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Abstract

Suppose the sequence of Taylor coefficients of a rational function / consists of kth powers of
elements all belonging to some finitely generated extension field F of Q. Then it is a generalisation of
a conjecture of Pisot that there is a rational function with Taylor coefficients term-by-term k\h roots
of those of / . The authors show that it suffices to prove the conjecture in the case that the field of
definition is a number field and prove the conjecture in that case subject to the constraint that / has a
dominant pole, that is, that there is a valuation with respect to which / has a unique pole either of
maximal or of minimal absolute value.

1980 Mathematics subject classification (Amer. Math. Soc): 10 A 35.

1. Introduction

Let r, s be polynomials defined over C with degr < degs = «, and 5(0) + 0.
Consider the Taylor expansion
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[2 ] A note on the Hadamard /cth root of a rational function 315

and suppose that there is a sequence (a'h) of e lements of a finitely generated
extension field F of Q so that a'h

k = bh, h = 0 ,1 ,2 , . . . , for some given positive
integer k. Then it is (a generalisation of) a conjecture of Pisot, see [2], page 249
and also [3], [4], that there is a sequence (ah) so that a\ = bh, h = 0 ,1 ,2 , . . . , and
T.h>oahX

h is a rational function.
Without loss of generality we may set

m

s(X) = 1 - SlX - s2X
2 snX" = El (1 " ft*)1"

i = i

with the roots /?, distinct non-zero complex numbers and the multiplicities ni

positive integers. Except perhaps if r(X), s(X) have common factors, the /}, are
just the reciprocals of the poles of the given rational function. The /?, are of course
elements of some finitely generated extension field of Q; by extending F if
necessary we may suppose that the /?, belong to F.

We prove Pisot's conjecture in the following special case: F is a number field,
and there is a valuation of F so that the given rational function has a unique pole
either of maximal, or of minimal, absolute value with respect to that valuation.
We also show that to prove Pisot's conjecture in general it suffices to deal with
the algebraic case but without the dominant pole condition.

Our result generalises that of Pisot [8] in which the unique pole must be
minimal, and of multiplicity one (and the given sequence of kth roots (a'h) is a
sequence of rational integers); see also the remarks in [4]. Perelli and Zannier [7]
show that the restriction on multiplicity may be removed, but they require the /?,
to be positive rational integers; so unique minimality becomes trivial. The
allegation in [11] that Pisot's conjecture is accessible in general is quite un-
founded. An example of Cantor [6] shows that our condition is restrictive.

2. Recurrence sequences and exponential polynomials

Though we speak of Hadamard operations on rational functions, that is of
transformations / taking a Taylor expansion Y.bhX

h to Y,f(bh)X
h, our present

problem concerns generalised power sums (or exponential polynomials). Briefly,

y h XH

Y 2. bhx
implies

b h + n = h b h + n - i + ••• + s n b n , h = 0 , 1 , 2 , . . . ,
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316 Robert S. Rumely and A. J. van der Poorten 131

so the sequence (bh) is a recurrence sequence. Plainly, if E denotes the operator
E:f(h)>-* f(h + 1) then the sequence (bn) is annihilated by the difference
operator YlfLi(E - /?,)"'. It is easily verified that the kernel of this operator
consists of generalised power sums

bh=:b(h)= £ * , • ( * ) # . A = 0 , 1 , 2 , . . . ,
i=i

where the coefficients Bt are polynomials of degree respectively at most «, - 1,
(1 < / < m). Alternatively, a partial fraction expansion

= E E -
/=i J-I 0

yields the same conclusion.
A power sum, or recurrence sequence, is just an exponential polynomial

m

*( ' )= £ B,(t)exp(tlogP,)

with its domain restricted to the non-negative integers.

3 . A conditional proof of the theorem

We shall prove the main result subject to the following special conditions:
(i) The given power sum

! , # h = 0,1,2,. . . ,
i-i

is defined over an algebraic number field K, of degree [K : Q] over Q. That is: the
roots /?, and the coefficients Bt are elements of K. Moreover the power sum takes
values that are k th powers of elements of K; we write bh e IK *.

(ii) The coefficients Bt of the power sum are constants. Moreover, by extending
K, if necessary, we may suppose that the roots /?, and the coefficients B- are in
K*.

