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DIAMOND PRINCIPLES, IDEALS AND THE NORMAL 
MOORE SPACE PROBLEM 

ALAN D. TAYLOR 

1. In t roduc t ion . If 2£ is a topological space then a sequence (Ca:a < X) 
of subsets of 2£ is said to be normalized if for every H C X there exist 
disjoint open sets °tt and 7^ such that 

\J {Ca:a 6 H) Q °ti and U {Ca\a G X - H\ C ^ . 

The sequence (Cala < X) is said to be separated if there exists a sequence 
i&a'.a < X) of pairwise disjoint open sets such that Ca £ ^ a for each 
a < X. As is customary, we adopt the convention that all sequences 
(Ca'-a < X) considered are assumed to be relatively discrete as defined 
in [18, p. 21]: if x G Ca then there exists a neighborhood about x that 
intersects no Cp for fi ^ a. 

Clearly every separated sequence is normalized. The question of 
whether every normal Moore space is metrizable has given rise to a 
general class of questions asking for topological and set theoretic assump­
tions sufficient to conclude that a given normalized sequence must be 
separated. In particular, Bing's theorem [3] guarantees that a given 
normal Moore space «3T is metrizable if and only if every normalized 
sequence in<3T is separated. For background on the normal Moore space 
problem see [15], [16] and [18]. 

Our concern here is with the special case in which X = coi and each Ca 

is a singleton set {xa}, in which case we write (xaia < wi) instead of 
({xa} la < coi). For such a sequence S = (xala < coi), the character of S, 
denoted x(S), is the least cardinal n such that each xa has a neighborhood 
base (tfti{xa) :£ < n) of cardinality less than or equal to ju. Notice that 
if x(S) S M then 5 is normalized if, and only if, for every X C coi there 
exists a function fxl<*i —> M such that 

^f(ai)(xai) H ^ / ( a 2 ) ( x a 2 ) = 0 

whenever a\ Ç X and a2 Ç coi — X. Similarly, 5 is separated if and only 
if there exists a function flœi —> /x such that 

whenever «i ^ a2. 
We also wish to consider the obvious ucr-versions" of the above notions. 

That is, a sequence (xala < coi) is a-normalized {a-separated) if there is a 
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pairwise disjoint partition \An\n G co} of o>i such that (xa\a G An) is 
normalized (separated) for each n G <o. It is well known (and easy to 
prove) that if a normalized sequence is (r-separated then it is in fact 
separated. 

In Section 2 we use the Devlin-Shelah weak version of 4 [6] to show 
that if 2Xo < 2Kl then for every ^-normalized sequence S = (xa\a < coi) 
of character ^ 2 X o there exists a stationary set A C a>i such that 
{Xa'.oL £ A) is separated. From this we quickly derive several known 
results related to the normal Moore space problem, including both 
Sapirovskiï's theorem [17] asserting the non existence (if 2Ko < 2Sl) of 
countable discrete subsets of normal c.c.c. character 2Xo spaces, and 
Devlin and Shelah's recent result [7] concerning the non-normality (if 
2Xo < 2Nl) of any special Aronszajn tree. 

In Section 3 we collect together several "weak-^-type" statements 
from [6] and several topological assertions related to the normal Moore 
space problem and show that they are equivalent. Many of these 
equivalences are known, but a few are new and the result in Section 2 
allows us to give trivial proofs of implication of the form "weak-^-
principle —> 2Xo < 2K l" by appealing to known topological results. 

In Section 4 we consider the ideal i s of separated subsequences of the 
normalized sequence S = (xa \a < coi), and we show that the sequence S 
can always be rearranged so that Is contains no closed unbounded set. 
The relevance of this is that if ^U1* holds, then the principle tui(I) (also 
introduced in Section 4) holds for a countably complete ideal I on coi if 
and only if / contains no closed unbounded set. Moreover, it is shown 
here that if fwl(7) holds for every such ideal / , then every normalized 
sequence S = (xa\a < coi) of character at most coi is separated. Taken 
together, these results yield a proof of Shelah's theorem that if 4W1* holds, 
then every normal space of character at most coi is a>i-collectionwise 
Hausdorff. 

Section 5 contains a proof that if M[G] is obtained from a model M of 
V = L by adding co2 random reals, then in M[G] every normalized se­
quence of character coi is separated. From this it follows that the normality 
of the special Aronszajn tree is not equivalent to 2No = 2Kl. 

