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On Characterizations of Real
Hypersurfaces in a Complex Space Form
with η-Parallel Shape Operator

S. H. Kon and Tee-How Loo

Abstract. In this paper we study real hypersurfaces in a non-flat complex space form with η-parallel

shape operator. Several partial characterizations of these real hypersurfaces are obtained.

1 Introduction

Let Mn(c) be an n-dimensional complete and simply connected non-flat complex

space form with constant holomorphic sectional curvature 4c, i.e., it is either a com-

plex projective space CPn or a complex hyperbolic space CHn (according to whether

the holomorphic sectional curvature 4c is positive or negative). Suppose M is a con-

nected real hypersurface in Mn(c) and N is a unit normal vector field of M. Then the

complex structure J of Mn(c) induces an almost contact metric structure (φ, ξ, η, 〈, 〉)
on M, i.e.,

JX = φX + η(X)N, JN = −ξ, η(X) = 〈ξ, X〉.

We denote by Γ(V) the module of all differentiable sections on the vector bundle V

over M. Typical examples of real hypersurfaces are the homogeneous real hypersur-

faces M. In 1973, Takagi [18] classified these homogeneous real hypersurfaces in CPn

into six types, so-called real hypersurfaces of type A1, A2, B, C , D, and E. A Hopf

hypersurface M in Mn(c) is characterized by the condition that the structure vector

field ξ is principal, i.e., Aξ = αξ, and it can be shown that this principal curvature α
is a constant.

By looking at Takagi’s classification, one may verify that the homogeneous real

hypersurfaces are Hopf and with constant principal curvatures. In 1986, Kimura [7]

showed that the converse is also true, i.e., Hopf hypersurfaces with constant principal

curvatures in CPn are in fact those real hypersurfaces of type A1, A2, etc. Also, Berndt

[2] showed a CHn’s version for Kimura’s result, i.e., Hopf hypersurfaces with constant

principal curvatures could be divided into four types, nowadays known as type A0,
A1, A2, and B. In what follows, by real hypersurfaces of type A, we mean of type A1,

A2 (resp. of type A0, A1, A2) for c > 0 (resp. for c < 0). Other than these Hopf

hypersurfaces, another example of real hypersurfaces in Mn(c) is the class of ruled
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real hypersurfaces. Ruled real hypersurfaces in Mn(c) are characterized by having a

one-codimensional foliation whose leaves are complex totally geodesic hyperplanes

in Mn(c). The geometry of ruled real hypersurfaces in Mn(c) was studied in [10].

One of the first results in the theory of real hypersurfaces M in Mn(c) is that the

shape operator A of M in Mn(c) cannot be parallel, i.e., ∇A 6= 0, where ∇ is the

Levi–Civita connection of M. The non-existence of real hypersurfaces in Mn(c) with

parallel shape operator motivates the study of the weaker notion of η-parallelism,

which was first introduced by Kimura and Maeda [8]. The shape operator A is said

to be η-parallel if it satisfies the condition

〈(∇XA)Y, Z〉 = 0

for any X,Y and Z ∈ Γ(D), where D := span{ξ}⊥, called the holomorphic distri-

bution on M. The complete classification of real hypersurfaces with η-parallel shape

operator in Mn(c) remains open up to this point. Nevertheless, many partial char-

acterizations have been obtained either by imposing an additional condition or by

considering a condition that is slightly stronger than the η-parallelism (see, for in-

stance,[1, 4, 5, 8, 16, 17]). It is worth noting that real hypersurfaces that appeared in

the list of these characterizations are those of type A, B and ruled real hypersurfaces.

In this paper we shall continue the study of real hypersurfaces in Mn(c) with

η-parallel shape operator. In particular, several partial characterizations of real hy-

persurfaces in Mn(c) with η-parallel shape operator are obtained.

This paper is organized as follows. Section 2 recalls some basic formulas and

briefly reviews certain known results on real hypersurfaces in Mn(c) with η-parallel

shape operator. Some auxiliary lemmas are derived in Section 3. In Section 4 we

focus on contact real hypersurfaces in Mn(c) and give a characterization for ruled

real hypersurfaces and contact real hypersurfaces. In Section 5 we characterize real

hypersurfaces in Mn(c) with η-parallel shape operator under the commutativity as-

sumption on φAφ and φ2Aφ2. In the last section we characterize real hypersurfaces

in Mn(c) with prescribed covariant derivative of the shape operator.

