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Abstract

Let Tn(F) denote the monoid of all upper triangular n × n matrices over a finite field F. It has been shown
by Volkov and Goldberg that Tn(F) is nonfinitely based if |F| > 2 and n ≥ 4, but the cases when |F| > 2
and n = 2, 3 or when |F| = 2 have remained open. In this paper, it is shown that the monoid T2(F) is
finitely based when |F| = 2, and a finite identity basis for it is given. Moreover, all maximal subvarieties
of the variety generated by T2(F) with |F| = 2 are determined.
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1. Introduction

A variety of algebras is a class of algebraic structures of the same signature which
is closed under taking of homomorphic images, subalgebras and direct products. By
Birkhoff’s theorem [1], a variety of algebras is also the class of all algebraic structures
of a given signature satisfying a given set of identities.

Let S be a finite algebra and Id(S ) be the set of identities satisfied by S . If there
is a finite subset Γ of Id(S ) such that every identity of Id(S ) can be deduced from Γ,
then S and the variety generated by S are called finitely based. Otherwise they are
called nonfinitely based. A variety V is said to be hereditarily finitely based if every
subvariety of V is finitely based. A variety V is locally finite if every finitely generated
algebra in V is finite. A locally finite variety V is said to be inherently nonfinitely based
if each locally finite variety containing V has no finite basis of identities. Certainly, in
this case, the variety V itself is also nonfinitely based.
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One of the most famous problems in the study of identities of finite algebras is
Tarski’s finite basis problem which asks if there is an algorithm to determine when a
finite algebra is finitely based. McKenzie [11] proved that this problem is undecidable
for general algebras. However, the solution to this problem is unknown when restricted
to most natural classes containing both finitely based and nonfinitely based examples.
In particular, the finite basis problem for finite semigroups has been extensively studied
since the end of the 1960s, and many important and interesting results about it have
been obtained (see [5, 6, 8–10, 12, 14, 16] and references therein); furthermore,
there is a very large volume of work concerning this problem within the variety of
semigroups [13, 14].

Let Tn(F) be the monoid of all upper triangular n × n matrices over a finite field
F. It is shown by Volkov and Goldberg [15] that the monoid Tn(F) is inherently
nonfinitely based if |F| > 2 and n ≥ 4, but the cases where |F| > 2 and n = 2, 3 and
where |F| = 2 are left open; it is also shown that the monoid Tn(F) is not inherently
nonfinitely based when n < 4 or |F| = 2 [15]. In this paper, it is shown that the
monoid T2(F) is finitely based when |F| = 2, and a finite identity basis for it is given.
Moreover, all maximal subvarieties of the variety generated by T2(F) with |F| = 2 are
determined.

In what follows, F always denotes a two-element field.
Notation and background information are given in Section 2. In Section 3 it is

shown that T2(F) is finitely based by exhibiting an explicit finite basis. All maximal
subvarieties of the variety generated by T2(F) are presented in Section 4.

2. Preliminaries

Most of the notation and background material of this paper are given in this section.
The reader is referred to [1, 4] for any undefined notation and terminology.

Letters and words. We useX∗ andX+ to denote the free monoid and free semigroup
on an alphabet X, respectively. Elements of X are referred to as letters and elements
of X∗ and X+ are referred to as words.

Let x and y be any letters and w be any word. Then:
• the content of w, denoted by C(w), is the set of all letters occurring in w;
• the number of occurrences of the letter x in w is denoted by m(x, w);
• x is simple in w if m(x, w) = 1, or nonsimple otherwise;
• the set of simple letters of w is denoted by sim(w);
• a word w is simple if each of its letters is simple in it, that is, sim(w) = C(w);
• the initial of a word w, denoted by ip(w), is the simple word obtained from w by

retaining the first occurrence of each letter;
• the final of a word w, denoted by fp(w), is the simple word obtained from w by

retaining the last occurrence of each letter;
• if x precedes the first occurrence of y in the word w, let −→my(x, w) denote the

number of occurrences of x before the first y in w;
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• if x succeeds the last occurrence of y in the word w, let ←−my(x, w) denote the
number of occurrences of x after the last y in w;

• let mix(w) denote the word obtained from w by retaining the first and the last
occurrences of each letter.

