41) Sonoy e <E®(C)” [ p au)’
o’Bx(p
On the other hand, for p > 1, we have
=8y fP=-pffT Ay f-p(p =DV fI <.
Then for the function f? in (4.1), we have
0
(4.2) f % du<E(B)(C w_zf 2 du) .
T du < EB)(Cp0)? [ fF du)

Let w; = (1- )27 such that %%, w; =1- 6. Set gy = land 0i41 = 0; — w; =
1-Yi_, w;. Applying (4.2) with p = p; = 0, 6 = 0; and ¢’ = 0;.1, we have

. i 0
2git! i+l -2 26"
du<E(B)(C 1-6 f du) , C>4
\/O'i+le(P) f ¥ ( )( (P( )) 0iBx(p) f ‘u)

and

20"+
d
(./;,-HBx(P) f ‘u)
(B)Z'ﬂe - 1CZ;+1(1+1)971 (p(1-98))" e fB (P)f2 -

Letting i tend to oo, we have

sup (/%) < CEB)F[1-0)] %@ [ fdy

8B4 (p)

Taking 6 = 1, we have f(x) < Csz_l(p)eCZ"P2 fo(p)fz(y) du. [ |

g-i-1

5 Polynomial Growth Pseudoharmonic Functions
In this section, we will prove our main result. We first recall [31, Lemma 28.3].

Lemma 5.1 Let K be a k-dimensional linear space of sections of a vector bundle E over
M. Assume that M has polynomial volume growth of order at most y, i.e., V,(p) < Cp#
for p € M and p — oo. Suppose each section u € K is of polynomial growth at most
degree d, such that |u|(x) < Cr?(x), where r(x) is the Carnot-Carathéodory distance
to the fixed point p € M. For any 3 >1, § > 0, and po > 0, there exists p > pg such that
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if {u;}%_, is an orthonormal basis of K with respect to the inner product Ag,(u,v) =
[Bp(ﬁp)<u,v) du, then X, pr(p) |ui|? du > kp=(2d+#+d),

In the following, we prove the main result by applying the volume doubling prop-
erty and the mean value inequality.

Theorem 5.2  Assume the hypothesis of Proposition 3.3 with k = 0. Suppose E is a
rank-m vector bundle over M. Let Sy(M, E) c T(E) be a linear subspace of sections u
of E satisfying Ay|u| > 0 and |u|(x) < O(r%(x)) as r(x) — oo.

Then the dimension of Sq(M, E) is finite. Moreover, there exists a constant C > 0
depending only on Cy such that

(5.1) dim S4(M, E) < mCCpd i1 (261
foralld >1.

Proof From the volume doubling property, we have the comparison inequality

62 Valp2) < (o0 22)
P1

and then we have

(5.3) V,(p) < Cp*®.

On the other hand, we also have the mean value inequality

P ez ) [ PO)du

»(p)
Let K be a finite-dimensional linear subspace of S;(M, E) with dimK = k and let
{u;}%_, be any basis of K. Then for p € M, p > 0, and any 0 < € < 1, to complete the
proof of the theorem, it suffices to show that

k
(5.4) f ui?du<mCCy  su f ul?du,
IZ:; Bp(P)| au ue{(A?U)} Bp((1+6)p)| "

where the supremum is taken over all 4 € K of the form u = (A, U) for some unit
vector A = (ay,...,ax) € R¥ with U = (uy,...,ux). We will prove (5.4) later. To
finish the proof of Theorem 5.2, let {u; }¥_, be an A g,-orthonormal basis of any finite-
dimensional subspace K c S;(M, E). By applying (5.3) and Lemma 5.1, there exists a
p > 0 such that

k
(5.5) Z[ i dy > kﬁ—(2d+2C9+5)'
iz1 Y Br(p)

Since /B((1+e)p) |u]* = 1for all u € {{A, U)}, it follows from the inequality (5.4) that
by setting 8 = 1+ ¢, we have Y5, S,y luil*dp < mCCye” (%D For d > 1, setting
(5.6) e = (2d) =

combined with (5.5) givesus Y5, pr(P) |u;|*du > Ck. Therefore, the estimate (5.1) on
k follows easily. Note that extra care for the power in (5.6) is used to obtain the order
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of the power 23:’11 (2Cy — 1) in Theorem 5.2, because this is sharp on the Heisenberg

group H,,, as shown in the next section.