(iii) There is an absolute value, say | |, of K so that

l/*il > Wi\ > • • • > \PJ-

PROPOSITION 1. Given a recurrence sequence (bh) as described above, there is a
recurrence sequence (ah) so that a^ = bh, h = 0,1,2,

PROOF. Set ch = bh/B1B^ and note that (ch) satisfies the conditions of the
proposition.
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Note that there is an s > 1 so that for all / = 0 , 1 , 2 , . . .

317

(with s > 1 only if the valuation | | is nonarchimedean and |A:| < 1). Write
ch := 1 + rh, h = 0 ,1 ,2 , . . . , noting, that there is a S > 0 so that log^|rA| < -hS
for all sufficiently large h. We have

and

l-n+l
t (s\rh\)'

l=n+l

/ . i \ n + l 1= Hr*D I _ [r | >
so for h and n sufficiently large \o%\Rn{h)\ < ~hnS. But

,=o

is a recurrence sequence because (rh) is a recurrence sequence. Say it is annihi-
lated by the difference operator Fn(E); of course this operator depends only on
n, not on h. We have

But Fn(E) is a polynomial in £ defined over K. Hence Fn{E)c\/k is an element
of K for each h = 0,1,2, . . . . Now as /i -> oo

while the height \\Fn(E)c\/k\\ satisfies

for some constant A depending only on k and the given sequence (bh).
Here, by definition, for a nonzero element X in a finite extension L of Q, one

writes

= exp ([L:Q])-Tmax(0,log|\|J

with the sum taken over the normalised absolute values corresponding to all

places of L (see [5], pages 4 - 5 , but note that we use || || in place of h( ), that

notation already being committed). Observe that it is consistent to set ||0|| = 1. By

the hypothesis that c\/k is in K for every h we can compute the heights of the
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numbers Fn{E)c\/k using the places of IK. Now Fn(E) is a fixed polynomial of
degree N, say; while ch is a generalised power sum, so that in particular there are
only finitely many places v for which \ch\u > 1 for any h. Furthermore, at those
places log|cA|,, has at most linear growth in h. Thus we have at most geometric
growth in h for \\c\/k\\ and hence for \\Fn{E)c\/k\\ at these places. To summarise,
there is a finite set 5 of places of K and for each c e S a constant Av > 1 such
that for all large h

\Fn(E)cYk\v^Ah
v
+N ifv^S; \Fn(E)cy

k\v ^ \ if v t S.

From this the existence of the constant A is plain. By Liouville's inequality (the
fundamental lemma of transcendence theory) [5], page 5, whereby X e L either
vanishes or

Log|X|> -[L:Q]Log||X||,

we have either Fn{E)c\/k = 0 for all sufficiently large integers h, or

-nS > -[K:Q]A.

But that inequality is false for large n. Hence Fn(E) annihilates the sequence
(c\/k), so that sequence is a recurrence sequence, and then so is ((Blfi^ch)

l/k) as
alleged.

That this argument 'works' may seem mysterious. Liouville's inequality is just
the generalisation to number fields of the observation that a rational integer of
absolute value less than one vanishes. Otherwise, we are seeing the phenomenon
instanced by

(1 + 2x + x2)1/2 = 1 + \(2x + x2) - \{2x + x2)2 + ^(2x + x2f

= 1 + x

with the 'remainder' after any truncation of the expansion containing only high
powers of x.

The rest of this note is dedicated to showing that the conditions we have placed
on the sequence (bh) lose less generality than may appear.

4. Maxima to minima

PROPOSITION 2. Suppose (bh) is a recurrence sequence such that, for all h > 0,

bh is the kth power of an element in an algebraic number field K. Then there is a

finite extension L of K so that for each h in Z, b(h):= bh is the kth power of an

element of L. Thus (b_h) is a recurrence sequence of kth powers of elements of L.
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PROOF. Let T be some finite set of primes of K including all archimedean
primes, all primes at which a root /?, of the power sum b(h) is not a unit or a
coefficient of a Bt is non-integral, and all primes dividing k.

Denote by K v the completion of K at the prime v. We claim that for v £ T we
havefc(/i)G IK* for all fteZ.

To see this set q = JF^ where ¥v is the residue class field of K at v, and denote
by !pv the prime ideal at v.

Fix A e Z , and suppose o r d ^ / i ) = s: note s > 0, as v € T; thus fo(/z) = 0
mod <p*v. Let / be an integer satisfying / = 0modq{2s+1)(q - 1). Then

Bi(h + l)sBi(h)modpl'+1, B\ = 1 mod p2
V

S+2 (1 < / < m).