E 2.1. Suppose that w = x2zxy2xtzx3t4. Then:

(1) C(w) = {x, y, z, t}, ip(w) = xzyt and fp(w) = yzxt;
(2) m(x, w) = 7, m(y, w) = m(z, w) = 2, and m(t, w) = 5;
(3) −→my(x, w) = 3,←−my(x, w) = 4, −→mz(x, w) = 2 and←−mz(x, w) = 3;
(5) mix(w) = xzyytzxt.

Identities and varieties. An identity is a formal expression u ≈ v where u and v
are words. A semigroup S will be said to satisfy u ≈ v if for every homomorphism
θ from X+ into S , uθ = vθ. A semigroup S will be said to satisfy a set of identities
Σ if it satisfies every identity in Σ. A set of identities will be said to be satisfied by
a semigroup if every identity in the set is satisfied by the semigroup. We denote by
Id(S ) the set of all identities in some fixed countably infinite alphabet satisfied by a
semigroup S .

The variety generated by a semigroup S is denoted by var S .
Let u ≈ v be any identity and x, y be any letters. Then:

• u ≈ v is n-balanced at x if m(x, u) ≡m(x, v) (mod n);
• u ≈ v is n-balanced if it is n-balanced at every letter;
• u ≈ v is n-initial-balanced at x if ip(u) = ip(v) and −→my(x, u) ≡ −→my(x, v) (mod n)

for all y ∈ X;
• u ≈ v is n-initial-balanced if it is n-initial-balanced at every letter;
• u ≈ v is n-final-balanced at x if fp(u) = fp(v) and ←−my(x, u) ≡←−my(x, v) (mod n)

for all y ∈ X;
• u ≈ v is n-final-balanced if it is n-final-balanced at every letter.

Let Π be any set of identities. The deducibility of an identity u ≈ v from Π is

indicated by Π ` u ≈ v or u
Π
≈ v. The variety defined by Π is the class of all semigroups

that satisfy all identities in Π; in this case, Π is said to be a basis for the variety. The
subvariety of var T2(F) defined by Π is denoted by T Π.

For any w ∈ X+ and any Y ⊂ X, denote by wY the word obtained from w by
retaining the letters from Y. For any identity w ≈ w′, denote by w

∗
≈ w′ the identity

system that consists of the identity w ≈ w′ and all nontrivial identities of the form
wY ≈ w′Y with Y ⊂ X. For example, the system xyxzx

∗
≈ xyzx is

{xyxzx ≈ xyzx, xyx2 ≈ xyx, x2zx ≈ xzx, x3 ≈ x2}.

Note that if the identity w ≈ w′ is satisfied by a monoid M, then any identity of the
form wY ≈ w′Y is also satisfied by M.

Identities of some small semigroups. For any semigroup S , let S 1 be the monoid
obtained from S by adjoining an identity element. Denote by L2, R2, Y2 and N2 the
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left-zero semigroup of order two, the right-zero semigroup of order two, the semilattice
of order two and the null semigroup of order two, respectively:

L2 a b
a a a
b b b

R2 a b
a a b
b a b

Y2 a b
a a b
b b b

N2 a b
a a a
b a a

For any x ∈ {C, ip, fp}, an identity u ≈ v is said to be x-compliant if x(u) = x(v). The
following lemma is well known.

L 2.2.

(1) An identity is satisfied by the monoid L1
2 if and only if it is ip-compliant.

(2) An identity is satisfied by the monoid R1
2 if and only if it is fp-compliant.

(3) An identity is satisfied by the semilattice Y2 if and only if it is C-compliant.
(4) An identity u ≈ v is satisfied by the monoid N1

2 if and only if C(u) = C(v) and
sim(u) = sim(v).