Finally, we prove 5.4 by following the method in [31]. For completeness, we will
outline it here. We first observe that for any x € B, (p), there exists a subspace Ky c K
which is of, at most, codimension m, such that u(x) = 0 for all u € K. Hence, by
an orthonormal change of basis, we can assume that u; € K, for m +1 < i < k and
Sk il (x) = o, JuiP(x). Since &4)u;| > 0, it follows from the CR mean value
inequality that

k n
(67) Y|l (x) =3 Juil(x)
i=1 i=1

<Cu V(1 +€)p—r(x mf u;*d
@S [ P

<CuVi'((1+e)p—r(x su uldu.
((1+e)p ())ue“fm} Bx((m)P_r(x))ll u

The volume doubling property (5.2) and the fact that r(x) < p imply that

(5.8) CVp((1+e)p-r(x)) 2 Vp(ZP)( (He)gp_r(x)) "
> Vp(p)(me)gp_rm)zcg'

From (5.7) and (5.8), we have

k
(5.9) f wl?d
; By(p) | | “

C;Cp2%C0 1 - -2Cs
. MG sup f uzduf (( +e)p r(x)) du.
Vo(p)  ue(a,uyy IBo((+e)p) By (p) p

Now we define f(r) = ((1+¢€) — p~'r)72%. It follows that f’(r) > 0 and then
(5.10)

e DRl T AP WOYIOLE
- U@Vl [T 7@V di
<OV -2 Vi(p) [ (08 dr
<OV =97V (p)
<(LFOP@1 =26 [ p(eear)
<2 (p)Cs [ (e - 1p) PO
2Cy

2Co —1
Hence, (5.4) follows from (5.9) and (5.10). [ |

< Vp(p)e_(zcg_l).
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Corollary 5.3  Under the hypotheses of Theorem 5.2, we conclude that the dimension
of H? (M) is finite. Moreover, there exists a constant Cy = C(Cat, Cy) > 0 such that
h4 (M) < Cod =1, foralld > 1.

6 Pseudoharmonic Functions of Polynomial Growth on
Heisenberg Groups

We start with the most general definition of the Heisenberg group. The non-isotropic
Heisenberg group H,, is the Lie group with underlying manifold

C"xR={[z,t]: zeC", teR}

and the multiplication law
n
(6.1) [z,t] - [w,s] = [z+w,t+s+21m2ajzjwj],
=1
wherea = (aj, as,...,a,) € R%.

It is easy to check that the multiplication (6.1) does indeed make C" xR into a group
whose identity is the origin e = [0,0], and where the inverse is given by [z,t]™ =
[-z,-t].

The Lie algebra by, of H,, is a vector space that, together with a Lie bracket operation
defined on it, represents the infinitesimal action of H,,. Let j,, denote the vector space
of left-invariant vector fields on H,,. Note that this linear space is closed with respect
to the bracket operation [Vy, V,] = ViV, — V,V;. The space by, equipped with this
bracket, is referred to as the Lie algebra of H,,.The Lie algebra structure of , is most
readily understood by describing it in terms of the following basis:

d d d d d
X;=—+2a;9—, Y;=-— -2a;xj—, and T=—,
1o, Wi TIT Gy, T N ot
where j=1,2,...,n,2=(z1,22,...,2,) € C" with zj = xj + iy;; t € R.
Note that we have the commutation relations
(6.2) [Yj,Xk] = 4aj8jkT for j, k = 1,2, R (N
Next we define the complex vector fields
— 1 . J d
(63) iji(Xj“‘le):aiEj—laija,
1 d d
Zi==(X;-iY;) = — +iaz;—
j j j J*ing
2 8zj ot
for j=1,2,...,n. Here, as usual, we have
0 1/ 0 d d 1, 0 d
0 N2 0y g 220y
8zj 2 an ayJ aZj 2 8xj ay]

The commutation relations (6.2) then become [Z,Zk] = 2ia;0j T, with all other
commutators among the Z;, Z, and T vanishing.
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The Heisenberg sub-Laplacian is the differential operator
1& = = 14 s 2 .
j=1 =1

a,y

with Z; and Z; given by (6.3). In the case of a; = 1for all j/, the operator £, was first
introduced by Folland and Stein [22] in the study of 9, complex on a non-degenerate
CR manifold. They found the fundamental solution of £,. Beals and Greiner [4]
solved the case that a;. may be different. Readers can also consult [7, 8] for detailed
discussions.