We are grateful to Frank Tall for several discussions concerning the 
problems considered here. His spécifie contributions will be pointed out 
at the appropriate places. We would also like to thank the referee for 
several suggestions that have been incorporated into this paper. 

2. Separating stationary subsequences. 

THEOREM 2.1. Suppose 2Ko < 2Xl and let S = (xa:a < «0 be a a-nor-
malized sequence such that x(S) ^ 2Xo. Then (xa:a G A) is separated for 
some stationary set A Ç coi. 
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Proof. If X, F C coi and X ^ F then the "discrepancy of X and F" , 
denoted <5(X, F), is the least element of X A F (i.e., the first a at which 
the characteristic functions of X and F disagree). Let 6 denote the 
following assertion: 

0: Suppose that for each X C wi we have a function /*-coi —> 2W and 
for each X Ç coi let 

G x = {ô<co1:3FCco1[ô = ô(X, F) and / x | 5 = / y | 5 ] } . 

Then G^ is a stationary subset of coi for some X C coi. 

By way of motivation for the assertion 0, consider the following 
"canonical" way to get a family {fx\X C coi} of functions mapping «i 
to 2W: for each a < coi let 

{Z^:/3 < \0>(a)\\ 

be an enumeration of SP (a) and for each X C coi define /x-'.wi —> 2W by 
/x(«) — P if X Pi a = Xf. Then Gx = coi for each X CI coi and so we 
can regard 6 as saying that every collection {fx:X Q coi} of functions 
mapping coi to 2W locally resembles this canonical collection. 

The assertion 6 occurs in Section 6.1 of [6], and they show there that 6 
holds if 2Xo < 2Kl. (We will later show that the converse holds also.) 
Hence, to complete the proof of Theorem 2.1 we need only verify the 
following: 

LEMMA 2.2. Assume B holds and let S = (xa:<x < coi) be a a-normalized 
sequence such that x(S) ^ 2s°. Then (xa:a £ A) is separated for some 
stationary set A C o>i. 

Proof. Let {An\n £ co} be a pairwise disjoint partition of a>i such that 
for each n Ç u Sn = (xa*.a: G ̂ 4n) is normalized. For each a < on let 
C^s(xa) : J < 2W) be a neighborhood base for xa. If / :wi —> 2" then l e t / ' 
be the function such that 

fHa) = <%,(a){xa). 

Since each £„ is normalized there exists, for each X C coi, a function 
fx :«i —> 2W such that if a G ̂ 4„ H X and 0 6 An — X (for some n G co) 
then 

fx*(<*)r\fx*(p) = o. 

By 0, there exists X C coi such that Gx is stationary, and hence there 
exists some n G co such that Gx ^ 4̂W is stationary. 

Claim. If 5 £ Gx P -4n then xs is not an element of the closure of 
v{fx#(a):«e Anr\b). 
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Proof. Suppose not. Since 8 G Gx there exists a set F C coi such that 
8 = <5(X, F) and/ x | ô = /r|<5. Let g = /x |ô = fY\8 and let Z = X P 5 = 
F H 5 . Since xs is in the closure of VJ {/x#(a) :a G -4 n P 6}, we have that 
either x$ is in the closure of W {fx*(a.) :a G AnC\ Z) or x$ is in the 
closure of VJ {fx*(a) •« G AnC\ 8 — Z\. If the former holds then we 
must have 8 £ X and 8 G F and if the latter holds then we must have 
8 (? X and ô g F. Either way contradicts the fact that 8 G X if and 
only if <5 g F (since 5 = 5(X, F)), and so the claim is proved. 

The lemma, and hence the theorem, now follows easily. That is, we 
choose X and n such that Gx P An is stationary. Now, using the claim it 
is easy to see that there is a function fticoi —» 2W such that ô G G j P i i n 

and a G An P 8 then 

/ i ' ( a ) n W ( « ) = 0. 

For each ô 6 Gj Pi i w choose jfe(ô) < 2W such that 

]fe#(ô) C / X # ( ô ) n W(«). 

Then clearly &:GX Pi 4̂„ —> 2W shows that (#«:<* Ç G ^ H ^4n) is separa­
ted. Since G^ P ^4n is stationary, this completes the proof. 

A sequence S = (xa\a < wi) in a s p a c e d is called discrete (in «ST) if 
every point of ^ has a neighborhood intersecting at most one point in 5. 
It is easy to see that 5 is discrete if {xa:a < wi} is a closed set which 
inherits the discrete topology when considered as a subspace of «ST. It 
is well known (and easy to prove) that if a space «3T is normal, then every 
discrete sequence in 2£ is normalized. The space S£ is said to be Xi-
compact if every uncountable subset of $£ has a limit point in 2£. It is 
easy to see that 2£ is Xi-compact if and only if «3T contains no uncountable 
discrete sequence. 