The following semigroup A (denoted by S (6, 25) in [3]) and its dual semigroup A∗

will be used in this paper:

A a b c d
a a a a a
b a b c d
c c c c c
d c d a b

A∗ a b c d
a a a c c
b a b c d
c a c c a
d a d c b

L 2.3. If u ≈ v is satisfied by the semigroup A, then it is 2-balanced and 2-initial-
balanced.

P. Note that the semigroup M31 in [2] is just the semigroup obtained from A by
adjoining a zero element. Then the lemma follows from [2, Lemma 4.5]. �

By the dual result of Lemma 2.3, we have the following lemma.

L 2.4. If u ≈ v is satisfied by the semigroup A∗, then it is 2-balanced and 2-final-
balanced.

3. TTT2(F) is finitely based

In this section we show that the monoid T2(F) is finitely based by exhibiting an
explicit finite basis.

Clearly, the monoid T2(F) has eight elements:

a =

(
0 0
0 0

)
, b =

(
1 0
0 1

)
, c =

(
1 0
0 0

)
, d =

(
0 1
0 0

)
,

e =

(
0 0
0 1

)
, f =

(
1 1
0 0

)
, g =

(
0 1
0 1

)
, h =

(
1 1
0 1

)
.
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The multiplication table of T2(F) is given by

a b c d e f g h
a a a a a a a a a
b a b c d e f g h
c a c c d a f d f
d a d a a d a d d
e a e a a e a e e
f a f c d d f a c
g a g a a g a g g
h a h c d g f e b

It is easy to see that T2(F) is generated by f , g and h.
We are ready for our main result in this section.

T 3.1. The monoid T2(F) is defined by the identities

xhx2tx
∗
≈ xhtx, (3.1a)

xt1yt2xyt3xt4y
∗
≈ xt1yt2yxt3xt4y, (3.1b)

xt1yt2xyt3yt4x
∗
≈ xt1yt2yxt3yt4x. (3.1c)

It is easy to see that
(3.1a) ` x4 ≈ x2. (3.2)

The proof of Theorem 3.1 is given at the end of this section. For this purpose, we
need to introduce the concept of words in canonical form for the monoid T2(F).

A word w with C(w) = {x1, . . . , xr} is said to be in canonical form if

w = a1w1a2 · · · anwnan+1 (3.3)

where:

(CF1) mix(w) = a1a2 · · · an+1 with a1, . . . , an+1 ∈ C(w);
(CF2) for i = 1, . . . , n, wi = xe1

1 · · · x
er
r where e1, . . . , er ∈ {0, 1}.

An identity u ≈ v is canonical if the words u and v are in canonical form.

L 3.2. Let w be any word. Then there exists some word w′ in canonical form
such that the identities (3.1) imply the identity w ≈ w′.

P. It suffices to convert w, using (3.1), into a word in canonical form. Suppose
that C(w) = {x1, . . . , xr} and mix(w) = a1a2 · · · an+1 with a1, . . . , an+1 ∈ C(w). Then
the word w can be written in the form

w = a1w1a2 · · · anwnan+1 (3.4)

where for each i, every letter in wi is neither a first occurrence nor a last occurrence
in w.

https://doi.org/10.1017/S0004972712000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972712000366


[6] On the variety generated by T2(F) 69

Since the letters of wi are neither first occurrences nor last occurrences in w, the
identities (3.1b) and (3.1c) can be used to permute them within wi in any manner. In
particular, (3.1b) and (3.1c) can be used to permute all letters in wi so that

wi = xe1
1 · · · x

em
m

for some e1, . . . , em ≥ 0; the identities (3.2) and (3.1a) can then be used to reduce the
exponents e1, . . . , em to numbers in {0, 1}, whence conditions (CF1) and (CF2) are
satisfied. �

L 3.3. If T2(F) satisfies the canonical identity u ≈ v, then mix(u) = mix(v).

P. Let
u = a1u1 · · · amumam+1 and v = b1v1 · · · bnvnbn+1

be words in canonical form and let T2(F) satisfy the identity u ≈ v. It suffices to show
that m = n and ai = bi for all i = 1, . . . , n + 1.

