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ON EXTENSIONS OF WEAKLY PRIMITIVE RINGS
W. K. NICHOLSON, J. F. WATTERS AND J. M. ZELMANOWITZ

Introduction. If R is a ring an R-module M is called compressible when
it can be embedded in each of its non-zero submodules; and A is called
monoform if each partial endomorphism N — M, N C M, is either zero or
monic. The ring R is called (left) weakly primitive if it has a faithful
monoform compressible left module. It is known that a version of the
Jacobson density theorem holds for weakly primitive rings [4], and that
weak primitivity is a Morita invariant and is inherited by a variety of
subrings and matrix rings. The purpose of this paper is to show that weak
primitivity is preserved under formation of polynomials, rings of quotients,
and group rings of torsion-free abelian groups. The key result is that
R[x] is weakly primitive when R is (Theorem 1). In particular, a poly-
nomial ring of a primitive ring is weakly primitive. Since a polynomial
ring over a field is not primitive, this result clarifies the sense in which a
polynomial ring of a primitive ring is a structurally well-behaved ring.

For an arbitrary ring R, the symbol R! will denote the union of R and
the rational integers.

1. Semigroup rings. It is our intention to begin by showing that weak
primitivity is inherited by certain semigroup rings. We will require the
following useful criterion for a module to be monoform.

LEMMA 1. Let g M be given. Assume that for each triple my, mq, my € M
there exists a subring S of R and a monoform S-submodule sL. & M such that
my, Mo, my € L. Then g M is monoform.

Proof. We treat the contrapositive statement. Let f: N — M be a
partial R-homomorphism of A/ which is neither zero nor monic. Then
there exists mq, mo % 0in N with m,f # 0, m.f = 0. By hypothesis there
exists a subring S of R and a monoform S-submodule L of M with
my, My, myf € L. But then finduces an S-homomorphism S'm, + S'm, — L,
which is neither zero nor monic.

Given a ring R and a multiplicative semigroup G, we let RG denote the
semigroup ring. For any left R-module M we set MG = R'GQr M.
Observe that there is an R-embedding M — MG via m — g @ m, for g
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fixed in G. So we may regard M C MG, and we may identify the elements
of MG uniquely as sums Y _ ¢ m,¢, where m, = 0 for almost all g € G; the
RG-action being given by

(5re) (Zms) = £ (2 rm e

9€EG \Nhk=g
A semigroup G is called a UP-semigroup (for ‘‘unique product’’) if
given finite subsets {g1, . . . , gu}, {#1, . . ., B} € G, atleast one of the gk,
has a unique representation as such a product. The UP-semigroups thus
provide a generalization of the class of totally ordered semigroups.

ProrosiTiON 1. Let G be a« UP-semigroup and M « left R-module.

(1) If g M is faithful or compressible, the same s true of the RG-module
MG.

(2) If M 1s monoform and MH 1s « monoform RH-module for each
Sfinately generated subsemigroup H of G, then MG 1s « monoform RG-
module.

Proof. (1) The proof that MG is faithful is left for the reader. Now
assume that zM is compressible, and let L # 0 be an arbitrary RG-
submodule of MG. Choose

0#x =myg + ...+ mg € L

where 0 # m,; € M, ¢g; € G, and k is minimal among all such elements of
L. By hypothesis there is an R-monomorphism f : M — Rm,. f extends in
an obvious way to an RG-monomorphism

i MG — (Rm)G.
So it suffices to find an RG-monomorphism
6: (Rmy)G— L.
We define 6 by
X romig 2 € L.
9€a

In order to show that 6 is well defined, observe that for r € R, rx = 0 if
and only if rm; = 0 for all 1 < ¢ < k; equivalently, rm; = 0 for some 1,
1 £ ¢ = k. And, using the fact that G is a UP-semigroup, rx = 0 if and
only if rgx = 0 for any g € G. Hence

Z rymg = 0 =

gEG

each rm;, = 0 <

each r,gx = 0 &

Z 7,8 = 0,

9€G
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using once again the fact that G is a UP-semigroup. Thus 6 is well defined
and monic, as required.

(2) We use Lemma 1. Let x1, x2, x3 € MG. The support of x1, x; and x;
lies in a finitely generated subsemigroup H of G, and x; € MH for each 1.
Since MH is assumed to be a monoform RH-module by hypothesis, the
proof is complete.

2. Polynomial rings. We are now going to show that weak primitivity
is inherited by polynomial rings. Given a polynomial ring R[] and an
R-module M, we let

Mt = RV Qr M.

Since R'[t] = R'G where G is the monoid G = {t7 =10,1,2,...}, we
have at our disposal the identifications that were indicated in § 1. In par-
ticular, the elements of M[¢] are of the form Zk;-:o m it with them; € M.

ProrosiTioN 2. If M is a monoform R-module then M([t] has the same
property as an R[t]-module.

Before proving this proposition, we state a result which may be of
some interest in its own right.