2 Preliminaries

Consider a connected real hypersurface M in Mn(c), the induced almost contact met-

ric structure (φ, ξ, η, 〈, 〉) on M has the following properties

(2.1) φ2X = −X + η(X)ξ, φξ = 0, η(φX) = 0, η(ξ) = 1

(2.2) (∇Xφ)Y = η(Y )AX − 〈AX,Y 〉ξ, ∇Xξ = φAX

for any X,Y ∈ Γ(TM). Let R be the curvature tensor of M. Then the equations of

Gauss and Codazzi are given respectively by

R(X,Y )Z = c{〈Y, Z〉X − 〈X, Z〉Y + 〈φY, Z〉φX − 〈φX, Z〉φY − 2〈φX,Y 〉φZ}

+ 〈AY, Z〉AX − 〈AX, Z〉AY,

(∇XA)Y − (∇Y A)X = c{η(X)φY − η(Y )φX − 2〈φX,Y 〉ξ}.
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The second order covariant derivative ∇A(X,Y ) on the shape operator A is defined

by

(∇A(X,Y ))Z = (∇X∇Y A −∇∇XY A)Z

= ∇X{(∇Y A)Z} − (∇Y A)∇XZ − (∇∇XY A)Z.

Next, we state two necessary and sufficient conditions for real hypersurfaces in

Mn(c) to be of type A.

Theorem 2.1 ([3, 11–13, 15]) Let M be a real hypersurface in Mn(c), n ≥ 2. Then

the following are equivalent:

(i) M is locally congruent to a real hypersurface of type A;

(ii) φA = Aφ;

(iii) (∇XA)Y = −c{〈φX,Y 〉ξ + η(Y )φX}, for any X,Y ∈ Γ(TM).

The following theorem, proved by Kimura and Maeda, and Suh for c > 0 and

c < 0, respectively, completely classified Hopf hypersurfaces with η-parallel shape

operator in Mn(c).

Theorem 2.2 ([8, 13, 17]) Let M be a Hopf hypersurface in Mn(c), n ≥ 2. Then M

has η-parallel shape operator if and only if M is locally congruent to a real hypersurface

of type A or B.

The above theorem is not true if the condition of M being Hopf is removed.

Theorem 2.3 ([1, 8]) Let M be a real hypersurface in Mn(c), n ≥ 2. Suppose M

satisfies the following two conditions:

(i) φ(φA + Aφ)φ = 0, i.e., the holomorphic distribution D is integrable;

(ii) the shape operator A is η-parallel.

Then M is locally congruent to a ruled real hypersurface.

On the other hand, Ki and Suh studied real hypersurfaces M with η-parallel shape

operator without assuming it is Hopf. By restricting condition (ii) and condition

(iii) in Theorem 2.1 to the holomorphic distribution D, they obtained the following

result.

Theorem 2.4 ([4]) Let M be a real hypersurface in Mn(c), n ≥ 3. Suppose M satisfies

the following two conditions:

(i) φ(φA − Aφ)φ = 0;

(ii) (∇XA)Y = −c〈φX,Y 〉ξ, for any X,Y ∈ Γ(D).

Then M is locally congruent to a real hypersurface of type A.

Observe that condition (ii) in this theorem is a special form for the shape operator

A to be η-parallel. Ahn, Lee, and Suh weaken it to the η-parallelism condition on A

and proved the following.

Theorem 2.5 ([1]) Let M be a real hypersurface in Mn(c), n ≥ 3. Suppose M satisfies

the following two conditions:
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(i) φ(φA − Aφ)φ = 0;

(ii) the shape operator A is η-parallel.

Then M is locally congruent to a ruled real hypersurface or a real hypersurface of type A.

Before we end this section, we shall state the expression of ∇A on these standard

examples of real hypersurfaces with η-parallel shape operator.