Since the subsemigroups {b, e, g}, {b, a, d} and {b, c, f } of T2(F) are isomorphic to
L1

2, R1
2 and N1

2 respectively, it follows from Lemma 2.2 that

ip(u) = ip(v), fp(u) = fp(v), sim(u) = sim(v) and C(u) = C(v).

Since the letters a1, . . . , am+1 and b1, . . . , bn+1 are either first or last occurrences in
u and v respectively, it follows from the conditions C(u) = C(v) and sim(u) = sim(v)
that m = n. Hence it remains to show that ai = bi for all i. The condition ip(u) = ip(v)
clearly implies that a1 = b1. Suppose that a1 · · · ak−1 = b1 · · · bk−1. Working toward a
contradiction, suppose that ak = x , bk = y. By symmetry, there are three cases to be
considered, depending on whether or not ak and bk are first or last occurrences in u
and v.

Case 1. ak is the first occurrence of the letter x in u and bk is the first occurrence
of the letter y in v. Then the letter x does not occur in a1 · · · ak−1 so that
ip(u) = ip(a1 · · · ak−1)x · · · . Similarly, ip(v) = ip(b1 · · · bk−1)y · · · . It follows from the
assumption a1 · · · ak−1 = b1 · · · bk−1 that ip(u) , ip(v), which is impossible.

Case 2. ak is the last occurrence of the letter x in u and bk is the last occurrence
of the letter y in v. Let t(a1 · · · ak−1) be the word obtained from a1 · · · ak−1 by
retaining the letters which are simple in a1 · · · an+1 and the last occurrence of letters
which are nonsimple in a1 · · · ak−1. Then fp(u) = t(a1 · · · ak−1)ak · · · . Similarly,
fp(v) = t(b1 · · · bk−1)bk · · · . From sim(u) = sim(v) and the assumption a1 · · · ak−1 =

b1 · · · bk−1, it follows that fp(u) , fp(v), which is impossible.

Case 3. ak is the first occurrence of the letter x in u and bk is the last occurrence of the
letter y in v.

If x is simple in u, then ak is also the last occurrence of the letter x in u and so ak = bk

by Case 2. This gives a contradiction. Similarly, if y is simple in v, then ak = bk, which
is also a contradiction. Thus we may assume that both x and y are nonsimple and x , y.
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Since ak is the first occurrence of the letter x in u and bk is the last occurrence
of the letter y in v, we have x < C(a1u1 · · · ak−1uk−1) and y ∈ C(b1v1 · · · bk−1vk−1). It
follows from the assumption a1 · · · ak−1 = b1 · · · bk−1 that y ∈ C(a1u1 · · · ak−1uk−1) and
x < C(b1v1 · · · bk−1vk−1). Hence the last occurrence of y precedes the first occurrence
of x in v by C(u) = C(v), and so v{x, y} = yr xs for some integers r, s ≥ 2. Since
T2(F) satisfies the identity u{x, y} = v{x, y}, we have ip(u){x, y} = ip(v){x, y} = yx
and fp(u){x, y} = ip(v){x, y} = yx. By the assumption a1 · · · ak−1 = b1 · · · bk−1 and
bk = y, it is easy to show that y occurs only once in a1 · · · ak−1, and so y occurs
in ak+1 · · · an because y is nonsimple. Hence it follows from f(u){x, y} = yx that
u{x, y} = yt1 xt2 yt3 · · · xtl for some integers l ≥ 4 and ti ≥ 1. Let ϕ denote the substitution
into the semigroup T2(F):

t 7→

{
e if t = x,
f if t = y.

Then (v{x, y})ϕ = f e = d and (u{x, y})ϕ = f e f · · · e = a, which is impossible. Hence
ak = bk. Therefore ai = bi for all i = 1, . . . , n + 1 and so mix(u) = mix(v). �

L 3.4. The following conditions on a canonical identity u ≈ v are equivalent:

(a) T2(F) satisfies the identity u ≈ v;
(b) u ≈ v is a 2-balanced, 2-initial-balanced and 2-final-balanced identity with

mix(u) = mix(v);
(c) u ≈ v is trivial.

