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SYLVESTER'S PROBLEM FOR SPREADS OF CURVES 

KYM S. WATSON 

Introduction. Spreads of curves were introduced by Grunbaum in [1]. A 
spread of curves is a continuous family of simple arcs in the real plane, every 
two of which intersect in exactly one point. A spread is the continuous ana­
logue of a finite arrangement of pseudolines in the plane. Sylvester's problem 
for finite arrangements of pseudolines asks if every non-trivial arrangement has 
a simple vertex, that is a point contained in exactly two pseudolines of the 
arrangement. This question was answered in the affirmative by Kelly and 
Rottenberg [5]. One interesting feature of this result is that it does not depend 
on the pseudolines being straight lines. 

Here we settle Sylvester's problem for spreads. We show that every non-
trivial spread of line segments has uncountably many simple vertices. But we 
also give examples of non-trivial spreads with no simple vertices. Thus there 
is an essential difference between general spreads and spreads of line segments. 
We find some necessary and some sufficient conditions for a spread to have a 
denumerable number of simple vertices. This investigation leads to the concept 
of a 2-isolated point in a spread which permits Sylvester's problem for spreads 
to be answered affirmatively. 

The author was introduced to the subject of spreads of curves by B. B. Phadke 
while at The Flinders University of South Australia. 

1. Preliminary concepts and notation. Let C be a closed Jordan arc in 
the real plane and let D be its interior. Then a family L of simple arcs in the 
plane (homeomorphic images of [0, 1]) is called a spread of curves (or simply a 
spread) on C W D if there is a mapping p t—> l(p) from C onto L such that, for 
aii pec, 

(i)l(p) GC\JD 
(ii) l(p) is the unique curve in L with endpoint p 

(iii) the other endpoint p* of l(p) is in C 
(iv)i(p)r\c= \p,p*\ 

and such that 

(v) if /i, h £ L and h T6 h, then h C\ l2 is a singleton 
(vi) / : C —» L is a continuous map, where L is given the Hausdorff metric. 

The above definition of a spread of curves is essentially the same as that used 
in [1], [2] and [6]. 
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Since C is homeomorphic to a circle, C may be given an orientat ion. For 
p 6 C, let C+(p) be the open subarc of C formed by going from p to p* in an 
anti-clockwise direction. Let C~(p) = C+(p*). So C = {p} U C+(p) U {p*} U 

Now for peC, 

D = (/(£) HD)\J p+\J p~ 

where p a is the component of D\l(p) with boundary l(p) KJ Ca(p) for <r = ± . 
Note t ha t p~ = (£*)+. 

For every pair of points di, d2 in C U D with rfi ^ d2 there is a t most one 
/ £ L with di, d2 6 /. If such an / exists, let (di, d2) be the open subarc of I from 
di to d2. Let [di, d2) = {^i} \J (di, d2), (du d2] — (di, d2) VJ \d2) and [di, d2] = 
( d i , d 2 ) U { d ! , d 2 } . 

The following elementary results are well known and are easily proved using 
cont inui ty arguments . 

1.1 PROPOSITION. The map (p, q) i—» l(p) Pi l(q) is continuous on {(p, q) d 

CXC:l(p) *l(q)}. 

1.2 PROPOSITION. If h and l2 are distinct curves in L} then the endpoints of h 
separate on C the endpoints ofl2. 

1.3 PROPOSITION. The map p H-> p* is continuous on C. 

1.4 PROPOSITION. / / p Ç C and d Ç p° {where a = ± ) , then there exists a 
neighbourhood V in C of p such that d £ qa for all q £ V. 

The remark t ha t 1.2, 1.3 and 1.4 need not be true if condition (v) in the 
definition of a spread is deleted. 

By 1.2, we may make the following définition. For p, q £ C with g É C+(p)^J 
C~(p), let (p, q) be the open subarc of C from p to q which does not contain p* 
or g*. Let [/>, g) - {£} U (/>, g), (/>, g] = (/>, g) W {çj and [p, q] = (p, q) KJ 

\P,q}-

T h e next two propositions are again straightforward. 

1.5 PROPOSITION. Let p, q Ç C and d £ p+ H g~. 77^w //z£re exts/s r G (£, g) 

such that d Ç / ( r ) . 

1.6 PROPOSITION. Every point in D lies on at least one curve in L. 

A point d £ D is called a k-tuple (k-fold) point of L where k £ N U {GO ( 
if precisely (at least) k curves of L pass through d. Let Tk(L) be the set of 
&-tuple points of L and let Fk(L) be the set of &-fold points of L. So 1.6 may be 
expressed as D = Fi(L). A spread L is called trivial if F2(L) is a singleton. 
T h a t is, L is trivial if all of its curves pass through a common point . 

F o r d £ D, let 1(d) = {/ G £ : d G L}. For z £ C U D , l e t 

Z-H*) H ^ C : ^ /(/>)}. 
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If A is a subset of C U D, let 0^4 denote the boundary of A. While iî A is a 
subset of / G L, let àiA denote the boundary of A in the relative topology of /. 

2. E x a m p l e s of spreads . Many examples of the so called natural spreads 
are given in [2]. In most cases the curves of the spread are line segments. Here 
we give an example of a spread which is not in general a spread of line segments. 

Identify the real plane with the complex numbers C. Let D = {z £ C : \z\ < 1} 
and C = {z £ C : \z\ = l j . Let g : (0, T) —» ( — 1, 1) be continuous. Now con­
struct the spread L(g) as follows. For 6 6 (0, T ) , let l(eid) be the line segment 
from eie to g (6) together with the line segment from g (6) to —eid. Let 1(1) be 
the line segment from 1 to — 1 . For 6 £ O, 2TT), let l(eie) = l( — eie). Then 
L(g) = {l(eie):0e [0, 2TT]} is a spread of curves on C\JD. 

I t will be shown tha t L (g), for suitable choices of g, has properties very much 
different from those of spreads of line segments. 