Hence b(h + l) = b(h)mod 02
O

S+1, so

But 5 + 1 > 0. So the quotient is certainly in IK *. Moreover if / > 0 is sufficiently
large then h + / is non-negative so, by hypothesis b(h + /) e IK *. Hence b(h) G
K * for all h in Z as we alleged.

We are indebted to a referee for advising us that we might have argued as
follows: For suitable subsequences, h •-» b(l + hr) is a uniformly continuous
function on Z ,̂. As K* is complete and b(l + hr) is in IK* for all h G l\|, and N
is dense in Z^,, it follows that b(l + hr) is in IK * for all h in Z.

We have this for all v £ T. By the Griinwald-Wang Theorem as detailed in [1],
pages 82-83, 93ff, in any event we have then

b(h)(= KkU a0K
k

with, at worst, a0 e IK*/2. Hence taking L = K(a\/2) allows us to conclude that
b(h) e L* for all h G Z. Of course we lose no generality in presuming that in the
first place we chose IK = L.

The point of this result is that we may now apply Proposition 1 if the power
sum b(h) has a unique minimal root: |j8x| < |/?2| < • • • < |/?J, say. For then
b(-h) has a unique maximal root as is required by condition (iii) of the
Proposition, and its other properties are retained.

5. Obtaining constant coefficients

PROPOSITION 3. Suppose b(h) is a generalised power sum taking values in Kk.
Then there are generalised power sums u(h) and b(h) taking values in K, such that

b(h) = u(h)kb(h)

and such that b(h) has constant coefficients (and takes values in Kk).
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PROOF. The gist of the argument below is that in a generalised power sum with
polynomial coefficients, the coefficients may be shown to behave independently
of the pure exponential terms. It is a generalisation of a proof of Perelli and
Zannier [7], pages 13-15. It has been subsequently drawn to our attention that
Proposition 3 was proved by J. P. Bezivin [3] by a different />-adic method.

We begin with an auxiliary computation. Recall that b{h) = E5,(/i)/8/
/l; write

Let p = p v be a prime ideal not in T (as in the previous section), such that the
rational prime p below p is unramified in K and satisfies p > k. Let q = $FV as
before. Suppose h is an integer for which p\b{h). We claim that

(1) £*,<'>(*)&* s 0 mod *>; s = 0,l,...,k-l.

To show this, we introduce a new variable t and, fixing h, consider the /?-adic
Taylor expansion

b(h + tp(q - 1)) = E Bt{h + tp{q -

= b{h) + §

which converges at least when ord^(f) > -(1 - \/p). For brevity, write

' k=0

SO

b{h + tp(q - 1)) = co(h) + tpc^h) + ••• ^tk~lpk~lck_l{h) m o d p * .

Our supposition p \b{h) yields co(h) = Omod p. Suppose we have already shown
that, for some s < k.

Cj(h) = O m o d t ) 1 ^ (j = O,l,...,s- 1).

The hypothesis b(h) e Kk means that in fact pk \ b(h). Furthermore for / e Z

b(h + tp(q- 1)) = b(h) mod p
so similarly pk\b(h + tp(q - 1)). Setting

we obtain

tp(q- l)) = 0 = (do(h) + tdx{h) + ••• +tsds(h))ps

https://doi.org/10.1017/S144678870002961X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870002961X


[8] A note on the Hadamard A:th root of a rational function 321

On the right we have a polynomial of degree s < p in t, vanishing for all t mod p .
Hence it vanishes identically mod p , and by induction we have

(2) cj(h) = 0mod \}k~J (j = 0 , 1 , . . . , k - 1).

Note that ord^/?,?"1 - 1) > 1, so ord^logft '"1) > 1, (/ = 1 , . . . , m). Hence,
examining the formula defining cs(h), we see that (2) yields the claim (1).

Consider the subgroup of K x generated multiplicatively by the roots / ? 1 ( . . . , ftm.
By the structure theorem for finitely generated abelian groups, this is isomorphic
to Z/d X Z" for some d and n. In order to prove the existence of the
decomposition

b(h) = u{h)kb{h)

it suffices to prove it separately on each arithmetic progression h = r mod d.
Thus, without loss of generality we can assume that (f$x,..., fim) is free. Let
w!, . . . , as be a set of independent generators.