P. (a) implies (b). Let u ≈ v be a canonical identity and T2(F) satisfy the
identity u ≈ v. Then it follows from Lemma 3.3 that mix(u) = mix(v). Since the
subsemigroups {b, e, g, h} and {b, c, f , h} of T2(F) are isomorphic to semigroups A
and A∗ respectively, it follows from Lemmas 2.3 and 2.4 that u ≈ v is 2-balanced,
2-initial-balanced and 2-final-balanced.

(b) implies (c). Note that u ≈ v is a canonical identity with mix(u) = mix(v). Let
mix(u) = mix(v) = a1a2 · · · anan+1. Then

u = a1u1a2u2 · · · anunan+1 and v = a1v1a2v2 · · · anvnan+1.

It is shown in the following that C(ui) = C(vi) for all i = 1, . . . , n, whence ui = vi

for each i by the definition of a word in canonical form. Therefore the identity u ≈ v is
trivial.

Suppose, to the contrary, that C(uk) , C(vk) for some k = 1, . . . , n and z ∈ C(uk) \
C(vk). It will be convenient to let

u′ = a1u1 · · · ak−1uk−1, u′′ = uk+1ak+2 · · · unan+1,

v′ = a1v1 · · · ak−1vk−1, v′′ = vk+1ak+2 · · · vnan+1.

Then it follows from the definition of a word in canonical form that z ∈ C(u′ak) ∩
C(ak+1u′′) in u, and so z ∈ C(v′ak) ∩ C(ak+1v′′) in v since mix(u) = mix(v). There are
five cases.
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Case 1. ak = ak+1 = x. Then ak is the first occurrence of the letter x and ak+1 is the last
occurrence of the letter x in u and v. If z = x, then z < C(u′u′′) in u and z < C(v′v′′)
in v. It follows that

m(x, u) = 3 and m(x, v) = 2,

which contradicts the fact that u ≈ v is 2-balanced. If z , x, then z ∈ C(u′) ∩ C(u′′)
in u and z ∈ C(v′) ∩ C(v′′) in v. It follows that

−→mx(z, u) ≡ −→mx(z, v) (mod 2) and ←−mx(z, u) ≡←−mx(z, v) (mod 2).

Since

m(z, u) =
−→mx(z, u) + 1 +

←−mx(z, u) and m(z, v) =
−→mx(z, u) +

←−mx(z, u),

it follows that m(z, u) .m(z, v) (mod 2), a contradiction.

Case 2. ak = x , y = ak+1, ak is the first occurrence of the letter x and ak+1 is the first
occurrence of the letter y in u and v. Clearly z , y. If z = x, then z < C(u′) in u and
z < C(v′) in v. It follows that

−→my(x, u) = 2 and −→my(x, v) = 1,

which contradicts the fact that u ≈ v is 2-initial-balanced. If z , x, then z ∈ C(u′) ∩
C(u′′) in u and z ∈ C(v′) ∩ C(v′′) in v. It follows that

−→mx(z, u) ≡ −→mx(z, v) (mod 2).

Since
−→my(z, u) =

−→mx(z, u) + 1 and −→my(z, v) =
−→mx(z, u),

it follows that −→my(z, u) . −→my(z, v) (mod 2), a contradiction.

Case 3. ak = x , y = ak+1, ak is the first occurrence of the letter x and ak+1 is the last
occurrence of the letter y in u and v. If z , x, y, then z ∈ C(u′) ∩ C(u′′) in u and
z ∈ C(v′) ∩ C(v′′) in v. It follows that

−→mx(z, u) ≡ −→mx(z, v) (mod 2) and ←−my(z, u) ≡←−my(z, v) (mod 2).

Since

m(z, u) =
−→mx(z, u) + 1 +

←−my(z, u) and m(z, v) =
−→mx(z, v) +

←−my(z, v),

it follows that m(z, u) .m(z, v) (mod 2), a contradiction. If z = x, then x = z ∈ C(u′′) \
C(u′) in u and x = z ∈ C(v′′) \ C(v′) in v. It follows that

←−my(x, u) ≡←−my(x, v) (mod 2).