3. T h e b o u n d a r y of F2(L). 

3.1 PROPOSITION. We have T2(L) C àF2(L). 

Proof. Let d Ç T2(L) and let p, q £ / _ 1 (^) vvith q £ C+(p). We may assume 
tha t ( i G r for all 5 G (£, g). Now either d £ t~ for all / £ (>, g*) or d £ /+ for 
all / G (£>, g*). In the former case, (d, q*) C F\(L) and in the la t ter case, 
(P, d) C 7\(Z,). Hence d G ô F 2 ( i ) . 

Thus the set of simple vertices of L is contained in the boundary of the set 
of 2-fold points. We will later show tha t all bu t a denumerable number of 
points of F2(L) C\ àF2(L) belong to T2(L). We also remark t ha t F2(L) is 
contained in the closure of I\(L) (see [1]), from which it follows tha t àF2(L) = 
àFs(L). Little else can be said about àF2(L) for general spreads L. The set 
àF2(L) may be contained in T\(L) or contained in F2(L). The set àF2(L) may 
consist of C together with various subarcs of curves of L. The set T\(L) C\ 
àF2(L) may be a closed Jordan arc which intersects each curve of L in exactly 
two points. On the other hand, T\(L) C\ àF2(L) may contain a non-trivial 
subarc of a curve in L. For examples of spreads of the above mentioned types, 
refer to those constructed in 3.8. 

Since q —» l(p) Pi l(q) is continuous on the connected space C+(p), F2(L) P 
l(p) is a subarc of l(p). Notice t ha t F2(L) P l(p) is a singleton if and only if 
L is trivial. If d £ àt(F2(L) P /) for some / Ç L, then d £ àF2(L). I t is pos­
sible for d Ç d F 2 ( L ) , but <2 (Z àt(F2(L) P /) for all / G £ . 

3.2 PROPOSITION. If d £ F2(L) P àF2(L), then there exists I £ L swcfe / t o 
d G ô , ( F 2 ( L ) n / ) . 

Proof. Let d Ç F2(L) P àF2(L). Then there exists a sequence {dn} in T\(L) 
such tha t Jw —> d. If there exists / £ L such tha t rf G / and dn £ / for infinitely 
many n, then d £ àt(F2(L) P / ) . So assume tha t no such / exists. Since 
d £ F2(L), we may assume, by taking a subsequence of {dn} if necessary, t ha t 
there are p, q £ / _ 1 (^) with g G C+(p) and dw G p+ C\ q~ for all w. For every n 
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there exists pn G (p, q) such t h a t dn G l(pn)- We may further assume t h a t 
pn -> y ë [£, <?]• Since dn —> d and /(£n) —> l(r), d G / ( / ) • Suppose also t h a t 
r 7^ q (\{ r ?± p, then a similar a rgument may be given). 

We claim tha t d G d z ( r ) (F 2 (L ) H / ( / ) ) . If this is not t rue, then there exists 
5 G C + ( r ) such t ha t d G s+ . So for all n large enough, dw G s+ H g~". Hence 
l~l(dn) r\ (s, q) is not empty for all n large enough. Bu t pn G l~l(dn) and 
Pn —> r & [s, q] C C+'M, which contradicts the fact t h a t dn G TX(L) for all w. 

3.3 PROPOSITION. Suppose p G C and d (z p+ are such that 

p+ r\ Fi(L) n d z (F 2 (L ) n /) = 0 

for all l G / (d) . 77^n d G / ^ ( L ) VJ 7\(Z,). 

Proof. Suppose t ha t d G Tk(L) where 1 < k < oo. Let £>i G C+(p) be such 
tha t / - ^ d ) H [£*, £i] = {^i}. Hence d ^ r~ for all r G (£*, £ i ) as d G (£*)- . 
Since d G Tk(L), there exists a maximal sequence {^n}n=1;v with the properties 

(i) \PnU-S CC+(p)fM^(d) 
(ii) pn e (p, pn-i) for n = 2, . . . , N 

(iii) d Ç r~ for all r Ç (pn-\, p„) for « = 1, . . . , N (where pa = p*; see fig. 1) 
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So l(r) H (d, pN) = 0 for all r G (p*, pN). Now if l(r) C\ (d, pN) = 0 for all 

r Ç (PN,P), then 

d e ^+ n F2(L) n d^iV)(F2(L) n /(^)), 
a contradiction. Therefore there exists r G (PN, p) such tha t d G r~. Hence 
Z - 1 ^ ) ^ (£*, />) ^ 0- There exists pN+1 G Z" 1 ^) ^ (£*, £) such t ha t l~l{d) C\ 
(PNJ PN+I) = 0- Hence either d G r~ for all r G (^v, £w+i) or d G r+ for all 
r G (PN,PN+I). 

If the lat ter is t rue, then l(r) P\ (d, £AT) = 0 for all r G (p*, PN+I)- SO there 
exists ^ G [pAr+i, £] such tha t 

i(s) n /(^) = p+r\F2(L) n ôI(Piv)(F2(L) n /(^)), 
a contradiction. 

Therefore d ^ r~ for all r G (£#, PN+I)- But this means tha t {/?w}w==i
Ar+1 has 

the properties (i), (ii) and (iii). Hence no such maximal sequence exists and 
de F^UT^L). 

3.4 COROLLARY. If d £ D is such that I Pi F2(L) is open in I for all l G 1(d), 
thend G Fœ(L) U I\{L). 

Proof. There exists p G C such t ha t d G £ + . The corollary now follows im­
mediately from 3.3. 

3.5 COROLLARY. / / F2(L) is open then F2(L) = Fœ(L). 

Proof. Apply 3.4 to each d G F2{L). 