COROLLARY 2.3 [19]. Suppose 2No < 2Kl and 2£ is a normal space of 
character at most 2s°. Then Sfc is weakly ooi-collectionwise Hausdorff. 

To say ££ is weakly coi-collectionwise Hausdorff means that for every 
closed discrete subspace of 9? of cardinality coi, there exist mutually 
disjoint open sets about coi of the points of the subspace. As pointed out 
in [19], Corollary 2.3 above is enough to yield the following: 

COROLLARY 2.4 [17]. Suppose 2Xo < 2Kl and 2£ is a normal countable 
chain condition space of character at most 2s°. Then 2£ is ^-compact. 

When we first proved Theorem 2.1 (with * 'normalized" in place of 
' Vnormalized"), we were unaware of Devlin and Shelah's result [7] that 
2«o < 2^1 implies that the special Aronszajn tree is not normal (equiv-
alently: Jones' "road space" is not normal). Frank Tall brought this 
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result to our attention, and pointed out that it can easily be derived from 
Theorem 2.1. For background, the reader should consult [7] or [16]. 

COROLLARY 2.5 [7]. If 2Xo < 2Kl then the tree topology on a special 
Aronszajn tree is not normal. 

Proof. Let T be a special Aronszajn tree and identify T with coi so that 
if a is less than /3 in the tree ordering < T then a < /3 and so that if a is a 
limit ordinal then a occurs at level a of the tree. Since T is special there 
exists a pairwise disjoint partition [An\n G coj of wi such that each set 
An is an antichain in T. It is easy to see that each An is a discrete subset 
of T. 

Suppose by way of contradiction that T is normal. Then each discrete set 
An is normalized and so coi is ^-normalized. Hence, by Theorem 2.1 some 
stationary set A C coi is separated. We can clearly assume that every 
a G A is a limit ordinal. Thus, for each a G A there exists fia <Ta such 
that if «i F^ «2 then 

OSanaijn (£«2,<*2] = 0. 

For each a Ç i choose £a such that pa < T £a < r a. Then Ja < a so this 
yields a regressive function which must therefore be constant on a sta­
tionary subset of A. This contradicts the fact that A is separated and 
completes the proof. 

3. Equivalents of 2K° < 2**. 

THEOREM 3.1. The following are equivalent. 
1. 2*° < 2Xl. 
2. $: V^: s l 2 - + 2 g g:«i -^2 such that V/:wi~> 2 {a < w i : F ( / | a ) = 

g (a)} w stationary. 
3. $2^: V ^ - 1 2 w - > 2 3 g:coi ->2 swcfc *Aa* V/ :« i ->2 w {a < « i : F ( / | a ) 

= g (a)} Î5 stationary. 
4. 9 : (as s/atea7 in 2fee p/vw/ of Theorem 2.1). 
5. If S = (xa:a < coi) is a a-normalized sequence such that x(S) S 2" 

then (Xa'.a G A) is separated for some stationary set A C coi. 
6. If S = (Xa'-a < coi) is a normalized sequence such that x(S) ^ 2" 

/feew (xa:a G -4) is separated for some uncountable set A C coi. 
7. i\fo normal c.c.c. space of character ^ 2 K o &as an uncountable discrete 

subspace. 
8. Every uncountable set in a separable normal space has a limit point in 

the space. 

Remark. The assertions <ï>, 3>2
w and 0 are due to Devlin and Shelah 

[6] as is the proof that each follows from 2Ko < 2Kl. The fact that $ also 
implies 2Ko < 2Kl was noticed independently by several people, including 
Baumgartner who pointed it out to us. The equivalence of 1, 7 and 8 are 
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well known. In fact (as pointed out by the referee), it was F. B. Jones' 
proof [14] of 1 —• 8 that initiated just the kind of investigations that we 
are pursuing here. 

Proof. (1 =» 2) This is in "[6]. 
(2 => 3). If fla —» œ2 for some a < coi then let / :a X co —> 2 be given 

by /(/3, n) = f(P)(n). Let picoi X o>i —» wi be Godel's pairing function 
and let C be a closed unbounded subset of coi such that if a £ C and 
£i, ($2 < a then p(/3i, /32) < a. Let C = C VJ {coi}. Suppose now that 

F: VJ {«(«2):a < cox} -> 2 

is given. If a G C a n d / : a —> "2 then \etf':a —> 2 be defined by 

f7*\ = i/tt» )̂ if P& *?) = 0 for s o m e f < a 
J KP) lO otherwise. 