Since
m(x, u) = 2 +

←−my(x, u) and m(x, v) = 1 +
←−my(x, v),
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it follows that m(x, u) .m(x, v) (mod 2), a contradiction. If z = y, then y = z ∈
C(u′) \ C(u′′) in u and y = z ∈ C(v′) \ C(v′′) in v. It follows that

−→mx(y, u) ≡ −→mx(y, v) (mod 2).

Since
m(y, u) =

−→mx(y, u) + 2 and m(y, v) =
−→mx(y, v) + 1,

it follows that m(y, u) .m(y, v) (mod 2), a contradiction.

Case 4. ak = x , y = ak+1, ak is the last occurrence of the letter x and ak+1 is the first
occurrence of the letter y in u and v. Clearly z , x, y and z ∈ C(u′) ∩ C(u′′) in u and
z ∈ C(v′) ∩ C(v′′) in v. It follows that

−→my(z, u) ≡ −→my(z, v) (mod 2) and ←−mx(z, u) ≡←−mx(z, v) (mod 2).

Since

m(z, u) =
−→my(z, u) +

←−mx(z, u) − 1 and m(z, v) =
−→my(z, v) +

←−mx(z, v),

it follows that m(z, u) .m(z, v) (mod 2), a contradiction.

Case 5. ak = x , y = ak+1, ak is the last occurrence of the letter x and ak+1 is the last
occurrence of the letter y in u and v. Clearly z , x. If z , y, then z ∈ C(u′) ∩ C(u′′) in
u and z ∈ C(v′) ∩ C(v′′) in v. It follows that

←−my(z, u) ≡←−my(z, v) (mod 2).

Since
←−mx(z, u) =

←−my(z, u) + 1 and ←−mx(z, v) =
←−my(z, u),

it follows that ←−mx(z, u) .←−mx(z, v) (mod 2), a contradiction. If z = y, then y = z ∈
C(u′) \ C(u′′) in u and y = z ∈ C(v′) \ C(v′′) in v. It follows that

←−mx(y, u) = 2 and ←−mx(y, v) = 1,

and so←−mx(y, u) .←−mx(y, v) (mod 2), a contradiction.

Hence C(uk) = C(vk), as required.
(c) implies (a). This is obvious. �

Now we are ready to prove the main result of this section.

P  T 3.1. With the help of a computer program, one may verify that the
monoid T2(F) satisfies the identities (3.1). It remains to show that any identity u ≈ v
satisfied by the monoid T2(F) is implied by (3.1). In the presence of Lemma 3.2, it
suffices to assume that the identity u ≈ v is canonical. The identity u ≈ v is then trivial
by Lemma 3.4 and so is vacuously a consequence of the identities (3.1). �
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As a direct consequence of Theorem 3.1, we have the following corollary.

C 3.5. The monoid T2(F) is finitely based.

For any two words u and v, let u′, v′ be their canonical forms respectively. Then
the identity u ≈ v holds in T2(F) if and only u′ = v′ by Theorem 3.1 and Lemma 3.4.
As the process for reducing a word to canonical form can be completed in polynomial
time (see the proof of Lemma 3.2), we have the following proposition.

P 3.6. Let u, v be two words. Then whether u ≈ v holds in T2(F) or not can
be decided in polynomial time.

4. The maximal subvarieties of var TTT2(F)

In this section, we will determine all maximal subvarieties of the variety generated
by the monoid T2(F). It is shown that var T2(F) has seven maximal subvarieties, each
of which is defined within var T2(F) by one of the following identities

x2 ≈ x3, (4.1)

xyx ≈ xy3x, (4.2)

xy2z2y2x ≈ xz2y2z2y2x, (4.3)

xy2z2y2x ≈ xy2z2y2z2x, (4.4)

xy2z2x ≈ xy2z2y2z2x, (4.5)

xyxyx ≈ x2y2x, (4.6)

xyxyx ≈ xy2x2. (4.7)

For any sets Π1 and Π2 of identities, the deduction (3.1) ∪Π1 ` Π2 is abbreviated to
Π1 
 Π2.