3.6 An example of a spread L such tha t F2(L) = Fœ(L) = D. 
Let g : (0, T) —• (— 1, 1) be continuous, surjective and such tha t 

lim inf l M _ l M = _ oo f o r a l l a e (0f ^ 

and 

hm sup ̂ - ^ — ~ = 00 for all a G (0, TT). 

One can prove tha t such a function exists by using the Baire category theorem. 
A concrete example of such a function may be constructed from the function 

/ : (0 ,50/101) -> (0 ,500/909) 

defined b y / ( x ) = J ^ L o (102wx)/10w, where (y) is the distance from y to the 
nearest integer. Consider the spread L(g) as defined in § 2. We will show tha t 
F2{L(g)) = D, whence Fœ(L(g)) = D by 3.5. 

Clearly, ( — 1,1) C F2(L(g)) as g is surjective. Let d G 1 + and let p = eid G 
l~l{d) C\ C+(l ) (recall t ha t D = F^Lig)). For x in a neighbourhood of 0, 
let fe(#) be where the straight line through d and eix cuts / ( l ) . So h(6) = g(6). 
See fig. 2. 
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Fie;. 2 

Now there exists a sequence {6n\ in (0, ir) such tha t 6n —> 6, 0n ^ 6 and 
(g(0«) - g(0))/(0n - 6) ->oo.U l(eif>») H (d, p) = 0 for all w, then 

|g(0„) -g (0 ) | g |A(0 - * ( * ) ! 

for all w sufficiently large, which contradicts the fact t ha t h is d i f fe ren t ia te 
a t 6. Hence l(ei6n) H (d, p) ^ 0 for some w, which implies t ha t d (E F2(L(g)). 
U d £ 1~, one uses a similar a rgument bu t with (g(0n) — g(0))/(6n — 0) —> - c o 
and &(x) being where the s t ra ight line through d and — eix cuts / ( I ) . 

T h u s F2(L(g)) = D and by 3.5, 

F2(L(g)) = Fœ(Z,(g)) = D. 

In part icular this means t h a t T2(L(g)) = 0. T h a t is, Sylvester 's problem for 
general spreads has a negative answer. 

The next proposition is an example of a s t a tement independent of the theory 
of spreads of curves, bu t whose proof is made t ransparen t by using the theory 
of spreads. 
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3.7 PROPOSITION. Let I be a non-trivial subinterval of R. Suppose that h : / —> R 
is continuous with range V ana that 

,. . ch(x) — h (a) , .. h(x) — h (a) 
hm inf _—-— = — oo and hm sup -^ - z -——--- = oo 

for all a in the interior of I. Then h takes every value in the interior of V infinitely 
many times. 

Proof. Let y be in the interior of V. Let w, M £ / ' b e such tha t w < ;y < M. 
Let *i, /2 G h~l{{m, M\) be such tha t ^ < /2, A(/i) ^ A(/2) and ft((*i, *2)) = 
(m, M ) . Define g : (0, TT) -> ( - 1 , 1) by 

Then g may be used as in 3.6 to construct the spread L(g) which has the 
property t ha t Fœ(L(g)) = D. From ( — 1 , 1) C Fœ(L(g)), we deduce tha t g 
takes every value in ( — 1, 1) infinitely many times. Hence h takes the value y 
infinitely many times. 

We will now modify the example given in 3.6 to demonstra te t ha t the cardi­
nali ty of T2(L) may take any value not more than Ko- An example of a spread L 
such tha t T2(L) contains a non-trivial subarc of a curve in L is given in [2]. 

3.8 T H E O R E M . For all n £ N, let kn Ç {0} U N \J {Ko}. Then there exists a 
spread L such that card Tn+i(L) = knfor all n £ N. 

Proof. We may assume tha t not all the kn are zero, for otherwise the example 
of a spread given in 3.6 would have the desired properties. Let / C N and 
mj £ N, j £ / , be such tha t 

(i) / = N or / = {1, . . . , M} for some M G N 
(ii) card j j Ç / : Wj = n) = kn for all n G N. 

For all j e {0} U / , let dj=\- l/(j + 1) and 0, = wdj. Let 5 = sup {djij G 7} 
and ^ = sup {Bf j Ç J } . For each J G / let gj\ [0;_i, Bf\ —* [d ;_i, df\ be such t ha t 

(i) gj is continuous 
(ii) gjiBj-x) = dj-u gjidj) = dj 

(iii) lim inf 2 i i * ) _ = _ i i M = _ oo , for all a G (0,-1, 0,) 

(iv) lim sup g , ( x ) ~ g , ( a ) = oo, for all a g (^_ l t 0,) 

(v) hm sup *JV y _ * ' v z = 00 for a = 0, 
£->«~ x a 

(vi) dj is a t tained exactly m;- times 
(vii) g.7(x) > ^j_i for all x G (0;-i, 0 j -
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Such a function gj may be easily constructed from the function x *—>/( (x — J ) 
+ 1), where/(x) = £?-<> (l(P>x)/10w. 

Let g : (0, TT) -> ( - 1 , 1) be such that 

(i) g is continuous 
00 ^ = gi o n (#i-i> 0j] f ° r all j e J 

(iii) g(*, *) = (s, 1) 

(iv) lim sup £ < * ) - ^ l M = oo for a n a 6 ( ^ ^ 

(v) lim infg ( x ) ~ ^ = - oo for all a G (*, TT). 

We will show that the spread L(g) has the desired properties. 
Clearly, (— l,d0] C Ti(L(g)). By 3.7 and the construction of L(g), (dj-i,dj) 

C Fœ(L(g)) for all j <E / , (s, 1) C Fœ(L(g)) and d, <E ^ ( L f e ) ) for all j £ / . 
Since 

lim sup £ M ^ _ Ê M = co f o r aii a e (0> „.) 

then 1+ C F2(L(g)) by the reasoning used in 3.6. Let z £ 1+. Then / C\ 1+ C 
F2(L(g)) for all / 6 Z(z). Hence z £ Fœ(L(g)) by 3.3. Now let s Ç 1~. If 
z e l(eiei) for some j Ç 7, then z Ç !Ti(Z,(g)). If s (2 /(ew0 for a l l j G / , then 

lim inf---^-^-—— = — oo for ever}/ a Ç (0, TT) such that z G /(eifl). 
x->a % & 

By reasoning similar to that used in 3.6, / Pt ( — 1 ) + C F2(L(g)) for all / (E /(z). 
Hence s G Fœ(L(g}) by 3.3. Putting the above together yields that 

card Tn+1(L(g)) = card {j € / : m, = n\ = kn 

for all w C N . 