For functions f, g € 8(H,), the Heisenberg convolution is given by

fre(= [ feavy.

Here dV (y) is the Haar measure on H,, that is exactly the Euclidean measure on
R2n+1.

6.1 The Fundamental Solution

The fundamental solution and heat kernel of £, , can be derived using Laguerre cal-
culus. Following [5], we introduce the complex distance and volume element on the
Heisenberg group:

g(s;2,1) = Za]s|z]| coth(2ajs) —it and v(s) = Hm
j

The fundamental solution of £, , can be written in a closed form:

_ 2=t e by v(s)ds
(6.4) Y0 = Gyt fo ls(sz 0]

If |z| = 0 and t # 0, then g(s;z, t) = —it. The integrand of (6.4) is not integrable
at s = 0. To regularize the integration we must deform its path of integration from
(—oo, oo) to

s

(—oo +iesgnt, o0 +iesgnt), where 0<e¢&< min —.
1<j<n Zaj

We refer to [4] for the exact definition of this path. Finally, we have the formula

2(1’1 1)|[m+issgntezys v(s)ds

\P(Z, t) = (2 )n+1 —co+iesgnt m

6.2 The Heat Kernel

In the isotropic case, the heat kernel was independently studied by Gaveau [23] via
a probability method and by Hulanicki [27] using the Fourier transform on H, and
the basis of Laguerre functions. Later, Beals and Greiner [4] solved the general case
by the geometric mechanics method. We also refer readers to the the paper by Calin,
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Chang, and Tie [9] that used a different method:
(6.5)
a]'T

1 o itt 4T
hs () = ————— [ _ - I e A P v dr.
(Z ) 2(715)”+1 —o0 [j:1 sinh(aj-r)] exP{ s + )/T s Z tanh(aj‘r) |Z]| } T

In this case, we set a; = a, n = 1, and y = 0 in (6.5) and the heat kernel then has the
form

=

1 ° a a 2 .
h(z1) = 2(ms)? [m sinh(TaT) exp{—f[ tanh(ar) 21" - lt]} ar.

6.3 Spherical Harmonics on H;

Greiner [25] initiated the study of £,-harmonic polynomials, i.e., £, p = 0 on H;. He

found a basis and proved that the linear space 3 D of H -homogeneous £, -harmonic
polynomials of degree m, m = 0,1,2, ..., has dimension m +1. Dunkl [21] derived the
general formulas of £, -harmonic polynomials for the isotropic Heisenberg group H,,.

Below, we will follow Dunkl’s formulation of IHSZ ). A basis of iHS,,y ) can be defined as
follows. First, we define the generalized ultraspherical polynomial C;V“’ﬁ ) (z) of degree
N with the index («, ) by its generating formula

(6.6) (1-p2)%(1-pz) P = 3 NP (2) for|pz| <1.
N=0
From the generating function (6.6), we have
C(vc/i)( ) = Z (@) (B)n-j 7N
i N =)

where the shifted factorial (a)y is defined by

, NEeN,

F(a+j+1)
I'(a)

For the problem we are working on, a is always a nonnegative integer and we have
(a+k-1)!

(a-1)!
Then for k,I € N, we can define Vi ; to be the set of harmonic and homogeneous
polynomials on C" of bidegree (k, 1), i.e., p(z,Z) satisfies p(cz) = c*¢'p(z) for all
ceC,and "

(a)o=1 (a)ju=(a)j(a+j)=ala+1)(a+2)---(a+j)=

(a)o=1 and (a)r=a(a+1l)---(a+k-1)=

i1 az az = 0. So Vi is an irreducible U(n)-module of dimension:

k+l+n-1 (n-1i(n-1)

n-1 k!