Now define F': U {"2:a < coi} -> 2 by F(g) = 1 if 3 a G C and 
/ : « -> "2 such that g = / ' and F(f ) = 1. Let g:coi -> 2 be for F ' as 
guaranteed to exist by <£. We claim that g also works for F. To see this, 
suppose f'.wi —> 2W and consider/ ' . Then there exists a stationary set 5 
such that F'(f'\a) = g (a) for every a Ç 5. Let 5 ' = S C\ C. Then for 
a Ç 5 ; we have 

g(«) = F'U'W) = FUW). 

(3 => 4). This is in Section 6.1 of [6]. 
(4 => 5). This is Lemma 2.2. 
(5 => 6). This is trivial. 
(6 => 7). This follows from the proof of Corollary 2.3. 
(7 =» 8). This is easy, given the observation that a separable normal 

space has c.c.c. and character ^ 2". 
(8 =» 1). This is a well known theorem [12]. (See also [4]). 

Of course, several other equivalents could be added to the list. For 
example, if we let 0' be the result of changing the word ''stationary" in 
0 to "uncountable," then the proof of Lemma 2.2 goes through to show 
that 0' =» 6. Hence 0 => 0' => 6 => 0 and so 0 and 0' are equivalent. 

4. The ideal of separated subsequences. Let <fK denote the collec­
tion of all normalized sequences of length coi and of character at most K. 
If 5 = (xa

 %-OL < coi) is in 5^K then we define the ideal Is of separated sub­
sequences of S by 

Is = {X C coi : (xa\a G X) is separated}. 

It is relatively straightforward to check that Is is a countably complete 
ideal on coi containing all singletons, and clearly Is is proper if and only 
if 5 fails to be separated. 
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The ideal Is provides a rough measure of the extent to which S is or 
is not separated. For example, the results in Sections 2 and 3 show that 
the following are both equivalent to 2Xo < 2Kl. 

(1) For every 5 £ J^V the ideal Is contains an uncountable set. 

(2) For every S £ j ^ V the ideal Is contains a stationary set. 

This motivates the following question. When can we guarantee that for 
every 5 £ j^2a> the ideal Is contains a closed unbounded set? The answer 
is given by the following: 

THEOREM 4.1. For any cardinal K and any S = (xa\a < coi) £ Sf K' the 
following are equivalent. 

(1) S is separated (i.e., Is fails to be proper). 
(2) Every rearrangement of S is separated (i.e., Is> fails to be proper 

whenever S' = (#/(«) \a < coi) and flcoi —* coi is a bisection). 
(3) For every rearrangement S' of S, the ideal Is> contains a closed un­

bounded set. 

COROLLARY 4.2. The following are equivalent. 
(1) For every S £ yV the ideal Is contains a closed unbounded set. 
(2) For every S £ y V the ideal Is is improper (and hence S is separated). 

Proof of Theorem 4.1. Clearly (1) implies (2), since the notion of 5 being 
separated is really a property of the underlying set {xa'.a < o>i} and not 
the particular ordering of the elements that determined the sequence S. 
Of course (2) implies (3) is obvious, and so the heart of the proof involves 
showing that (3) implies (1). 

Suppose that (1) does not hold, and hence Is is proper. Notice that 
every bijection flœi —» o>i gives rise to both a rearrangement S' = 
(xf(a) :a < wi) of 5 and to an isomorph/*(Is) of Is. (The ideal f*(Is) is 
defined to be {X C œ1:f~'1(X) Ç Is}-) Moreover, it is easy to see that 
Is' — f*(Is)- Thus, in order to prove that (3) fails it is sufficient (and 
necessary) to produce a bijection f'.œi —> coi so that the isomorph f*(Is) 
of Is contains no closed unbounded set. But Theorem 11.3.6(b) of [2] 
guarantees that for every K-complete proper ideal I on the successor 
cardinal K, some isomorph of / contains no closed unbounded set. An 
appeal to this thus completes the proof. 

At the suggestion of the referee, we will include a brief sketch of the 
ideal theoretic result employed in the proof of Theorem 4.1. This sketch 
(as well as the upcoming discussion of diamond principles) requires the 
introduction of a bit of notation and terminology. 