LEMMA 2. Let M be a uniform R-module and K # 0 an R[t]-submodule of
M[t). Set K, = {g € K| g # 01s of minimal degree p in K}. Then given
05 f € K, there exist a € R and g, € K, such that

K
05af =2 t'g.
=0

Proof. We proceed by induction on g, the degree of f. If ¢ = p there is
nothing to prove. So assume ¢ > p, and let 0 # m € M be the leading
coefficient of f; f = mi? + terms of lower degree. Let L, be the set of
leading coefficients of elements of K, together with 0; L, is a nonzero
R-submodule of M.

Since M is uniform there exists b € R' with 0 # bm € L,. Choose
g € K, with leading coefficient bm. Then 0f — t*~?g € K and has degree
< ¢. Hence by the induction hypothesis there exist ¢ € R! and g; € K,
such that

k
0#c(bf —t"") = Z;)tigi.

Thus

k
cbf = Y tlg, + t7cg,
=0

and since ¢g € K, \J {0} we will be done provided only that ¢bf = 0.
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If it were the case that cbf = 0, then cbm = 0so that cg € K hasdegree
< p, which means in turn that ¢g = 0. But this would contradict

c(bf — t=Pg) £ 0.

Proof of Proposition 2. Let 0 : K — M(t] be a nonzero R[{]-homo-
morphism, where K is an R[t]-submodule of M[t]. We consider K, =
{f € K| degree f = ¢}, where ¢ is the least integer such that K/ # 0.
Let L, be the set of leading coefficients of elements of K, together with 0;
L, is an R-submodule of M.

Foreacht=10,1,2,...defne h;: L, — M via

mh; = 1™ coefficient of f6,
where f € K, is chosen with leading coefficient m and f = 0 if m = 0.
h; is well defined because of the minimality of ¢, and is clearly an R-
homomorphism. Since x4 is monoform, each #; is either zero or monic.
This implies in particular that each f6, for f € K,, has the same degree d.

Now if ¢ € K, where K, is defined as in the Lemma, then t?¢ € K,
so that

17 (gf) = (t97Pg)o #= 0.

Thus g6 # 0 and this means that in fact ¢ = p. Finally, let0 # f € K be
arbitrary. Since a monoform module is uniform we may apply the Lemma
to get

k
05 af = ) t'g; forsomea € R', g,¢K,.
i=0
Then

“(J8) = o = 1),

whence the degree of «(f8) is & + d. In particular f§ # 0, and so 6 is
monic. This completes the proof.

THEOREM 1. If R is a weakly primitive ring, then the ring of polynomials
over R in an arbitrary number of indeterminates is also weakly primative.

Proof. This follows from Proposition 1 provided we can show that if A/
is a monoform R-module then M|ty . .., t,] is a monoform Rliy, . . ., f,]-
module. But this is immediate from Proposition 2 and the fact that

M[tly s ey ln] = (M‘_tly s 7171——1])“”]‘

3. Rings of quotients. In order to facilitate the treatment of group
rings over weakly primitive rings we will first discuss the behaviour of
weak primitivity under formation of a ring of quotients. Although the
application we have in mind involves a classical localization, it is possible
to treat generalized rings of quotients with no additional effort.
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By a Gabriel topology ¥ on a ring R, we mean a filter & of left ideals
of R with R € #,0 ¢ .%, and such that (i) I € % and a € R implies
that

(I:a)=1{r€RlracI}c%¥, and

(ii) (J:a) € & foralla € I €. implies that J € .%#. An R-module M
is called torsion-free if

T(M) ={m¢c M (0:m)cF} =0,

where (0:m) = {r € R|rm = 0}; and M is torsion if T(M) = M.
Given an R-module M, we let M denote the injective hull of 3/ and
define M CF (M) C MbyF (M)/M = T(M/M). One then defines

Mg = F (M/T(M)), Ry =F (R/T(R)),

and discovers that R is a ring with identity called the ring of quotients of
R with respect to %, and M, is an Rz-module under an action which
naturally extends its R-multiplication. The assignment M — Mg is in
fact a functor. The Gabriel topology % is called perfect if the canonical
map M — R;&:M induces a natural equivalence of functors M, =
Rz Q@pr M. In particular, for # a perfect Gabriel topology and M a
torsion-free R-module, RzM = Mg. For a complete discussion of these
notions see [3].

In our applications we will be considering the following classical
example of a perfect topology. Namely, let U € R be a multiplicative
semigroup of regular elements of R such that given ¢ € U and 7 € R
there exist b € U and s € R with s¢ = br. Then

F = {left ideals I of R|I N U #* 0}

is a perfect topology, and the elements of Rz = R, can be identified as
fractions «~'7 with « € U, r € R, with addition and multiplication
defined in the classical manner.

PROPOSITION 3. Let F be a perfect Gabriel topology and M a torsion-free
R-module. If M 1s faithful, or compressible, or monoform, then Mz
inherits the same property as an Rz-module.