Theorem 2.6 Let M be a real hypersurface in Mn(c), n ≥ 3, and X,Y ∈ Γ(D).

(i) If M is of type A, then (∇XA)Y = −c〈φX,Y 〉ξ.

(ii) If M is of type B, then

(∇XA)Y =
{

−c〈φX,Y 〉 +
α

2
〈(φA − Aφ)X,Y 〉

}

ξ.

(iii) If M is ruled and V = φAξ, then

(∇XA)Y = {−c〈φX,Y 〉 + η(AY )〈X,V 〉 + η(AX)〈Y,V 〉}ξ.

(i) is an immediate consequence of Theorem 2.1(iii), while (iii) was derived in

[16]. In order to verify (ii), we need to recall a lemma.

Lemma 2.7 ([6]) Let M be a real hypersurface in Mn(c). If Aξ = αξ, then α is a

constant and (∇ξA) = (α/2)(φA − Aφ).

Since the shape operator of a real hypersurface of type B is η-parallel, for X,Y ∈
Γ(D), (ii) in the above theorem can be derived as follows:

(∇XA)Y = 〈(∇XA)Y, ξ〉ξ

= {−〈φX,Y 〉 + 〈(∇ξA)X,Y 〉}ξ (by the Codazzi equation)

= {−c〈φX,Y 〉 +
α

2
〈(φA − Aφ)X,Y 〉}ξ (by Lemma 2.7).

3 Real Hypersurfaces with Non-Principal Structure Vector Field

Hopf hypersurfaces with η-parallel shape operator A have already been completely

characterized in Theorem 2.2. In this section, we focus on real hypersurfaces M on

which the structure vector field ξ is not principal, or equivalently, with the restriction

β := ‖φAξ|‖ 6= 0. Certain auxiliary lemmas that are needed in the following sections

are also derived here.

We shall first fix some notations as follows: V := ∇ξξ = φAξ, α := η(Aξ), and

F := ∇ξA. Then it is clear that the shape operator A of a real hypersurface M is

η-parallel if and only if (∇XA)Y = {−c〈φX,Y 〉+ 〈FX,Y 〉}ξ, X,Y ∈ Γ(D). The next

lemma plays an important role in the rest of the paper.
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Lemma 3.1 Let M be a real hypersurface in Mn(c) with η-parallel shape operator A.

Then

c
{

〈Y, AZ〉〈X,W 〉 − 〈X, AZ〉〈Y,W 〉

+ 〈φY, AZ〉〈φX,W 〉 − 〈φX, AZ〉〈φY,W 〉 − 2〈φX,Y, 〉〈φAZ,W 〉

− 〈Y, Z〉〈X, AW 〉 + 〈X, Z〉〈Y, AW 〉

− 〈φY, Z〉〈φX, AW 〉 + 〈φX, Z〉〈φY, AW 〉 + 2〈φX,Y, 〉〈φZ, AW 〉
}

+ 〈AY, AZ〉〈AX,W 〉 − 〈AX, AZ〉〈AY,W 〉

− 〈AY, Z〉〈AX, AW 〉 + 〈AX, Z〉〈AY, AW 〉

= c{〈Z, φAY 〉〈φX,W 〉 + 〈W, φAY 〉〈φX, Z〉

− 〈Z, φAX〉〈φY,W 〉 − 〈W, φAX〉〈φY, Z〉}

+ 〈Y, φAX〉〈FZ,W 〉 + 〈Z, φAX〉〈FY,W 〉 + 〈W, φAX〉〈FZ,Y 〉

− 〈X, φAY 〉〈FZ,W 〉 − 〈Z, φAY 〉〈FX,W 〉 − 〈W, φAY 〉〈FZ, X〉

for any X,Y, Z,W ∈ Γ(D).

Proof For any Y, Z,W ∈ Γ(D), by differentiating the following equation covariantly

〈(∇Y A)Z,W 〉 = 0 in the direction of X ∈ Γ(D), we obtain

〈(∇A(X,Y ))Z + (∇∇XY A)Z + (∇Y A)∇XZ,W 〉 + 〈(∇Y A)Z,∇XW 〉 = 0.