If I is an ideal on K, then I+ denotes & (K) — I (the sets of positive 
/-measure), and I* denotes { X Ç K I K — X £ 1} (the sets of /-measure 
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one). If A £ I+ then the restriction of I to A is the ideal I\A — 
{X Q K:X Hi A G / } . NSK denotes the ideal of non-stationary subsets of 
K. Finally, if f'.K —» K and / - 1 ({<*}) € ^ f° r every a < K then /*(/) 
denotes the ideal of subsets X of K such t h a t / - 1 ( X ) £ / . 

Now for the sketch of the proof of the result used in establishing 
Theorem 4.1: We have an ideal / on coi and we would like to find an iso-
morph / of I so that / contains no closed unbounded set. It is not hard 
to see that this condition on / is equivalent to demanding that no regres­
sive function g:X —» toi, where X £ J* is <coi to 1. Thus, we define an 
ordering < 7 on the set of all <coi to 1 functions mapping coi to coi by 
f < / g if and only if 

{a < W l : /(a) <g(a)} G I*. 

Since / is countably complete, this ordering is well founded and hence we 
can choose a <coi to 1 function/ that is minimal with respect to < /. 

Since / i s <coi to 1, there is a partition \An\n 6 co} of «i such that for 
each n Ç co, / \An is one to one. The minimality of/ with respect to < / 
now guarantees that there is at least one n G co such that ^4n Ç 7+ a n d / 
is < / U n - m m i m a l f° r the ideal /|-4n. Let / ' = f*(I\An). Then 

IQI\An^MI\An) =J\ 

where we have used the fact that / \An is one to one. It is now easy to 
check that / ' contains no closed unbounded set. Thus, we have shown 
that some ideal extending I (namely I\A) has an isomorph containing no 
closed unbounded set, and from this it easily follows that / does also. 
(It should be pointed out that we are glossing over some details involved 
in passing from one to one functions defined on sets of measure one to 
actual bijections on coi. These details are provided in [2].) 

There is an alternative motivation for Theorem 4.1 that seems to 
have some benefit. That is, as remarked above, being separated or 
normalized is really a property of the set {xala < coi} as opposed to the 
sequence (xa \a < coi). Thus, we should not really be thinking of the ideal 
Is as giving us a measure of the extent to which 5 fails to be separated, 
but rather it is the isomorphism type of Is (i.e., the class of ideals iso­
morphic to Is) that more clearly reflects this desired measure. The prac­
tical importance of this is that a comparison of the ideals isomorphic to 
Is may suggest a particular rearrangement of the sequence S (or a 
particular ordering of {xa\a < coi} if one wishes to think of starting with 
the set) that is more suited to one's immediate needs. The following 
sequence of results is offered as an illustration of this. 

Definition 4.3. If / is a countably complete proper ideal on coi, then 
•W1(i") is the assertion that there exists a sequence (/« la < coi) such that 
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fa '.a —» a and for every / :wi —> coi we have 

{a < W i : / | a = / a } ç /+. 

Notice that 4«i is equivalent to •«i(NSwl), and if A is a stationary sub­
set of coi, then •«1(i4) is equivalent to 4«i (NSwl|i4). Our interest in 
•«iCO for other ideals stems from the following analogue of Fleissner's 
result in [9]. 

THEOREM 4.4. Suppose that •W1(7) holds for every countably complete 
proper ideal I on coi which does not contain any closed unbounded sets. Then 
every normalized sequence S = (xa\a < coi) 0/ character at most coi w 
separated. 

Proof. Assume that 5 = (xa:a < coi) is of character at most wi but 
not separated. Then, by Theorem 4.1 there exists a bisection jf:wi —> coi 
such that if 5 ' = (x/^'.a: < coi), then 7$ contains no closed unbounded 
set. For notational simplicity, we assume that / is the identity map, so 
S = Sf and Is = Is>. Notice that the hypothesis of the theorem now 
guarantees that •«1CTs) holds. 

We now mimic Fleissner's argument in [9] to show that 5 is not 
normalized. For each a < coi let {^Va:£ < coi} be a neighborhood base 
of xa, and if fla —» coi for some a g coi and if /3 < a then let /#(/3) = 

Claim. If/icoi —» wi and 

7> = {a < cox:xa (2 closure (VJ {/#(0):0 < a})}, 

then r r 6 75. 

Proof. The subsequence (xa:a Ç Tf) can be easily separated by choos­
ing g (a) for each a Ç TV so that 

^"(«) H f#(/^) = 0 for every (3 < a, 

and such that 

#" («>Ç/ ' ( a ) . 