Two spreads, Li and L2, are called combinatorially isomorphic if there exists 
a bijection rj : Li —> L2 such that /i, /2, /3 in Li are concurrent if and only if 
v(h), y(h), y(h) in L2 are concurrent. Clearly card Tk{L\) = card Tk(L2) for 
all k G N U {oo } if Li and L2 are combinatorially isomorphic. So by 3.8 there 
are uncountably many pairwise non-combinatorially isomorphic spreads. 

The next three lemmas are directed towards proving that Fz(L) P àF2(L) 
is denumerable for every spread L. The latter two are very important and are 
the key to the subsequent theory. 

3.9 LEMMA. Let B C C X C X C have the following properties: 

(i) (&i, 62, &8) € B=>b2e c+ibo^ze c+(b2) 
(ii) If b = (bi, b2, 63) and c = (ci, c2, c3) are in B, then at least one of the 

following occurs 
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(l)b = c 

(2) (61? 62) H (ci, c2) = 0 
(3) (62l 63) r\ (c2, c*) = 0: 

Then B is denumerable. 

Proof. Fix a homeomorphism between C and the unit circle. If d is a subarc 
of C, let /x(Ci) be the length of the corresponding subarc of the unit circle. For 
w ^ N , let 

Bn = {(61,62,63) e B : /x(6i,62) > 2TT/W, M(62, 63) > 2 T T » . 

Then $ = UWÇN A I - To complete the proof it suffices to show tha t Bn is finite 
for all w ^ N . Now by Ramsey 's theorem, there exists a number Nn such tha t 
if Bn contains a t least Nn elements, then either 

(i) ' Bn contains a set Y of n + 1 elements, every two of which satisfy (2) 
or 

(ii) ' Bn contains a set Z of n + 1 elements, every two of which satisfy (3). 
If ( i) ' occurs, then X ^ e ^ M(6I, 62) > ((n + l)/n)2w, a contradiction. If (ii) ' 
occurs then Yltez M(62 , 63) > ((w + l)/n)2ir} a contradiction. Hence Bn is 
finite as required. 

3.10 LEMMA. help £ C,A CD,n:A - > C + ( £ ) , T 2 : A ->C+(p)andp : ^ -> 
C+(p) satisfy the following conditions for all a £ A: 

(i) n ( a ) G (pyP(a)),r2(a) £ (p(a), £*) 
(ii) r i ( a ) f P ( a ) f r 2 ( a ) G Z" 1^) 

(iii) a g t+ for all / G [ r i (a) , r 2 (a) ] 
(iv) «i G r 2 ( a 2 ) + O r1(a2)~ for all «1, a2 (z A. 

Then A is denumerable. 

Proof. We will show tha t if a, 6 £ yl then a t least one of the following occurs 
(vi) a = b 

(vii) ( r 1 ( a ) , p ( a ) ) n ( r , (6 ) ,p (6 ) ) = 0 
(viii) ( p ( a ) , T 2 ( f l ) ) n (p(6) , r 2 (6) ) = 0 . 

By applying 3.9 to B = { ( n ( a ) , p(a) , 72(a)) : a G A } it would then follow tha t 
A is denumerable as the map a <—> ( r i (a ) , p(a), T2(a)), a £ .4, is injective (by (i) 
and (i i)) . T o prove the above it suffices to consider the following cases 

(1) : Ti(b) = r i ( a ) b u t / ; ^ « 

(2) : r i ( 6 ) É ( n ( a ) , p(o)) 
(3) : n ( 6 ) € [p(a),/>*). 

Case (1). By symmetry we may assume tha t 6 G (ri(a), a) (fig. 3) . 

If p(6) G 0"i(a), r 2 ( a ) ) , then a £ p(6)+ , which contradicts (iii). Hence p(6) G 

[T 2 (Û0, P*) and therefore (p(a), r 2 (a ) ) C\ (p(6), r 2(6)) = 0. 

Case (2). Since a G T I ( 6 ) + by (iii), one of the following two subcases occurs 

(2a) : a É / ( T l (6 ) ) 

(2b) : a £ T l ( 6 ) - . 

Case (2a). See fig. 4. 
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p(a) 

F I G . 3 

By (iv), b e (ri(b), a). If p(b) G (r i (6) , r 2 ( a ) ) , then a £ P ( & ) + , which con­
tradicts (iii). Hence p(b) t [ r 2 (a ) , p*) and therefore (p(a), r 2 ( a ) ) Pi (p(b), 
72(b)) = 0. 

O z ^ (2b). Let {c} = 1(7,(1))) H (p (a ) , a ) (fig. 5) . 
We distinguish the two subcases 

(2ba) :b G (7,(1?), c] 
(260) :b G (c,n(6)*). 

Case (2&a). If r2(fr) G (p(«), p*) , then a £ 72(b)+ H n(/?)~, which contradic ts 
(iv). Therefore 72(b) £ (ri(fr), p(a)] and hence 

( p ( a ) , r 2 ( a ) ) H (p(6), r 2 (6)) = 0 . 

Case (2bp). If r2(6) G (p(a) , p*), then p(a) G (TI (&) , 72(b)) and /; Ç p(a)+, 
which contradicts (iii). Therefore 72(b) (E (71(b), p(a)] and hence 

( P (a ) , r 2 ( a ) ) H (p(&),r2(6)) = 0 . 