Let
xy2x ≈ x2. (4.8)

L 4.1. Let u ≈ v be any identity such that C(u) , C(v). Then u ≈ v 
 (4.8).

P. Suppose that y ∈ C(u) \ C(v) for some y. Denote by ϕ the substitution

t 7→

{
x2 if t ∈ X \ {y},
y2 if t = y.

Then u ≈ v 
 xy2x
(3.1)
≈ x(uϕ)x ≈ x(vϕ)x

(3.1)
≈ x2 ` (4.8) 
 {(4.3), (4.4), (4.5)}. �

L 4.2 [10, Theorem 1.1 and Corollary 4.6]. Any variety that satisfies the identi-
ties

x8y ≈ x2y, xy8 ≈ xy2, x7yx ≈ xyx, (4.9a)

x2yx ≈ xyx2, xyxzx ≈ x2yzx, xyxy ≈ x2y2 (4.9b)

is finitely based.
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C 4.3. Each subvariety of var T2(F) not containing Y2 is finitely based and
so T {(4.8)} is hereditarily finitely based.

P. It follows from Lemmas 2.2 and 4.1 that the maximal subvariety of var T2(F)
not containing Y2 is T {(4.8)}. It is easy to show that T {(4.8)} satisfies all identities in
(4.9a). Since

x2yx
(4.8)
≈ xy2xyx

(3.1c)
≈ xyxy2x

(4.8)
≈ xyx2, (4.10)

xyxzx
(3.1a)
≈ xyx3zx

(4.10)
≈ x2yx2zx

(3.1a)
≈ x2yzx, (4.11)

xyxy
(3.1a)
≈ x3yxy

(4.10)
≈ x2yx2y

(4.8)
≈ x2y2, (4.12)

it follows that T {(4.8)} also satisfies all identities in (4.9b). Hence it follows from
Lemma 4.2 that each subvariety of T {(4.8)} is finitely based. �

Next, we explore the maximal subvarieties of var T2(F) containing Y2, so we
always assume that the identity u ≈ v appearing in what follows is a canonical identity
such that C(u) = C(v).

L 4.4. Let u ≈ v be any non-2-balanced identity. Then u ≈ v 
 (4.1).

P. Suppose that u ≈ v is not 2-balanced at the letter x, say m(x, u) ≡ 0 (mod 2)
and m(x, v) ≡ 1 (mod 2). Denote by ϕ the substitution

t 7→

{
x2 if t ∈ X \ {x},
x if t = x.

Then u ≈ v 
 x2 (3.1)
≈ x(uϕ)x ≈ x(vϕ)x

(3.1)
≈ x3 ` (4.1). �

L 4.5. Let u ≈ v be any 2-balanced identity such that sim(u) , sim(v). Then
u ≈ v 
 (4.2).

P. Suppose that y ∈ sim(u) \ sim(v). Then m(y, v) > 1 and m(y, v) ≡ 1 (mod 2)
because u ≈ v is 2-balanced. Denote by ϕ the substitution

t 7→

{
x2 if t ∈ X \ {y},
y if t = y.

Then u ≈ v 
 xyx
(3.1)
≈ x(uϕ)x ≈ x(vϕ)x

(3.1)
≈ xy3x ` (4.2). �

L 4.6. Let u ≈ v be any identity.

(i) If u ≈ v is non-ip-compliant, then u ≈ v 
 (4.3).
(ii) If u ≈ v is non-fp-compliant, then u ≈ v 
 (4.4).

P. It suffices to show that (i) holds. Let u ≈ v be an identity such that ip(u) , ip(v).
Then there exist distinct letters y and z such that:

(a) within u, the first occurrence of y precedes the first occurrence of z; and
(b) within v, the first occurrence of z precedes the first occurrence of y.
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Denote by ϕ the substitution

t 7→


x2 if t ∈ X \ {y, z},
y2z2 if t = y,
z2 if t = z.