From the η-parallelism condition and (2.2), the above equation reduces to

〈(∇A(X,Y ))Z,W 〉 = 〈Y, φAX〉〈(∇ξA)Z,W 〉 + 〈Z, φAX〉〈(∇Y A)ξ,W 〉

+ 〈W, φAX〉〈(∇Y A)Z, ξ〉.

Furthermore, by using the Codazzi equation, the above equation becomes

〈(∇A(X,Y ))Z,W 〉 = 〈Y, φAX〉〈FZ,W 〉 + 〈Z, φAX〉{〈FY,W 〉 − c〈φY,W 〉}

+ 〈W, φAX〉{〈FY, Z〉 − c〈φY, Z〉}.

Finally, by the Ricci identity (R(X,Y )A)Z = (∇A(X,Y ))Z − (∇A(Y, X))Z and the

above equation, we obtain the lemma.

Lemma 3.2 Let M be a real hypersurface in Mn(c) with η-parallel shape operator A.

Then

−〈AφV,Y 〉〈φV, X〉 + 〈AφV, X〉〈φV,Y 〉 = 〈 τ
2

(φA + Aφ)X + (FφA + AφF)X,Y 〉

for any X,Y ∈ Γ(D), where τ := − trace φFφ.
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Proof Let E1, E2, . . . , E2n−2 be a local field of orthonormal vectors in Γ(D). By

putting Z = W = E j , for j = 1, 2, . . . , 2n − 2, in Lemma 3.1 and then summing up

these equations, we get

2〈φA2Y, φAX〉 − 2〈φA2X, φAY 〉 =

2n−2
∑

j=1

〈FE j , E j〉〈φAX + AφX,Y 〉

+ 2〈FY, φAX〉 − 2〈FX, φAY 〉.

Next, by applying (2.1) in the left-hand side of this equation, we obtain the lemma.

Lemma 3.3 Let M be a real hypersurface in Mn(c), n ≥ 3, with η-parallel shape

operator A. Suppose that β is nowhere zero on M. If there exist two functions ν and ν̃
such that AV = νV and AφV = ν̃φV −β2ξ, then φAφ and φ2Aφ2 can be diagonalized

simultaneously.

Proof Let x be an arbitrary point in M. From the hypothesis, the subspace

H := span{V, φV, ξ}

and its orthogonal complement H
⊥ in TxM are both invariant by A and hence by

both φAφ and φ2Aφ2 as well. Furthermore, each eigenvector E ∈ H
⊥ of φ2Aφ2 is

a principal vector as well. If φE is principal for each principal vector E ∈ H
⊥, then

the statement is clearly true. Hence, we suppose that there is a unit principal vector

E ′ ∈ H⊥, but φE ′ is not principal.

First, by letting X,Y ∈ H
⊥, Z = V and W = φV in Lemma 3.1, we obtain

−2cβ2(ν − ν̃)〈φX,Y 〉 = 〈FφV,V 〉〈(φA + Aφ)X,Y 〉.

Since φE ′ is not principal, we can see that 〈FφV,V 〉 = 0 = ν − ν̃, (for otherwise,

putting X = E ′ in the above equation yields AφE ′
= λ̃φ̃E ′ and a contradiction).

Next, by putting X = φV , Y = V in Lemma 3.1 and making use of the fact that

ν = ν̃,
(3.1)

2cβ2〈(φA − Aφ)Z,W 〉 − νβ2{〈V, Z〉〈φV,W 〉 + 〈φV, Z〉〈V,W 〉}

= − 2νβ2〈FZ,W 〉 − ν
{

〈V, Z〉〈FV,W 〉 + 〈V,W 〉〈FV, Z〉

+ 〈φV, Z〉〈FφV,W 〉 + 〈φV,W 〉〈FφV, Z〉
}

.

If we put Z,W ∈ H
⊥ in (3.1), then

c〈(φA − Aφ)Z,W 〉 = −ν〈FZ,W 〉.(3.2)

From the hypothesis φE ′ is not principal, the right-hand side of (3.2) is not identically

zero, so we may assume that ν 6= 0. On the other hand, by putting Z = V and

W = φV in (3.1), and taking account of 〈FV, φV 〉 = ν−ν̃ = 0, we obtain−νβ6
= 0.