In the sequel h denotes, so to speak, a generic integer and the variable with
which we mainly work is t. However, the proof involves a delicate interplay of
viewing h and t alternately as variable and as constant. Taking h as an
indeterminate in Z, let Eh be the ring of all generalised power sums with
coefficients in K and roots in the group generated by /} 1 ? . . . , /5m:

Especially, b{h)&Eh. Since uv...,us are multiplicatively independent, and
since the values of a generalised power sum completely determine its roots and its
coefficients, the functions h, « } , . . . , w* are algebraically independent. Thus, Eh

is isomorphic to the localisation of a polynomial ring K[h, Xv..., Xs] with
respect to the multiplicative set generated by Xx,..., Xs. Now, any localisation of
a unique factorisation domain is again such a domain. Thus, Eh is a UFD. Let Gh

be its quotient field.
Our proof of the existence of the decomposition of b(h) involves an obscured

version of the well-known result that a polynomial (here in Gh[t\) taking A:th
power values, is the £th power of a polynomial. Consider the function

as a polynomial in t with coefficients in Eh. We allege that each zero of fh(t) has
multiplicity at least k.

Suppose gh(t) is an irreducible factor of fh(t) in Gh[t]. Clearing denominators,
we lose no generality in assuming gh{t) e Eh[t]. Either {g^O}* divides fh(t), or
the set of polynomials gh, fh, f£,..., f^k^1] is relatively prime. In the latter case
there is a linear combination over Gh[t] of these polynomials summing to 1.
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Again clearing denominators we obtain a linear combination over Eh[t] summing

to a nonzero constant ch e Eh:

Now fix h, and note that elements of Eh, evaluated at h, belong to K. Thus, for
this h, we may regard ch as an element of K and the equation above as an
identity of polynomials in K[f]. There are only a finite number of primes of K at
which some coefficient in the equation is non-integral. However, as t runs
through Z, we have $\gh(t) for infinitely many distinct admissible p. Fix such a
p and t, taking f so that all the coefficients are integral. Since gh\fh, also
P I A(0- w e claim that £ | f£s\t) for s = 0 ,1 , . . . , k - 1. For any s,

s ( - l ) T */'>(* + '(? - l))/?/1^"1 ' mod D.

For j = 0, this is fh(t) = fo(/i + r(g - 1)) mod t>, which shows that $\b(h +
t(q — 1)). Now applying (1) with h replaced by h + t(q — 1) gives the claim.

It follows that f |cfc. Since this is true for infinitely many p, cA = 0. We now
again regard h as a variable, and note that ch e £A is a generalised power sum
whose value for each /i is 0. It is therefore the zero power sum, that is, ch = 0 in
Eh. This is a contradiction, and we conclude that {gh(t)}k \ fh(t).

We complete our argument by descent on the degree in t of the polynomial fh.
We note that the quotient

(computed in Gh(t)) has distinct zeros. Hence its klh power divides fh(t).
Clearing denominators, there are thus a polynomial uh(t) e Eh[t] of positive
degree, and an element vh e Eh, so that

with ff t(0 e ^ [ ? ] a n ^ f/i °f lower degree in t then is fh. But we may suppose
vh = 1. To see this recall that Eh is a [/FD, which implies that Eh[t] is a UFD
(Gauss' lemma). Hence if

where the GCZ) is computed in Eh[t], it follows that uh{t)/vh and
belong to Eh[t]. Thus after an appropriate change of notation:

/*(')= N(0}*M0-
But f A(0) is a generalised power sum, being an element of Eh, and it takes values
in K k by its construction. Furthermore
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actually has the form of a polynomial in h — t with coefficients in the ring

K[«j , W j \ . . . , uh
s, u~h]. Any factorisation must preserve this property. Indeed, let

R be any unique factorisation domain, and take an irreducible polynomial

g(x) e R[x]. If there were a factorisation

S{h-t)=f\g,(h,t)
! = 1

in R[h,t], then on setting t = 0 it would follow for some /', say / = 1, that
gi(h,0) was an associate of g(h) and in particular its degree in h would be the
same as deg g. Now on the left side, the maximum total degree of any monomial
is degg. If any factor on the right side besides gx{h,t) were nonconstant, the
right side would contain a monomial with total degree greater than deg g. Since
this is impossible, g(h - t) must be irreducible.