Owe (3). Clearly, ( T i (a) , p(a)) n ( T I ( 6 ) , P(b)) = 0. 
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F I G . 4 

If condition (iii) in the s ta tement of 3.10 is replaced by 
(hi) ' a i t - for all t £ [ r i (a) , r 2 ( a ) ] , 

then A would obviously be denumerable as before. For reference we s ta te this 
fact in the next lemma. 

3.11 LEMMA. Letp G C,A C A n : A ->C+(p),T2 : A ->C+(p)andp : A -> 
C+(p) satisfy conditions (i), (ii) and (fv) 0/3.10 and (iiiy for all a Ç. A. Then A 
is denumerable. 

3.12 T H E O R E M , / W every spread L, F${L) C\ àF2(L) is denumerable. 

Proof. Let A = FZ(L) C\ àF2(L). Then for every a £ A there exists by 3.2 
Ti(a) G / _ 1 («) such tha t a Q t+ for all / G C+(n(a)). Since ,4 C ^ ( i ) , for 
every a £ A there exist p(a) , r 2 (a) Ç l~l(a) such tha t r 2 (a ) £ C+(n(<2)) and 
p(a) e ( r i ( a ) , r 2 ( a ) ) (fig. 6). 

Let {£„} be a countable dense subset of C. Then 4̂ = {Jn An where 

An = (A a : r i ( a ) , p(a) , r 2 (a) G C + (p w ) j . 
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So to prove tha t A is denumerable, it suffices to show tha t each An is denumer-
able. Clearly, pn, An, T{ : An —-> C+(pn) (i = 1,2) and p : An —•> C+(pn) satisfy 
(i), (ii) and (iii) of 3.10. We will now check condition (iv). 

Let ai, 02 (z An. If ci\ (z r2(a2)
+ (^ r\(a2)~ then either 72(^2) G C + ( r i ( a i ) ) 

and ai G r 2 ( a 2 ) + or r i ( a 2 )* G C + ( n ( a i ) ) and ai Ç r i ( a 2 )* + , which contradicts 
the above. Hence (iv) is satisfied. Therefore An is denumerable by 3.10. 

3.13 COROLLARY. For every spread L, TÏ(L) is denumerable if and only if 
F2(L) P\ àF2(L) is denumerable. 

Proof. This follows immediately from 3.1 and 3.12. 

4. I so la ted curves i n 1(d). In this section we analyse the propert ies of 
spreads L such t ha t F2(L) is denumerable . This will lead to a sufficient condi­
tion for a spread L to have uncountably m a n y simple vertices. An application 
of this result will show tha t every non-trivial spread of line segments has 
uncountably many simple vertices. Another consequence will be the recogni­
tion of the importance of isolated curves in 1(d). A new definition of a &-tuple 
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T\ (ay 72 (a) 

p(o) 

FIG. 6 

point will ensue in Section 5 which allows an affirmative answer to Sylvester 's 
problem. 

The following lemma about isolated curves in 1(d) is the first step towards 
describing the topology of 1(d) for all but a denumerable number of points d 
on a curve in a spread L with T2(L) denumerable. The lemma will also play 
a pa r t in 5.1. 

4.1 LEMMA. Let p G C, A C D, n : A —• C+(/>), r2 : 

C+(p) have the following properties for all a £ A: 
(i) T2(L)C\l(p(a)) =0 

(ii) T l ( a ) G (p,P(a)),r2(a) £ (p(a),p*) 
(iii) Z - 1 ^) H [ r i (a) , r 2 (a) ] = ( r i ( a ) , p(a), r2(a)\ 
(iv) ai ? r2(a2)

+ H Ti(a2)~ for all a,\, a2 £ A 
(v) ai g r 2 (a2) _ H Ti(a2)

+ for all ait a2 £ A. 
Then A is denumerable. 

Proof. Fori Ç {1, 2} and a G { + , - } , let 

Af = {a £ A : a £ F îor a\l t £ (p(a), r^a))}. 

C+(p) and p : A 
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Then by (iii), A is the disjoint union of A++ = Ax+ C\ A2
+, A+~ = Ax

+ C\ A2~, 
A~+ = Ar n A2

+ and A~ = A{~ C\ A2~. I t suffices to show tha t all the A*" 
are denumerable. 

Aaa is denumerable (a = ± ) . For all a G Aa<T and for all / G [ r i (a ) , r 2 ( a ) ] , 
we have a g /-<T. So y l + + and A are denumerable by 3.10 and 3.11. 

A+~ is denumerable. Let a G A +~. Then /(/) H [p(a), a] = 0 f o r a l U G ( r i ( a ) , 
T2(a)) with / 7e p(a) . Hence there exists a unique 

A (a) G (p(a), a]nF2(L)n àl(p(a))(F2(L) H Z(p(a))). 

By (i), A (a) G F 3 (L ) . So A (a) G F 3 (L) H ÔF2(L) which is denumerable by 
3.12. T o prove t ha t A+~ is denumerable, it suffices to show tha t A : A+~~ —* 
F%(L) C\ àF2(L) is injective. Let a, b G ^4 + _ be such t ha t A (a) = \(b). 

If p(a) ^ p(b) then X(a) G Z(0 for all t G (p(a), pip)), and hence there 
exists t G ( r i ( a ) , r 2 ( a ) ) , / 9^ p(ci), such tha t A (a) G l(t) f~\ (p(a), a], a contra­
diction. 

Hence p(«) = p(b). We may assume by symmet ry tha t a G (p(a), b]. Then 

6 £ ( r 2 ( a ) + n r i ( a ) - ) U { a } . 

So by (iv), a = b as required. 