(i.e., (^"(«)*« 6 ?V) separates (xa:<* G 7"/).) 
Now we inductively define disjoint sets H, K C wi as follows. At stage 

a we consider the ath function fa in the ^U1(ls) sequence. If xa Q 
closure (U {fJ(P)'-P < a}), then put a in (say) H. If xa G closure 
(U{/#(/3) :/3 < a}) and if H C\ a and K C\ a have already been defined 
then either 

xa G closure (\fJ(P)-P £ H C\ a}) or 

xa Ç closure ({/'(/3):/3 U H a ) ) . 
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If it is the former, then we put a 6 K> and if it is the latter then we put 
a € H. 

We claim that H and K show that 5 is not normalized. To see this, 
suppose / :wi —> o>i and/#(a) C\fl{P) = 0 whenever a £ H and @ £ K. 
By the claim, Tf £ I so there exists an a < coi such that a (i Tf and 
/ |a = /«. Since a d Tf and / |a = / a it must have been the case at stage 
a of our construction that 

xa e closure QJ {fJ(P):p < a}). 

But then clearly we arranged things at that stage so that no function 
extending fa (in particular,/ ) could separate H from K. 

The question arises, of course, as to whether our choice of a particular 
rearrangement of 5 in the first paragraph of the proof is really necessary. 
That is, why not just restate Theorem 4.4 with the stronger hypothesis 
that •« iW holds for every countably complete ideal / on coi? The 
answer is given by the following: 

THEOREM 4.5. (i) / / ÎU1(I) holds, then I contains no closed unbounded 
set. 

(ii) / / fwl* holdsy then tai(I) holds for every countably complete ideal I 
on o)\ which contains no closed unbounded set. 

Proof, (i) Suppose C £ I where C is closed and unbounded. Define 
f'.coi —•> o?i b y 

f(a) = inf {p £ C:p è a | + l . 

We claim that if f\a\a —> a then a G C. That is, if a = 0 + 1 then 
/(j8) è a, and if a is a limit ordinal and a G C then [0, a] P\ C = 0 for some 
P < a and so f(/3) ^ a. This proves (i). 

(ii) The proof here is just a reworking of Kunen's proof in [13] that if 
• ' ( £ ) holds then • ( £ ) holds. Since [13] has not appeared as far as we 
know, we will give the proof. 

Recall that ^«i* asserts the existence of a sequence ( J^ a '.a < «i) such 
that ^ a Q a&, \^~a\ ^ w, and for every /:o>i —» o>i we have that 
[a < o>i : / \a Ç J^a} contains a closed unbounded subset of coi. For each 
a: < coi let {fn

a:n Ç co} be an enumeration of J ^ , and let (£«:« < coi) be 
the strictly increasing enumeration of all limit ordinals less than coi. 
Define <ï>:co X w —> wi by 

$(a, w) = £« + », 

and let 

C = {a < coi'.& = a}. 
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Then C is closed unbounded and hence in 7+ by our assumption. Notice 
that if a 6 C then 

<£|(a X co):a X co—» a. 

If a G C \J {coi} and A to: —> coi then let $h :a X w-> coi be given by 

$h(fi,n) = fc($(/3, n)). 

Notice that if a G C and A :« —> a then $h \a X co—» a. The heart of the 
proof lies in the following: 

Claim. 3 n Ç co V/"««i -* « I 3 g'.coi X co —» coi such t h a t / ( a ) = g (a, w) 
for every a < coi and 

K C:g|(« X c) = ¥ / / } 6 / + . 

Proof. Suppose not, and for each n Ç co let /n:coi —» coi be a counter­
example. Define g:coi X co —» cox by g(a, w) = fn(a). Define /r.coi —•» coi 
by A(jS) = g ^ " 1 ^ ) ) . Now since (^~a\a < coi) is a 4W1* sequence, we 
know that there is a closed unbounded set C such that if a £ C then 
fc|a Ç #"«. Let C" = C r\ C and for each v 6 co let 

Xn= {ae C":h\a = /n«}. 

Then C" Ç 7+ (since we are assuming that I contains no closed un­
bounded set) and hence Xn £ 7+ for at least one r\ £ co (since 7 is count-
ably complete). But now it is easy to see that g and Xn contradict the fact 
t ha t / n was a counterexample, since if a Ç Xn then 

g\a X co = i>^a. 