Proof. Assume that zM is faithful and that ¢M 5z = O for some ¢ € Rg.
Choose I € ¥ with I¢g C R = R/T(R). Then IgMgz = 0, so IgM = 0,
which implies that /¢ = 0. But then ¢ = 0, which proves that M, is a
faithful Rz-module.

Next, suppose that M is compressible and let X be a nonzero Rg -
submodule of Mz. Then since M is an essential R-submodule of Mg,
X N M # 0. So we have by hypothesis an R-monomorphism f: M —
X M M. Then f extends to an Rg-homomorphism fz : Mg — (X N\ M)g.
f# is a monomorphism because f is and zM is essential in M4; and the

https://doi.org/10.4153/CJM-1980-071-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1980-071-6

942 W. K. NICHOLSON, J. F. WATTERS AND J. M. ZELMANOWITZ

proof of this part is completed by the observation that
XN M)z =Rz(X"\ M) CX.

(This is the only part of the proof where the hypothesis that.# is perfect
is used.)

Finally, assume that A is a monoform R-module and let b : X — M
be an Rz-homomorphism with X a nonzero Rgz-submodule of Mz. Let

hy: XM MNO M- M

denote the restriction of &; #; must be either zero or monic.
If #; = 0, then

0 = image iy = M M\ (X M M)k,

so necessarily (X M M)k = 0. Now let x € X be arbitrary and set
J ={r € Rlrx € M}.

Then J € % and
J(xh) = (Jx)h € (X N M)k = 0,

soxh € T(Mz) = 0. It follows that # = 0. If, on the other hand, £, is
monic, then

0=kerh, =kerh\ MM Mh™?
SO

ker h M\ Mh—! =

Since MA~! is an essential R-submodule of X, ker # = 0 and % is monic.
This completes the proof that M4 is a monoform Rz-module.

It is perhaps worth pointing out that in the case of central localization
we have a converse to Proposition 3.

ProrosiTiON 4. Let U & R be a multiplicatively closed subset of regular
central elements of R, and Q the classical ring of fractions with denominators
from U. Then R is weakly primitive if and only if Q us.

Proof. Suppose g M is a faithful, compressible, monoform module. For

a € U, set
M, ={m € M| uwmn = 0}.

M, is an R-submodule of M. If M, # 0, choose a monomorphism
f: M — M, Then

(aM)f = a(Mf) C aM, = 0,

so aM = 0, a contradiction. Hence M, = 0 for all « € U, which shows
that M is torsion-free for the Gabriel topology determined by U. Hence
Q = Ry is weakly primitive by Proposition 3.
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Conversely, suppose X is a faithful, monoform, compressible Q-
module. Without loss of generality, we may assume that X = Qx is
cyclic. We show that M = R'x has these properties as an R-module.

# M is clearly faithful. To check compressibility, let 0 % N € M be an
R-submodule. Then there exists a Q-monomorphism f : X — QN; and if
xf =am,a € U,n €& N,define f; : M — N by (rx)fi = rn. This is well
defined and monic since « is central, and is clearly R-linear. So M is
compressible. Finally, suppose ¢ : N — M is an R-homomorphism where
N C M. Define g1 : QN — X by

(u='m)g1 = u='(ng).

It is easily verified that g; is a Q-homomorphism which extends g. Con-
sequently, if g; is zero or monic the same is true of g and the proof that z3/
is monoform is complete.

4. Group rings. We can now employ the results of previous sections to
get a definitive result for group rings of abelian groups.

THEOREM 2. If R is weakly primative and G is an abelian group then the
group ring RG 1s weakly primitive if and only if G is torsion-free.

Proof. 1f G is torsion-free then it can be totally ordered, as is well known.
If M is a faithful, monoform, compressible R-module, then MG is faithful
and compressible over RG by Proposition 1(1). If x;, x2, x3 are elements of
MG, their support H is a finitely generated subgroup of G (and so is free),
and it suffices by Lemma 1 to show that MH is RH-monoform. If

{21,...,2, is a Z-basis of H then Mz, ...,3,) is a monoform
Rlzi, . .., z,)-module by Proposition 2. If we now localize at the sub-
monoid U of R[z, . . ., 2,] generated by the z;, the ring of fractions is RH

and MH = RHQr M is a monoform RH-module by Proposition 3.

Connell has proved that a group ring is prime if and only if R is prime
and G has no nontrivial finite normal subgroup [1]. Now assume con-
versely that RG is left weakly primitive. Since weakly primitive rings are
prime, G must be torsion-free by Connell’s result.

A natural question to ask, for which we do not have the answer, is
whether an analog to Connell’s theorem holds for weakly primitive rings.

Finally we remark that any ring with a faithful compressible module is
“weakly primitive’ in the sense of [2]. It therefore follows that certain
extension rings of a weakly primitive ring R are in fact primitive, among
them the free algebra R{X} in any set of indeterminates X with
|X| = |R|. See Theorem 5 of [2] for details.

The authors wish to acknowledge the assistance of Dan Farkas as well
as an anonymous referee in perfecting the final version of this article.
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