A-+ is denumerable. Define r* : A-> C+(p*), i = 1, 2, and p* : A -> C+O*) 
b y r * ( a ) - T , ( a ) * a n d p * ( a ) = p(a)* f o r i = 1,2 and a G A Then £*, ,4, n* , 
r2* and p* have the following properties for all a G A 

(i)* r 2 ( L ) n / ( P * ( a ) ) = 0 
( i i ) * n * ( a ) G (^*,P*(f l ) ) , r 2 *(a) G (p*(a ) ,£ ) 

(iii)* Z-i(a) H [T l*(a), r2*(a)] = {n*(a ) , p*(a), r 2*(a) j 
(iv) * ai G r 2*(a 2 )~ H T!*(a2)+ for all au a2 £ A 
(v)* ai G T2*(«2)+ H r i*(a 2 )~ for all au a2 £ A. 

For i G {1, 2} and (7 G { + , - j , let 

Af* = {a £ A :a £ t° for all / G (p*(a), r , * ( a ) ) | . 

Then A*+~ = Ai*+ C\ A2*~ is denumerable by wha t has already been proved. 
Since A~+ = A*+~, A~+ is denumerable. 

4.2 T H E O R E M . For every p G C there exists a denumerable set A (p) C l(p) such 
that for every d G I (p) one of the following occurs: 

(ii) 1(d) contains no isolated curves other than (possibly) l(p) 

(iii) every I in 1(d) such that I ^ l(p) and I is isolated in 1(d) satisfies T2(L) C\ 

I 5* 0. 

Proof. Let A (p) be the set of all a G l(p) C\ D for which there exists / G 1(a), 
I 9^ l(p), such t ha t / is isolated in 1(a) and T2(L) Pi / = 0. Clearly, it suffices 
to show tha t A (p) is denumerable. 
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For each a 6 A(p), select p(a) G l~l{a) C\ C+{p) such tha t Z(p(a)) is isolated 
in / (a) and T2(L) P l(p(a)) = 0. Then select n ( a ) Ç [p, p(a)) and r 2 ( a ) £ 
(p(a), p*] such tha t 

/->(«) n [ T , ( a ) , p ( a ) ] = I r ^ f l J . p W I 

and 

/ - 1 ( ^ ) n [ p ( a ) , r 2 ( a ) ] = {p(a), r 2 ( a ) j . 

Since a g T2(L), r2(a) ^ r i (a )* . Let ai , a2 £ A (p). Then 

ai $ r2(a2)
+ P n(a 2 )"" C />" 

and 

ai £ r2{a2)- P n ( f l 2 ) + C £ + . 

Now let \pn\ be a countable dense subset of C. Then 4̂ (p) = Un 4̂W where 

An= \ae A(p) : n ( a ) , p ( a ) , r 2 ( a ) 6 C + ( ^ ) | . 

Hence 4̂ (£) is denumerable as each An is denumerable by 4.1. 

4.3 COROLLARY. Let L be a spread such that T2(L) is denumerable. Then for 
every p (z C there exists a denumerable set A(p) C l(p) such that for every d £ l(p) 
P F2(L) one of the following occurs: 

(i)d£A(p) 
(ii) l~~l(d) is a perfect set 

(iii) l~l(d) P C+{p) is a perfect set. 

Proof. The set of points a 6 l(p) for which there exists / £ 1(a) such tha t 
/ 9^ l(p) and / P T2(L) ^ 0 is denumerable. The result is now a direct conse­
quence of 4.2. 

Note t ha t a perfect subset of C is uncountable. If a curve / in the spread L 
contains no points which lie on uncountably many curves of L, then T2(L) 
is uncountable by 4.3. This extends the main result of T. Zamfirescu in [8]. 
T. Zamfirescu has given in [7] a sufficient condition for a spread L to have 
simple vertices. (Note t ha t none of the results of [7] and [8] have been correctly 
s tated in M R /f0 #2035 and M R 50 #8297 respectively.) 

In [4], C. Ivan has studied spreads L which have a curve / such tha t the 
interior of / P F2(L) (in the relative topology of /) is contained in T2k(L) 
for some k Ç N. By 4.3, all such spreads have uncountably many simple vertices 
if they are not trivial. 

By using 4.3 we can now amplify the conclusion of 3.7 about certain con­
t inuous but nowhere different ia te functions. 

4.4 T H E O R E M . Let h, I and V be as in 3.7. Then the set of values in V which h 
takes a denumerable number of times is itself denumerable. 
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Proof. I t suffices to show tha t whenever m, M Ç V and m < M then the set 
of values in (m, M) which h takes a denumerable number of t imes is itself 
denumerable. Define the function g as in the proof of 3.7. I t suffices to prove 
t ha t the set of values in ( — 1, 1) which g takes a denumerable number of times 
is itself denumerable. Since T2(L(g)) = 0 (see 3.6), this follows by applying 
4.3 to the spread L(g) with p = 1. 

The next two lemmas will be used to deal with the distinction made in 4.2 
between l(p) and the other curves of 1(d), d (E l(p). 

4.5 LEMMA. Let p £ C and g Ç C+(p). For every s G (p, g) there is a unique 
\(s) e l(s) H D such that Z " 1 ^ ) ) C\ [p, g*] ?* 0 and \(s) Ç r+ U l(r) for all 
r Ç [p, q*]. Moreover, the map X : (p,q) —+ D is continuous. 

Proof. The existence of \(s) for every 5 Ç (p, q) follows from the cont inui ty 
of the m a p r >->i(r) H l(s) on the compact set [p, q*]. If X is not continuous, 
then there are 5 Ç (p, q), a sequence {sn} in (p, q) and a sequence {rn} in \p, q*] 
such tha t sn - * s, rn -> r € [p, q*], \(sn) € Z(rn), X(sw) -> z G C \J D and 
z ^ X(^). Since X(sn) G / ( r j ~ > / ( r ) , 2 G Z(r). Since X(sn) G / ( s j - > / ( s ) , z G / (s ) . 
So by the definition of X, z c (X(s), 5*). Now there exists v G / - 1 (X(s)) H [p. q*]. 
Hence z £ v~ and \(sn) Ç ^~ for all n large enough, which contradicts the defi­
nition of X. Therefore X is continuous. 