Thus fA(/) is a polynomial in h — t and bears the same relation to fA(0) as
fh{t) bears to fh(0), other than being of lower degree in t. Arguing by descent on
the degree in t we obtain the proposition once we recall b{h) = fh(0) and set
u(h)=uh(0),

REMARK. If the generalised power sum b(h) has a unique maximal root, it need
not be the case that b(h) has one; some of its roots may differ from others by dth
roots by unity which appear when b(h) is assembled from its restrictions to the
various subsequences h = r mod d.

However, its restriction to each of these subsequences will have a unique
maximal root. Indeed, supppose the group 38 = ( /?1 ; . . . , /?m) is free, with genera-
tors Wj, . . . , us as above. Note that the proof above shows that all the roots of
u(h) and b(h) belong to W. Use the isomorhism W = Z" to place a lexicographic
ordering on W, and observe that multiplication respects this ordering. Let X be
the set of roots of u(h) which are maximal under the given absolute value, and Y
the set of roots of b(h) which are maximal. Let xx be the largest element of X
under the lexicographic ordering, and yx the largest element of Y. Then there is a
unique term in the product u(h)kb(h) which has root Xyyv Similarly if x2 ^ X
and _y2 G Y are smallest, there is a unique term with root x\y2. Unless X and Y
are both one-element sets, these would be two distinct roots of b(h) of maximal
absolute value, contrary to the hypothesis.

6. Specialisation

We shall show that the hypothesis that the given power sum b(h) takes values

in IK *, with K an algebraic number field, loses no generality. Indeed suppose that

b(h) takes values in ¥k, with F some arbitrary finitely generated extension of Q.

Denote b y x = (x1,...,xt) EL transcendence basis for F over Q. Then F = Q(x)
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with y algebraic over Q(x), say with defining polynomial

H(Y;x) = H0(x)Yd + H^Y^1 + • • • +Hd(x),

where the Ht(x) are elements of Z[x]. Each element <> G F has a representation

as a quotient of polynomials U^(y; x) G Z[y; x], V^(x) e Z[x]. Let F be a finite
set of elements of F with the property that y e F and y # 0 implies y'1 G F.
Given the power sum b(h) = E£LiB,-(A)j8* we lose no generality in supposing
that its roots /?, and the coefficients of the Bt(h) belong to F. We shall ask that
the set F contains these elements as well as, say, the coefficients and discriminant
of H(Y,x). Next set

Vr(x)= El Vy(x).

Let c = ( c 1 ? . . . , c,) be any t-tuple of rational integers so that

VT(c) * 0.

Note that it is easy to see by induction on t that there are infinitely many such
^-tuples. The set F generates a subdomain of F, and the map induced by

X = ( * ! , . . . , * , ) - » C = ( C l , . . . , C r )

maps such a domain into an algebraic number field K, of degree at most d over
Q. We refer to the map just described as an F-specialisation of F. Note that, in
particular, y is mapped to y(c), a zero of the polynomial H(Y; c).

Suppose that we have shown that, for appropriate finite sets F, every F-special-
isation of (bh) is the kih power of some recurrence sequence. In [9] we detail the
argument required to demonstrate that there are infinitely many F-specialisation
of the sequence (bh) which, if they have a kth root (ah), say, which is a
recurrence sequence, have such a kth root of order bounded in terms of the order
of (bh) alone; (that is to say; independent of the specialisation). The argument
below deals with the additional difficulty created by the fact that the sequence
{b\/k) of kth roots is not well defined.

Recall that (ah) is a recurrence sequence of order at most N if and only if its
sequence (A^(a)) of Kronecker-Hankel determinants

has the property: Ah = 0 for h = N, N + 1 , . . . (see, for example, [10], pages
5-7). As noted in [9], Section 5, we may suppose that the specialisations to which
we refer below are such as to preserve the order of the given recurrence sequence
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We propose to consider sets {hh:h = N, N + I,..., N + M — 1} with M to
be chosen below. Because the kth roots b]fk are ill-defined, there being k
possibilities for each (or bh = 0), we are led to consider k1{NJrM)~l sets of Ah,
one for each set of choices of the 2(N + M) — 1 sequential kth roots involved.
But even then there are just a finite number of AA to be considered, namely at
most Mk1(N+M)~l quantities. Thus we may, without loss of generality, suppose
that all these quantities belonged to T from the outset. This supposition has the
consequence that if an admissible specialisation of a Aft vanishes then that Ah

vanishes (for if Ah =£ 0 then both Ah and A^1 are in T, so if AA # 0 its
F-specialisations cannot vanish).