That is, if a 6 Xn and fi < a and ^ G co, then 

gGM) = ^(s-HSGM)) = *(*(/*,*)) = /B«(*(/3f*)) = */»«(/?,*). 

This proves the claim. 
Let n be the natural number guaranteed to exist by the claim. The 

desired •W1(7) sequence (/«:<* < coi) is obtained by setting 

MP) = I/«"08f») if a 6 C 

(and set/«(j8) = 0 if a $ C). To see that this works, suppose /:coi —> cox. 
Choose g'.coi X co —» co as guaranteed to exist by the claim and let 

X = {ae C:g\a Xco = 5/n«}. 

Then X Ç 7+ and if a G X and 0 < a then 

/OS) = gfo») = tyna(P,n) =fa(fi) 

as desired. 
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COROLLARY 4.6. (Shelah) If^Ui* holds then every normalized sequence of 
character at most wi is separated. 

Proof. This follows immediately from Theorem 4.4 and 4.5 (ii). 

While we have not seen Shelah's proof of the above result, Fleissner 
points out in [11] that it does not generalize to (say) sequences of 
length co2 unless one assumes that every normalized sequence 
(Ya:<x < wi) of sets is separated. The same is true of the above proof. 
That is, we used the fact that every /c-complete proper ideal on the suc­
cessor cardinal K is isomorphic to one that contains no closed unbounded 
subset of K. This applied in the present situation, since Is is wi-complete 
regardless of the length of S. Unfortunately, "^-complete" and "un­
complete" fail to coincide if K > a>i. 

5. Some non equivalents of 2Xo < 2Xl. Fleissner has shown [10] that 
MAW1 implies that every special Aronszajn tree is normal. If the assump­
tion of MAW1 could be weakened to 2N2 = 2Xl, then by Devlin and Shelah's 
theorem we would have another equivalence for our list in Section 3. 
That this is not the case is a consequence of the following: 

THEOREM 5.1. If ZF is consistent then so is ZFC + 2Ko = 2Kl + every 
normalized sequence of character ^ coi is separated. 

Proof. Suppose M is a model of ZFC + V = L and let M[G] be the 
result of adding w2 random reals. To show that M[G] is the desired model, 
we argue by contradiction. Suppose then that in M[G], we have a nor­
malized sequence S = (xaia < wi) of character ^coi in some space <3T 
such that 5 is not separated. As pointed out to us by Frank Tall, 
Theorem 2.1 of [18] guarantees that we lose no generality in assuming 
that \SC\ = Ki and that «ST has a basis 3$ of size Ki. 

Now, by some well known results of Solovay, there exists a set A C coi 
such that if M' = M[A] then (i)-(iii) hold. 

(i) M' 1= ZFC + 7 = L[A]. 
(ii) 3T, S and SB are elements of M'. 

(iii) M[G] is a random real extension M'[G] of M'. 
(Proofs of results such as these can be found in Section 5 of Chapter 6 of 
[1].) It is also well known (see [5, p. 211]) that if V = L[A] for some 
A Ç coi then fttl* holds. In particular then ^M1* holds in M'. 

We now work in M'. For each a < wi let {%?\% < coi} be a neighbor­
hood base at xa. Clearly 5 is not separated (in Mr) or else S would be 
separated in M'[G']. Hence, since fwl* holds in M', we can use Corollary 
4.6 to conclude that S is not normalized. Let H and K be disjoint subsets 
of coi that serve as a witness to the fact that 5 is not normalized. 
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Now, still in M't choose a t e r m / and a forcing condition B such that 

B l h / l c o x - x o i 

and if a G H and 13 £ K then 

^/(«) H «Tfo,, = 0. 

Now, for each a < coi let {(Bf, £ta):i G /«} be a maximal collection 
satisfying (i)-(iii) below. 

(i) BfQB. 
(n)B^\\-f(a) = *<«. 

(iii) if {i,j\ G [ / « p t h e n ^ ^ £/*. 

Since we are dealing with a countable chain condition notion of forcing, 
we have that \Ia\ ^ Ko since B? and Bf must be incompatible if i ^ j . 
Using this, it is easy to see that we get a set Ba C B and a finite set 
sa Q coi such that 

M(5«) > * M ( 5 ) and B \\-f(a) G s«. 

Now we define h'.aii —> coi as follows. For « 6 o>i choose A (a) such that 

This is possible since s« is finite and xa G ^ £ a for every £ G sa. 
Since i7 and K showed S is not normalized, there must exist a G H and 

0 G # such that 

Since M(5«) > £/*(£) and MCB/0 > h»{B) we have that M(£« C\ B0) > 0. 
But clearly 

BanBfi\\-<%ùa)Q<%atw and « r j w C <%%-

Hence, 

This contradicts the fact that 

and completes the proof. 