For all p € Vj ;, we have Ly([p(z)CI(\J“’ﬁ)(t+ ilz[*)]) = 0, where a = 52, g = 21,
N €N, and every £,-harmonic polynomial is a linear combination of such terms for
allk,I,N eN.

For p € Vi, p(z)CI(\J“’ﬁ)(t + i|z|*) is H-homogeneous of degree 2N + k + [. We

Vk,1 =

will find the dimension of the linear space H of H -homogeneous £,-harmonic

https://doi.org/10.4153/CJM-2018-024-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2018-024-3

Pseudoharmonic Functions of Polynomial Growth 1389

polynomials of degree m for n > 1 from the dimension of Vj ;. The problem is to find
how many (N, k, 1) € N® satisfy 2N + k + [ = m for a fixed m € N.

Koranyi and Stanton [29] proved that if [y| < n and a £,-harmonic function f on
H, is majorized by a polynomial, then f must be a polynomial.

We give an outline of the computations of the £, -harmonic polynomials. Because
the space of £,-harmonic polynomials is a U(#)-module, it can be decomposed into
copies of Vi ;, with k,I € N. And then every £,-harmonic function is a sum of
the terms like p(z)gi(z, t), where p € Vi ; and g is invariant under U(n). Hence,
one has g(z,t) = g,(|z|*, t) for some g, (s, t). Furthermore, Greiner observed that
22(|z]%, ) = g(t + i|z|*) for some g. Then some simple calculations yield that for any
p(2) € Vi, £,(p(2)g(t +il2]*)) = 0 if and only if g(t + i|z|*) satisfies

. 9% 0 0
(6.7) (-0O)——=-(a+ )=+ (B+k)—=)g(0) =0,
(¢ Vogz @ Dgg (8 )a()g( )
where o = % and 8 = % Here equation (6.7) can be derived from the change of

variable { = t+i|z|?. Then polynomial solutions can be split by degree of homogeneity.

Let g({) = Z;io a jCjZN_J. Then (6.7) leads to the two term recurrence relation
(G+1)(B+k+N-j-Dajq-(N-j)(a+1+j)a;=0,

which has a unique solution

_ (a+1D)(B+k)n-
aj==c¢ 3 Ay
JN =)
for any constant c. This yields that the polynomial solutions for g are arbitrary linear

combinations of Cl(\,“’ﬁ ) (0).
Equation (6.7) has an interesting non-polynomial solution:

g = (-0 N e-OF cec
This can be verified by direct computations. This type of solution is also not smooth.
When # = 1, the dimension D,, of the linear space of £,-harmonic polynomials
of H-homogeneous degree m is m + 1. Hence the dimension of £,-harmonic poly-
nomials of H-homogeneous degree less than or equal to d is
2
1+2+3+...+(d+1): M ~ i

2 2
Next we consider the case n > 2. We first compute the dimension D,, of the
linear space of £,-harmonic polynomials of H-homogeneous degree m. Since any
£,-harmonic polynomial of H-homogeneous degree m is a linear combination of

p(z)CI(\,a’ﬁ)(t +ilz]*) with p(z) € Vi ; and k, I, N € N satisfying k + [ + 2N = m, we

have
[m/2] /2]y ON +m -1 n-D(n-1
(68) Dp=3 3 wy=y SR {n=Dln -1
N=0 k+l=m-2N N=0 n-1 k+l=m-2N k'l
Here

when m is even,

I o[

-1

[ ﬂ] = integer part of 2-
2 2 when m is odd.

~ ‘
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We will first find the sum over k + I = p = m — 2N by applying a trick from the
binomial formula for (1- x)~("=Y). First we observe that

ey s (m=Dn(n+1)-(n-2+k) , S (n-1)
(1-x)~C )—I;) o xk—};Txk.

This implies that the sum over k + I = p = m — 2N in (6.8) is the coeflicient of x? of
the Taylor series of (1- x)72(""V i,
(n-1(n-1); (2n-2)2n-1)---2n-2+m-2N-1)

k!l - (m—2N)!