Then u ≈ v 
 xy2z2y2x
(3.1)
≈ x(uϕ)y2x ≈ x(vϕ)y2x

(3.1)
≈ xz2y2z2y2x ` (4.3). �

L 4.7. Let u ≈ v be any ip-fp-compliant identity such that sim(u) = sim(v) and
mix(u) ,mix(v). Then u ≈ v 
 (4.5).

P. Since u ≈ v is an ip-fp-compliant identity such that sim(u) = sim(v) and
mix(u) ,mix(v), there exist distinct letters y and z such that mix(u){y, z} ,mix(v){y, z}.

Note that sim(u) = sim(v). If either y or z is simple in u and v, then u ≈ v is either
non-ip-compliant or non-fp-compliant, contradicting the assumption. Therefore both
y and z are nonsimple in u and v. Assume without loss of generality that

mix(u) = · · · y · · · y · · · z · · · z · · · and mix(v) = · · · y · · · z · · · y · · · z · · · .

Denote by ϕ the substitution

t 7→


x2 if t ∈ X \ {y, z},
y2 if t = y,
z2 if t = z.

Then u ≈ v 
 xy2z2x
(3.1)
≈ x(uϕ)x ≈ x(vϕ)x

(3.1)
≈ xy2z2y2z2x ` (4.5). �

L 4.8. Let u ≈ v be any 2-balanced identity.

(i) If −→my(x, u) . −→my(x, v) (mod 2) for some x, y ∈ C(u) = C(v), then u ≈ v 
 (4.6).
(ii) If←−my(x, u) .←−my(x, v) (mod 2) for some x, y ∈ C(u) = C(v), then u ≈ v 
 (4.7).

P. It suffices to show that (i) holds. Without loss of generality, we may assume
that

−→my(x, u) ≡ 0 (mod 2) and −→my(x, v) ≡ 1 (mod 2).

Denote by ϕ the substitution

t 7→


x2 if t ∈ X \ {x, y},
y2 if t = y,
x if t = x.

Then it follows from the fact that u ≈ v is 2-balanced that

u ≈ v 
 x2y2x
(3.1)
≈ (uϕ)xly2x ≈ (vϕ)xly2x

(3.1)
≈ xy2xy2x

(3.1)
≈ xyxyx ` (4.6),

where l ≡m(x, u) ≡m(x, v) (mod 2). �
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Now we are ready for our main result in this section.

T 4.9. The varieties

T {(4.5)} = T {xy2z2x ≈ xy2z2y2z2x},

T {(4.1)} = T {x2 ≈ x3}, T {(4.2)} = T {xyx ≈ xy3x},

T {(4.6)} = T {xyxyx ≈ x2y2x}, T {(4.7)} = T {xyxyx ≈ xy2x2},

T {(4.3)} = T {xy2z2y2x ≈ xz2y2z2y2x}, T {(4.4)} = T {xy2z2y2x ≈ xy2z2y2z2x}

are the only maximal subvarieties of var T2(F).

P. Since (4.8) 
 {(4.2)–(4.7)}, the maximal subvariety of var T2(F) not
containing Y2 is contained in these seven varieties except the second. It is easy to verify
that these seven varieties are incomparable. Now the theorem follows immediately
from Lemmas 3.4, 4.1, and 4.4–4.8. �

L 4.10 [7, Theorem 3.3]. Any variety that satisfies the identities

x2 ≈ x3, x2yx ≈ xyx, xyx2 ≈ xyx, xyxzx ≈ xyzx, (4.13)

is finitely based.

C 4.11. Each subvariety of T {(4.1)} is finitely based and so T {(4.1)} is
hereditarily finitely based.

P. It is easy to show that T {(4.1)} satisfies all identities in (4.13). Hence it follows
from Lemma 4.10 that each subvariety of T {(4.1)} is finitely based. �

The finite basis problem for other subvarieties of var T2(F) will be considered in a
separate paper.
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