4.6 LEMMA. Let p £ C and q Ç C+{p). Let X &<? defined as in 4.5. Le£ 

E = {d e \(p,g) : there exist Tl(d), r2(d) £ Z" 1 ^) ^ [£, 5*1 wi/A 
r2(d) G ( n ( d ) , p ] } , 

i i = ( ( / B ( M ) : ^ e re a m * p(d) G X " 1 ^ ) «wd n(d) e (p, p(d)) 
such that l~l(d) n[Ti(d),g] = [ri(d)t p(d)} andl(p(d)) H T2(L) = 0 } , 

A2 = {d e \(p, g) : there exist p(d) £ X^id) and r2{d) Ç (p(d), g) 
suchthatl-l(d)r\[p,T2(d)] = {p(d), r2(d)} andl(p(d)) r\ T2(L) = 0}. 

Then E, A1 and A 2 are denumerable. 

Proof. E is denumerable. Let d\ and d2 be dist inct elements of E. Then 

/(r) C\ n ( d i ) + n r 2(di)+ = 0, l(r) H (r 2 (di ) , di) - 0 

and 

Z ( r ) H ( 4 , 7 ! ^ ) * ) = 0 

for all r G M d i ) , T2(di)). Hence / ( r ) H X(£, g) C {di} for all r Ç ( r i ( d i ) , r 2 ( d i ) ) . 
Therefore 

( r i (d i ) , T 2(d0) H ( n ( d 2 ) , r 2 (d 2 ) ) - 0, 

whenever di and d2 are distinct elements of E. T h u s E is denumerable . 
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Ai is denumerable. If d G Ai then d £ t~ for all / G (p(d), q] and either 

(1) d G /+for all* G (n(d), p(d)) 
or 

(2) d G /"for all / G (n(d),p(d)) . 

Let^4i' = {d G yli : (i) holds} for i = 1, 2. If rf G Ai1 then there exists a unique 

v(d) G (P(d), d] H F2{L) H ôI(p(d))(F2(L) H /(p(d))). 

Since l(p(d)) C\ T2(L) = 0, v(d) G F3(L). So ^AJ) is denumerable by 3.12. 
We claim that y\ : A\x —> Z> is injective. 

Let di and d2 be distinct elements of ^li1 such that rj(di) = 77(rf2). Since 
\(p(d)) = d for all J G ^4i\ p(di) 9^ p(d2). We may assume that p(d2) G 
(p(di), q). Then di G p(d2)~, which implies that rj(di) G (di, p(di)*) as 
{i?(di)} = l(p(di)) H l(p(d2)). But this contradicts ry(di) G ( P ( ^ I ) , di]. 

So Ai1 is denumerable. To prove that Ai is denumerable, it suffices to show 
that A12 is denumerable. Let d\ and d2 be distinct elements of A12. Suppose that 
ri(d2) G (n(di) f p(di)). Then d1 G n ^ a ) " (fig. 7). 

Ti(d2) 

FIG. 7 
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N o w d 2 G p(di)~ U l(p(di)) and hence d2 G ( r i (d 2 ) , 2] where {z} = l{ji(d2)) H 
l(p(di)). Since d2 = \(p(d2)), there exists r € [>, g*] H J " 1 ^ ) - Bu t then 
^1 G r~ which contradicts rli = \(p(di)). Therefore 

(Tl(di),p(di))n ( r i (d 2 ) ,p (d 2 ) ) = 0 

whenever di and d2 are dist inct elements of Ai2. Hence Ai2 is denumerable . 

A2 is denumerable. The proof is similar to t ha t given to show tha t Ai is 
denumerable. 

4.7 T H E O R E M . If L is a non-trivial spread such that l~l(d) Z) [p, q] for some 
d G D, p G C and q G C+(p), then T2(L) is uncountable. 

Proof. There exists either r G (p, q*) such t ha t l(r) C\ p+ C\ q~~ ^ 0 or 
r G (£> 5*) s u c n t h a t / (r) C\ p~ C\ q+ y£ Q. Wi thou t loss of generali ty, assume 
the former is t rue. Let E and X be as in 4.6. Since X is not cons tant and con­
tinuous on (p, q), \(p, q) is uncountable . Since E is denumerable , T2(L) which 
contains \(p, q)\E is uncountable. 

In fact the above proof shows t ha t {s G (p, q) : l(s) P\ T2(L) = 0} is 
denumerable. 

4.8 T H E O R E M . Let L be a non-trivial spread, let p G C and q G C+(p). Suppose 
that r G (p, q*) is such that the curve l(r) has a parameterization <p : [a, b] —» l(r) 
for which the map f : [p, q] —• [a, b] defined by s *—» <p~l(l(r) Pi l(s)) is of bounded 
variation, i.e. such that 

[ ]£*=i I/O*) - f(si+1)\ : si+1 G (st, q]for i = 1, . . . , n\ sx G [p, q]} 

is bounded. Then T2(L) is uncountable. 

Proof. LetX = U \l(s) P l(r) : s £ [p, q]). By 4.7, we may assume tha t X 
is a non-trivial subarc of l(r). Since / is of bounded variat ion, there are an 
uncountable number of points d in X such t ha t l~l(d) P [p, q] is finite. Hence 
there are an uncountable number of points d in X such t ha t l~l{d) and l~l(d) P 
C+(r) are not perfect sets. Therefore T2{L) is uncountable by 4.3. 

T h e next theorem is a special case of 4.8 and shows in par t icular t h a t every 
non-trivial spread of line segments has uncountably many simple vertices. 

4.9 T H E O R E M . Let L be a non-trivial spread such that l(s) is a line segment for 
every s G [r, q] where r G C and q G C+(r). Then T2{L) is uncountable. 