This contradicts the facts ν 6= 0 and β 6= 0.
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4 Characterizations on Contact Real Hypersurfaces

An almost contact manifold (M2n−1, φ, ξ, η) is said to be a contact manifold if

η ∧ (dη)n−1 6= 0

on M. If there is a Riemannian metric 〈 · , · 〉 which is compatible with this contact

structure, then (φ, ξ, η, 〈 · , · 〉) becomes a contact metric structure and M is said to be

a contact metric manifold.

A real hypersurface in a Kaehler manifold is said to be contact if its induced almost-

contact structure is contact. Okumura proved a necessary and sufficient condition

for real hypersurfaces in a Kaehler manifold to be contact.

Theorem 4.1 ([14]) Let M be a real hypersurface in a Kaehler manifold. Then the in-

duced almost-contact structure (φ, ξ, η) is contact if and only if there is a non-vanishing

function k on M such that

φA + Aφ − kφ = 0.(4.1)

It can be shown that k is constant. Kon proved the following characterization

while the ambient space is CPn.

Theorem 4.2 ([9]) Let M be a complete real hypersurface in CPn, n ≥ 3. If M

satisfies φA + Aφ − εφ = 0 for some nonzero constant ε, then M is congruent to a real

hypersurface of type A1 or B.

On the other hand, Vernon gave a characterization of contact real hypersurfaces

in CHn.

Theorem 4.3 ([19]) Let M be a complete contact real hypersurface in CHn, n ≥ 3.

Then M is congruent to a real hypersurface of type A0, A1 or B.

Remark Without the completeness hypothesis in Theorem 4.2 and Theorem 4.3,

the conclusion is still true locally, i.e., M is locally congruent to a real hypersurface of

the type as stated.

In this section, we study real hypersurfaces in Mn(c) under a weaker version of

(4.1), i.e.,

φ(φA + Aφ − kφ)φ = 0,(4.2)

for some function k on M. We shall first derive some identities from the condition

(4.2). Note that (4.2) is equivalent to 〈(φA + Aφ − kφ)Y, Z〉 = 0, Y, Z ∈ Γ(D).

Differentiating this equation covariantly in the direction of X ∈ Γ(D) we get

〈φAY,∇XZ〉 + 〈(∇Xφ)AY + φ(∇XA)Y + φA∇XY, Z〉

+ 〈AφY,∇XZ〉 + 〈(∇XA)φY + A(∇Xφ)Y + Aφ∇XY, Z〉

− (Xk)〈φY, Z〉 − k〈φY,∇XZ〉 − k〈(∇Xφ)Y + φ∇XY, Z〉 = 0.
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By using (2.2) and (4.2), this equation can be reformed as

− 〈Z,V 〉〈φAX,Y 〉 + 〈Y,V 〉〈φAX, Z〉 − 〈(∇XA)Y, φZ〉 + 〈(∇XA)Z, φY 〉

+ η(AY )〈AX, Z〉 − η(AZ)〈AX,Y 〉 − (Xk)〈φY, Z〉 = 0.

Now by replacing X,Y, and Z cyclically in the above equation and then summing

these equations, with the help of the Codazzi equation and (4.2), we obtain

S(k〈X,V 〉 + Xk)〈φY, Z〉 = 0,

where S denotes the cyclic sum over X,Y, and Z. Let X be an arbitrary vector field in

Γ(D). If we choose Y ⊥ X, φX, and Z = φY in the above equation, then k〈X,V 〉 +

Xk = 0.

We summarize the above observations in the following lemma.

Lemma 4.4 Let M be a real hypersurface in Mn(c), n ≥ 3. Suppose M satisfies

φ(φA + Aφ − kφ)φ = 0

for some function k on M. Then for any X,Y , and Z ∈ Γ(D),

− 〈Z,V 〉〈φAX,Y 〉 + 〈Y,V 〉〈φAX, Z〉 − 〈(∇XA)Y, φZ〉 + 〈(∇XA)Z, φY 〉

+ η(AY )〈AX, Z〉 − η(AZ)〈AX,Y 〉 − (Xk)〈φY, Z〉 = 0,

(4.3)

k〈X,V 〉 + Xk = 0.(4.4)

We first look at the case where k is a nonzero constant. In this case, the equation

(4.4) implies that V = 0, i.e., ξ is principal and so (φA + Aφ − kφ)ξ = 0. Con-

sequently, we have φA + Aφ − kφ = 0, for some nonzero constant k, and hence it

follows from Theorem 4.2 and Theorem 4.3 that we obtain the following.