By hypothesis at least one of the sets {Ah:h = N, N+ 1,...,N + M - 1}
vanishes for infinitely many admissible F-speciahsations (where, by 'admissible'
we refer to those specialisations identified in [9] and referred to above). Suppose
that the set is that determined by the kth roots {ah:h = 0 , 1 , ...,2(N + M - 1)}.

Our hypothesis entails that Ah = \ai+J\0^ij^h = 0 for h = N, N + 1 , . . . ,
N + M - 1. A study of the Kronecker-Hankel criterion reveals that there then is
a recurrence sequence (ah) of order No < N, essentially coinciding with (an) in
the sense that, at least, ah = ah for N — N0^h^N + M-l. Thus we have a
recurrence sequence (ah) with ak — bh for N — No < h < N + M — 1.

Now consider the sequence (ak - bh). It is a recurrence sequence, and it has
order no greater than NQ + n. On the other hand, by the construction, the M
consecutive terms with h = N, N+1,...,N + M—1 vanish. But it is easy to
verify that a recurrence sequence of order less than M with M consecutive zero
terms is identically zero. Thus, if we chose, as we may have, M > Nk + n, then
a£ = bn for all h = N — No, N - No + 1, Hence there is no loss of generality
in supposing that ah = ah for all h = 0 ,1 ,2 , . . . and then we have lifted our
results in algebraic number fields back into arbitrary fields F of characteristic
zero.

7. Summary

In this paper we have been dealing with the (Generalised Pisot kth root
conjecture). Let

f(X)= Z bhXh

be the Taylor series of a rational function defined over a field of characteristic zero,
and suppose there is a sequence (a'h) of elements of a finitely generated extension
field F of Q such that a'h

k = bh, h = 0 ,1 ,2 ,3 , . . . , for some given positive integer
k. Then there is a sequence (ah) with ak = bh, h = 0 ,1 ,2 , . . . , so that Y.h>0ahX

h

is a rational function.
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Let the distinct poles of f{X) be /?f \ . . . , /J^1. Combining the results we have

obtained in the sections above we have the following theorems.

T H E O R E M 1. Pisot's kth root conjecture is true if f(X) is defined over a number

field and there is some place of that number field at which f(X) has a unique pole

(of arbitrary multiplicity) of maximum, or of minimum absolute value.

T H E O R E M 2. Pisot's kth root conjecture is true for arbitrary rational functions if

it is true for rational functions defined over a number field and with all poles of

multiplicity 1.

(Equivalently, in terms of recurrence sequences: the conjecture is true if true for

recurrence sequences with constant coefficients and with algebraic roots.)

PROOF. There is a polynomial

*(*) = 11(1-£•*)"' = i -Mf snx-
1 = 1

so that s(X)(Lh > 0 bhX
h) is a polynomial, implying that
* * + . - ( ' A + , - i + ••• + * A ) = o

for h = M, M + 1, some M > 0. Plainly we lose no generality in subtracting
a polynomial of degree M - 1 from the given rational function and then
multiplying by X~M; so we may suppose M = 0. We are then in the situation
discussed in Sections 3, 4 and 5.

Theorem 2 is a direct consequence of the arguments in Sections 5 and 6.

8. Remarks

Our constraint, whereby we require a unique minimal, or maximal pole seems
unnatural. Nevertheless, the presence of a unique term, which is a kth power, is
vital in Proposition 1 in order that we obtain a well-defined kth root. This
suggests the following plan of attack so as to obtain an unconditional result.
Suppose that

m
U( u\ \~* D ( u\ Oh

take values in F*. Then for any valuation | | of F, suppose |/?,-| = |/?2| = • • • =
\flm,\ > • • • 3s |^8J so that we have a set of maximal terms. It seems plain that the
maximal subsum

m1

i - i
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is a kth. power; that is, that it takes values in Ff (with ¥1 some finite extension of
F). We cannot show this. It does seem worth remarking that were we able to show
that such a maximal subsum takes values in F* then we could show it to be a kth
power; in effect by descent on m.

We have also been unable to so generalise Proposition 1 as to deal with a
maximal subsum of more than one term a priori known to be a A: th power. These
remarks suggest that a quite different line should be taken so as to attain an
unconditional result.

On the other hand, we have shown that to prove the £:th root conjecture it
suffices to consider just the case of constant coefficients -and just the 'algebraic
case', where the data is provided over a number field. These simplifications may
contribute to an eventual unconditional proof.
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