Proof. Coordinatize the plane so t ha t /(r) is contained in the set of points 
with coordinates (t, 0), t G R. Let p G (r, q). For every s G [p, q], let a (s) G 
(0, 7r) be the angle between / (s) and / (r) . Then a : [p, q] —> (0, T) is a continuous 
injection. Moreover, for every 5 G [p, q] there exists a unique ô(s) G R such 
t ha t l (s) is contained in 

{ (x, y) : x sin a(s) — y cos a(s) — ô(s) = 0}. 
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T h e m a p <5 : [p, g] —> R is continuous. Hence the point of intersection of l(s) 
with l(r) has coordinates 

( 5 f a / s i n a f a , 0 ) . 

For ^ g [£, g], l e t / ( s ) = <3 fa/sin a (s). To complete the proof it suffices to 
show t h a t / : [p, g] —> R is of bounded variation. We will use the a rgument of 
the proof of Theorem 1 of [3]. 

For distinct s\ and 52 in [p, g], the point of intersection of / f a ) with / f a ) 
has coordinates 

/ <3fa) c o s a f a ) — <5fa) cos a fa) 5 fa) sin a fa) — 3 fa) sin a fa) | 
\ sin (a fa) — a fa)) ' sin (a fa) — a fa)) / 

and belongs to the bounded set D. By computing the sum of the squares of the 
coordinates of these intersection points, we deduce tha t there exists a positive 
number K such tha t 

( 
Ôfa) - 3fa) \ 2

 + 2Sfa)Sfa) < R 

sin (a fa) — a fa))/ 1 + cos (a fa) — a fa)) ~~ 

whenever si and s2 are distinct elements of [p, g]. Now 

/ _ _ _ _ _ 2 5 f a ) 5 f a ) c c _ r. X 
U + cos (a fa ) - a f a ) ) V 

is bounded. So there exists a positive number K' such tha t 

ôfa) - 5 fa) 
< # ' 

I sin (a fa) — a fa)) I 

whenever s\ and s2 are distinct elements of [p, g]. From this it follows easily 
t ha t there exists a positive number K" such tha t 

|«(ss) - H*i)\ ^ K"\a(st) - a ( s , ) | 

for all si, 52 Ç [p, g]. Hence ô : [p, g] —> R is of bounded variat ion. Clearly 
5 —» 1/sin a(s) is also of bounded variat ion on [p, g]. H e n c e / is of bounded 
variat ion on [p, g] as it is the product of two functions of bounded variat ion 
on [p, g\. 

5. T h e c o n c e p t of a ^- isolated p o i n t . The preceding results have demon­
strated t ha t isolated curves in 1(d) are useful to work with. Fur thermore , the 
s tudy of spreads L such tha t T2(L) is denumerable leads to their consideration. 
The following definition encapsules the process of distinguishing between 
points d of D by the number of isolated curves in 1(d). 

A point d G D is called a k-isolated point of the spread L if either 
(1) k = Ko and 1(d) contains Ko isolated curves; or 
(2) K N a n d ^ Tk(L); or 
(3) K N and 1(d) consists of k — 1 isolated curves and a perfect set. 
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Let Tk
f(L) be the set of ^-isolated points in D. Then 

D = U {7V(L) : k € N W {Xo}| and r t ( L ) C 7 V ( L ) . 

We will now show tha t every non-trivial spread L has an uncountable 
number of 2-isolated points. Thus , from the point of view of Sylvester 's 
problem, the concept.of a 2-isolated point in a spread of curves is the appropri­
a te continuous analogue of a simple vertex in a finite a r rangement of pseudo-
lines. 

5.1 T H E O R E M . If L is a non-trivial spread, then T2
i(L) is uncountable. 

Proof. We may assume tha t T2(L) is denumerable . Since L is non-trivial , 
let p, q, X, E, Ai and A2 be as in 4.6 and such t ha t G = \(p, q) C\ p+ C\ q~ 
is uncountable (X is cont inuous) . Now let G' = G\(EKJ Ai^J A2). Then G' is 
uncountable as E, A\ and A2 are denumerable by 4.6. If d £ G\ then l~l{d) C\ 
[p, q*] is a singleton belonging to (p, q*) and l~l(d) C\ (p, q) ^ 0. Let G" be 
the set of all those d in G for which l~~l(d) C\ (p, q) has an isolated point. 
Hence G'\G" C 7V(Z,). So to complete the proof it suffices to show t h a t G" 
is denumerable. 

Let A = {d e HP, q) : there exist p(d) Ç l~l(d) C\ (p, q), n(d) Ç (p, p(d)) 
and r2{d) e (p(d)} q) such tha t l~l(d) H [ n ( d ) , r 2 (d)] = {r , (d) , p(d), r 2(d)} 
and Z ( p ( d ) ) H r 2 ( L ) = 0} . Note t ha t the definition of X implies t h a t X(p(d)) = 
d for all d G A. We aim to show tha t A is denumerable by using 4 .1 . I t remains 
to check (iv) and (v) of the s t a tement of 4 .1. For this purpose, let a i ? a2 £ A. 
Since a2 £ \(p, q), there exists r2 £ l~l(a2) C\ [p, q*]. Hence 

ai d r2(a2)
+ H Ti( t t 2 )~ 

because «i £ X(£, q) implies t ha t ax $ r2~. Let rx £ / - 1 ( a 0 ^ [£> <?*]• Then 
^2 C? fi-" implies t ha t 

«i d r 2 ( a 2 ) - n r i ( a 2 ) + . 

T h u s we may apply 4.1 to deduce tha t A is denumerable. 
Now let A' = {a G \ ( £ , q) : there exists p(a) G X ^ O ) such t ha t / (p(a) ) C\ 

T2(L) ^ 0}. Since T2(L) is denumerable, .4 ' is denumerable . Finally, G" C 
A\J A' and hence G" is denumerable as required. 
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