_ (21’[ - 2)m—2N
~ (m-2N)!

k+l=m-2N

This is because (1 - x)~ "D (1-x)~"D = (1-x)"2(*"D_ The above formula is the
result of the product formula for the Taylor series.
Hence, we have

(/2 2N +n-1 (2n-2)pm-an

D. =

" NZ::O n-1 (m—2N)!
_['”Z/:Z]m—ZNJrn—l (2n-2+m—2N-1)!
& n-1 (2n-3)!(m - 2N)!

Rl (m-2N)+n=1 (m-2N+1)(m-2N+2)--(m=2N +2n-3)

-3

5 n-1 (2n-3)!

6.4 Estimate of the Dimension H?(H,,)

Recall that the dimension of the linear space of £, -harmonic polynomials of H-homo-
geneous degree m is
2 [m/2]
= ———— > (m-2N+n-1)-[(m-2N+1)(m-2N+2)---(m-2N+2n-3)].
(2n-2)! =
The term (m - 2N +n—1) - [(m = 2N +1)(m - 2N +2)---(m - 2N + 2n - 3)]
can be written as a polynomial of (m — 2N) of degree 2n — 2 with coefficients being
polynomials in #, i.e.,

m

((m-2N)+n-1)-[(m-2N+1)(m-2N+2)---(m—2N +2n - 3)]

2n-2
= Y Ex(n)(m-2N)>">,
k=0

In particular, we have Eq(n) = 1and Ez,2(n) = (2n-3)!- (n-1) = 3(2n—2)!. This

implies that
2 [m/2] 2n-2 g 222 [m/2] ek
m= o o Y, E(n)(m=2N)""R = 37 Ex(n) ) (m—-2N)TTEE
(21’1—2). N=0 k=0 k=0 N=0
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The dimension of the linear space of £,-harmonic polynomials of H-homogeneous
degree less than or equal to d is

[i/2] 2n-2

D=Y"D; = Ex(n)(i-2N)2"-27k
0 G o
2 2n-2 d [i/2] ok
= Ex(n) (i—2N)*"="
(2n-2)! kz:;) Z;)NZ:O
2 2n-2 [d/2] d ok
= ——— > Ex(n) (i-2N)™
(2n-2)! IZ;) N=0 i=2N
2 2n-2 [d/2] d-2N ok
== Y Ei(n) k=2,
(2n-2)! 12) N=0 i=0

Here, we have exchanged the order of the last two sums. Now we apply Faulhaber’s
classical formula (see [6] for a proof)

1 1 k
— NF1LL ZNF 4 ZNFLL O(NF)
2 12

| L LI L
k+1

to the above to estimate the sum over i to get

—-2N 2n—k-1 2n—k-2
2n 2-k _ (d B 2N) (d - ZN) 2n—-k-3
O((d-2N .
Z: 2n—-k-1 " 2 +o(( ) )
This yields

2n-2 N)Zn k-1

(d 2
LG
+ w +0((d - 2N)2"_k_3).

To get the leading term, we need to consider the term k = 0 and note that Eg(n) = 1:

+0((d -2N)*2).

When d = 2v is even, we can reduce the above to

2211 v

= W NZ:O(V - N)Zn—l + O((V _ N)Zn—z)
22n 2 s o -
ZWEJFO((ZV) )= (2n)! +0((2v)*" ™).
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When d = 2v + 11is odd, we can reduce the above to

2 14

D= m Nz::()( (2(1/ - N) + 1))2”—1 + O( (ZV 2N + 1)2n—2)
= ﬁ[gl 21 NZ:I(ZN)Zn_l] +0((2v+ 1)2n—1)
2 (ZV)zn (2v)2”—1 2n-1 vin oyl 2n-1
:(2”—1)![ - 2 (EJrT)]*O((ZVH) )
_ 2n . O(dzn—l)'

(2n)!

Hence, the leading term of D is é—;), This also coincides with the case n = 1. We

can also determine the lower terms by increasing the values of k. Note that D = 2n +1
whend =1.
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