COROLLARY 5.2. If ZF w consistent then so is ZFC + 2Xo = 2Nl + no 
special Aronszajn tree is normal. 

Proof. This follows immediately from the theorem as in the proof of 
Corollary 2.4. 
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Frank Tall has pointed out that Theorem 5.1 can be improved to allow 
normalized sequences of arbitrary cardinality. His argument runs as 
follows: We proceed by induction on the length K of the sequence, with 
the initial case K = coi being handled as in the proof of Theorem 5.1. For 
the inductive step at regular cardinals one uses a result of Fleissner 
asserting that the addition of a subset of co2 to L preserves diamond for 
stationary systems for regular K ^ co2. Finally, at singular cardinals one 
observes that Fleissner's argument in [9] works if 2Ko ^ X2 and for all 
K è coi, 2" = K+. 

It should be noted that if one assumes the consistency of a strongly 
compact cardinal then the consistency of "2No = 2Xl + every normalized 
sequence of character coi is separated" follows from the much stronger 
recent result of [15] asserting (somewhat more than) the validity of the 
normal Moore space conjecture in Kunen's model of what Nyikos calls 
the ''product measure extension axiom." In fact, both Kunen's model 
and the one of Theorem 5.1 are obtained by adding random reals (with 
the proof of the stronger result requiring the addition of a few more). 

REFERENCES 

1. J. Baumgartner, Results and independence proofs in combinatorial set theory, thesis, 
University of California at Berkeley (1970). 

2. J. Baumgartner, A. Taylor and S. Wagon, Structural properties of ideals, to appear 
in Dissertationes Mathematicae. 

3. R. H. Bing, Metrization of topological spaces, Can. J. Math. 3 (1951), 175-186. 
4. A. Charlesworth, R. Hodel and F. Tall, On a theorem of Jones and Heath concerning 

discrete subspaces, Colloq. Math. 34 (1975), 33-37. 
5. K. Devlin, Aspects of constructibility, Lecture notes in Mathematics 354 (Springer-

Verlag, Berlin-Heidelberg-New York, 1973). 
6. K Devlin and S. Shelah, A weak version of • which follows from 2^° < 2*1, Israel 

Journal of Math. 29 (1978), 239-247. 
7. A note on the normal Moore space conjecture, Can. J. Math. 31 (1979), 241-251. 
8. Souslin properties and tree topologies, Proc. of the London Math. Soc. (to 

appear). 
9. W. Fleissner, Normal Moore spaces in the constructible universe, Proc. Amer. Math. 

Soc. 46 (1974), 294-298. 
10. When is Jones' space normal? Proc. Amer. Math. Soc. 50 (1975), 375-378. 
11. Current research on Q-sets, Proc. Bolyai Janos Society Colloquium on Topology 

(Budapest, 1978), to appear. 
12. R. Heath, Screenability, pointwise paracompactness and metrization of Moore spaces, 

Can. J. Math. 16 (1964), 763-770. 
13. R. Jensen and K. Kunen, Some combinatorial properties of L and V, mimeograph. 
14. F. B. Jones, Concerning normal and completely normal spaces, Bull. Amer. Math. Soc. 

43 (1937), 671-677. 
15. P. Nyikos, A provisional solution to the normal Moore space problem, Proc. Amer. 

Math. Soc. (to appear). 
16. M. E. Rudin, Lectures on set theoretic topology, Regional Conf. Ser. 23 (Amer. Math. 

Soc, Providence, 1975). 
17. B. Sapirovskii, On separability and metrizability of spaces with Souslin s condition, 

Soviet Math. Dokl. 13 (1972), 1633-1638. 

https://doi.org/10.4153/CJM-1981-023-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-023-4


296 ALAN D. TAYLOR 

18. F. Tall, Set-theoretic consistency results and topological theorems concerning the normal 
Moore space conjecture and related problems, Dissertationes Mathematicae 148 
(1977). 

19. Weakly collectionwise Hausdorff spaces, Topology Proceedings 1 (1976), 
295-304. 

20. The normal Moore space problem, topological structures II, Math. Res. Centre 
(Amsterdam), to appear. 

Union College, 
Schenectady, New York 

https://doi.org/10.4153/CJM-1981-023-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-023-4