Theorem 4.5 Let M be a real hypersurface in Mn(c), n ≥ 3. If M satisfies

φ(φA + Aφ − εφ)φ = 0

for some constant ε 6= 0, then M is locally congruent to a real hypersurface of type A0,

A1 or B.

On the other hand, by adding the η-parallelism condition on the shape operator,

we have the following characterization.

Theorem 4.6 Let M be a real hypersurface in Mn(c), n ≥ 3. Suppose M satisfies the

following two conditions:

(i) φ(φA + Aφ − kφ)φ = 0, for some function k on M;

(ii) the shape operator A is η-parallel.

Then M is locally congruent to a ruled real hypersurface or a real hypersurface of type

A0, A1 or B.
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Proof In this case, the equation (4.3) can be reduced as

− 〈Z,V 〉〈φAX,Y 〉 + 〈Y,V 〉〈φAX, Z〉

+ η(AY )〈AX, Z〉 − η(AZ)〈AX,Y 〉 − (Xk)〈φY, Z〉 = 0.

If we choose Y ⊥ V, φV and Z = φY , then Xk = 0 for all X ∈ Γ(D) and together

with (4.4), we obtain k〈V,V 〉 = 0 on M.

If k is identically zero on M, then M is ruled by Theorem 2.3.

Now suppose that M0 := {x ∈ M : k(x) 6= 0} is nonempty. Then on such

open set M0, ξ is principal and so (φA + Aφ − kφ)ξ = 0. Consequently, we have

φA + Aφ − kφ = 0, and hence by Theorem 4.2 and Theorem 4.3, M0 is locally

congruent to a real hypersurface of type A0, A1 or B. It follows that k is a nonzero

constant on M0. By the connectedness of M, M0 = M and so it is locally congruent

to a real hypersurface of type A0, A1, or B.

5 Real Hypersurfaces with a Commutative Condition

Observe that the condition (i) in Theorem 2.3, Theorem 2.5, and Theorem 4.6 imply

that φ2Aφ2 and φAφ are commutative. Hence, it is natural to ask if the condition (i)

in these theorems is replaceable by this condition. The main purpose of this section

is to give an affirmative answer to this question. We first prove the following lemma.

Lemma 5.1 Let M be a real hypersurface in Mn(c), n ≥ 3, with η-parallel shape

operator A. If φAφ and φ2Aφ2 commute at a point x ∈ M, then at x ∈ M, either

(i) φ(φA − Aφ)φ = 0, or

(ii) φ(φA + Aφ − kφ)φ = 0, where k = (trace A − α)/(n − 1).

Proof As φAφ and φ2Aφ2 are commutative at x ∈ M, they can be diagonalized

simultaneously and hence there are orthonormal vectors E j , φE j (1 ≤ j ≤ n − 1) in

Dx such that

AE j = e jξ + λ jE j AφE j = ẽ jξ + λ̃ jφE j .

By making the following substitutions for the vectors X,Y, Z, and W in Lemma 3.1:

• Y = Z = Ei , W = X = φE j , (i 6= j),
• Y = Z = Ei , W = X = E j , (i 6= j),
• Y = Z = Ei , W = X = φEi ,
• X = E j , Y = φE j , Z = φEi , W = Ei , (i 6= j),

we obtain the following equations

λ̃ jλ
2
i − (λ̃2

j − c + ẽ2
j )λi + (e2

i − c)λ̃ j = 0,(5.1)

λ jλ
2
i − (λ2

j − c + e2
j )λi + (e2

i − c)λ j = 0,(5.2)

(λi − λ̃i)(λiλ̃i + 5c) + λ̃ie
2
i − λi ẽ

2
i + 2〈FEi , φEi〉(λi + λ̃i) = 0,(5.3)

2c(λi − λ̃i) + (λ j + λ̃ j)〈FEi , φEi〉 = 0.(5.4)

https://doi.org/10.4153/CMB-2011-039-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-039-5


10 S. H. Kon and T.-H. Loo

If λi = λ̃i for all i, then φ(φA − Aφ)φ = 0 and we obtain statement (i). Hence, we

suppose λi 6= λ̃i for some i, say λ1 6= λ̃1. From (5.4), we obtain 〈FE1, φE1〉 6= 0 and

λi + λ̃i = 2c
λ̃1 − λ1

〈FE1, φE1〉
, i 6= 1.(5.5)

Since the right-hand side of the above equation is nonzero, for each i 6= 1, at least

one of λi and λ̃i is nonzero, say, λi 6= 0.

Now taking j = 1 and i 6= 1, and then by taking the operation λ j × (5.1) − λ̃ j ×
(5.2), yields (λ1 − λ̃1)(λ1λ̃1 + c) + λ̃1e2

1 − λ1ẽ2
1 = 0. From this equation and (5.3),

we can see

λ1 + λ̃1 = 2c
λ̃1 − λ1

〈FE1, φE1〉
.

By observing (5.5) and the above equation, we obtain

λi + λ̃i = 2c
λ̃1 − λ1

〈FE1, φE1〉
, for all i.

Therefore, we obtain statement (ii) with k = 2c(λ̃1 −λ1)〈FE1, φE1〉
−1. Furthermore,

we have

k =

n−1
∑

i=1

λi + λ̃i

n − 1
=

trace A − α

n − 1
.

Theorem 5.2 Let M be a real hypersurface in Mn(c), n ≥ 3, with η-parallel shape

operator A. If φAφ and φ2Aφ2 commute, then M is locally congruent to a ruled real

hypersurface, or a real hypersurface of type A or B.

Proof Let ρ := ‖φ(φA − Aφ)φ‖ and M0 := {x ∈ M : ρ(x) 6= 0}. Then by

Lemma 5.1 we have φ(φA + Aφ − kφ)φ = 0 on M0 and it follows from Theorem 4.6

that the open submanifold M0 is locally congruent to a real hypersurface of type B.

By a direct calculation, we see that

ρ2
= 4(‖A‖2 − α2) −

2(trace A − α)2

n − 1

on M0. As a real hypersurface of type B is of constant principal curvatures, ρ is a

positive constant on M0. By the connectedness of M, either M0 is empty or M0 is the

whole of M, i.e., either φ(φA−Aφ)φ = 0 or φ(φA + Aφ− kφ)φ = 0 on M. By virtue

of Theorem 2.5 and Theorem 4.6, M is locally congruent to a ruled real hypersurface

or a real hypersurface of type A or B.

6 Real Hypersurfaces with Prescribed Covariant Derivative of the
Shape Operator

In the previous sections, we characterized real hypersurfaces M with η-parallel shape

operator A under certain additional conditions on M. In this section we study these
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real hypersurfaces from another aspect, i.e., by looking at a condition that is slightly

stronger than the η-parallelism on A.

In Theorem 2.6 we see that these “standard examples” of real hypersurfaces with

η-parallel shape operator have a nice form for the covariant derivative of the shape

operator on the holomorphic distribution D. Motivated by these identities, it is nat-

ural to ask if the converses of the identities in Theorem 2.1 are true. In 1995, Suh

proved the following.

Theorem 6.1 ([16]) Let M be a real hypersurface in Mn(c), n ≥ 3. If M satisfies

(∇XA)Y = {−c〈φX,Y 〉 + η(AY )〈X,V 〉 + η(AX)〈Y,V 〉}ξ

for any X,Y ∈ Γ(D), then M is locally congruent to a ruled real hypersurface or a real

hypersurface of type A.

It follows from the above theorem that, since V = 0 is necessary and sufficient for

ξ to be principal, we can easily obtain the following characterization for real hyper-

surfaces of type A.

Corollary 6.2 Let M be a real hypersurface in Mn(c), n ≥ 3. Suppose M satisfies

(∇XA)Y = −c〈φX,Y 〉ξ

for any X,Y ∈ Γ(D). Then M is locally congruent to a real hypersurface of type A.

The condition in Theorem 6.1 is too strong to be used to characterize all the stan-

dard examples of real hypersurfaces with η-parallel shape operator. It shall be re-

placed by a weaker condition in order to broaden the list of characterization. In this

sense, we have the following.

Theorem 6.3 Let M be a real hypersurface in Mn(c), n ≥ 3. Suppose M satisfies

(6.1) (∇XA)Y =
{

−c〈φX,Y 〉 + η(AY )〈X,V 〉 + η(AX)〈Y,V 〉

+ ε〈(φA − Aφ)X,Y 〉
}

ξ

for any X,Y ∈ Γ(D), where ε is a constant. Then M is locally congruent to a ruled real

hypersurface or a real hypersurface of type A or B.

Proof The condition (6.1) implies that A is η-parallel. Let

M0 := {x ∈ M : β(x) 6= 0}.

Then by virtue of Theorem 2.2, we conclude that the interior of M−M0, int(M \M0)

is of type A or B. Each of its principal curvatures is constant and so ‖φAφ‖ is a

positive constant on int(M \ M0).

Next consider the open submanifold M0. From the condition (6.1), the tensor

field F takes the form

〈FX,Y 〉 = η(AY )〈X,V 〉 + η(AX)〈Y,V 〉 + ε〈(φA − Aφ)X,Y 〉(6.2)
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for any X,Y ∈ Γ(D). It follows from this equation that τ = − trace φFφ = 0.

Moreover, the identity in Lemma 3.2 can be reduced to

(6.3) −〈AX,V 〉〈Y,V 〉 + 〈AY,V 〉〈X,V 〉 = ε〈(AφAφ − φAφA)X,Y 〉.

First, by putting X = V and Y = φV in (6.3), we obtain 〈AV, φV 〉 = 0. Next, if we

put Y = φV in (6.3), then

(6.4) ε〈(AφA + φAφAφ)V, X〉 = 0

for any X ∈ Γ(D). Finally, when we put Y = V in (6.3), we get

β2〈AX,V 〉 − 〈AV,V 〉〈X,V 〉 = ε〈φX, (AφA + φAφAφ)V 〉

= 0 (from (6.4)).

This equation tells us that AV = νV . Next, we wish to prove that AφV = ν̃φV −β2ξ.

For this purpose, we put Y = φV and Z = W = V in Lemma 3.1. Then

0 = c{β2〈AφV, X〉 − 〈AφV, φV 〉〈φV, X〉} +
〈FV,V 〉

2
〈φAφV − νV, X〉

− 〈AφV, φV 〉〈FV, X〉 + 〈FV, φV 〉〈AφV, X〉.

On the other hand, by putting Y = V and Z = W = φV in Lemma 3.1, we get

c{β2〈AφV, φX〉 − 〈AφV, φV 〉〈V, X〉} =
〈FφV, φV 〉

2
〈νφV + AφV, X〉

+ ν{β2〈FφV, X〉 − 〈FV, φV 〉〈V, X〉}.

By using (6.2), the above two equations become

(β2 − εν − c)
{

β2〈AφV, X〉 − 〈AφV, φV 〉〈φV, X〉
}

= 0

(εν + c)
{

β2〈AφV, φX〉 − 〈AφV, φV 〉〈φV, φX〉
}

= 0

for any X ∈ Γ(D). From these two equations and the fact that β 6= 0,

〈AφV, X〉 = β−2〈AφV, φV 〉〈φV, X〉, X ∈ Γ(D)

and hence we have AφV = ν̃φV − β2ξ, where ν̃ = β−2〈AφV, φV 〉. Accord-

ing to Lemma 3.3 and Theorem 5.2, we conclude that M0 is ruled. It follows that

‖φAφ‖ = 0 on M0. By the continuity of ‖φAφ‖ and the connectedness of M, we

have either M0 is empty or M0 is the whole of M. Consequently, M is either of type

A or B in the former case or ruled in the latter case.
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