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Abstract
Symmetries and adjoint-symmetries are two fundamental (coordinate-free) structures of PDE systems. Recent work
has developed several new algebraic aspects of adjoint-symmetries: three fundamental actions of symmetries on
adjoint-symmetries; a Lie bracket on the set of adjoint-symmetries given by the range of a symmetry action;
a generalised Noether (pre-symplectic) operator constructed from any non-variational adjoint-symmetry. These
results are illustrated here by considering five examples of physically interesting nonlinear PDE systems –
nonlinear reaction-diffusion equations, Navier-Stokes equations for compressible viscous fluid flow, surface-gravity
water wave equations, coupled solitary wave equations and a nonlinear acoustic equation.

1. Introduction
Symmetries and conservation laws are fundamental intrinsic (coordinate-free) structures of a PDE sys-
tem [13, 23, 24]. From an algebraic viewpoint, the infinitesimal symmetries of a PDE are the solutions
of the linearisation (Frechet derivative) equation holding on the space of solutions to the PDE. Solutions
of the adjoint linearisation equation, holding on the space of solutions to the PDE, are called adjoint-
symmetries [5, 25, 26] and provide a direct link to conservation laws. In particular, adjoint-symmetries
that satisfy a certain variational condition represent multipliers which yield conservation laws
[2, 5, 6, 20].

A recent study [3] has developed several new algebraic aspects of adjoint-symmetries:

• three fundamental actions of symmetries on adjoint-symmetries
• a Lie bracket on the set of adjoint-symmetries given by the range of a symmetry action
• a generalised Noether (pre-symplectic) operator constructed from any adjoint-symmetry that is not

a multiplier

These results have some clear applications for PDE systems. Firstly, the symmetry actions on adjoint-
symmetries can be used to produce a new adjoint-symmetry (and hence possibly a conservation law)
from a known adjoint-symmetry and a known symmetry, while the Lie brackets on adjoint-symmetries
allow a pair of known adjoint-symmetries to generate a new adjoint-symmetry (and hence possibly a
conservation law), just as a pair of known symmetries can generate a new symmetry from their commu-
tator. Secondly, for evolution PDEs, adjoint-symmetries can encode a Hamiltonian structure through the
existence of a symplectic structure constructed from the Noether operator and a Hamiltonian functional
given by a conservation law. Thirdly, a Lie bracket on adjoint-symmetries provides a corresponding
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bracket structure for conservation laws, which is a broad generalisation of a Poisson bracket applicable
to non-Hamiltonian systems.

The present paper will illustrate these main results by considering five examples of physically
interesting nonlinear PDE systems:

(1) coupled nonlinear reaction-diffusion equations
(2) Navier-Stokes equations for compressible viscous fluid flow
(3) Boussinesq system for surface-gravity water waves
(4) coupled solitary wave equations
(5) nonlinear acoustic equation

PDE systems (1), (2) and (4) will be considered in one spatial dimension; PDE systems (3) and (5) will
be considered respectively in two and three spatial dimensions.

In each example, first, the Lie point symmetries and the low-order adjoint-symmetries will be sum-
marised. Second, the three actions of the Lie point symmetries on the adjoint-symmetries will be
presented, and the corresponding adjoint-symmetry commutator brackets will be obtained. Third, in
examples (1) and (2), a correspondence between symmetries and adjoint-symmetries will shown to
exist in the absence of any local variational structure (Hamiltonian or Lagrangian) for dissipative PDE
systems. Fourth, a Noether (pre-symplectic) operator will be shown to arise directly from the symmetry
actions in examples (3) to (5), using an adjoint-symmetry that is not a multiplier. In examples (3) and
(4), this operator yields a symplectic 2-form and a corresponding Hamiltonian structure. In example (5),
the Noether operator yields a Lagrangian structure. These latter examples will illustrate how variational
structures are naturally encoded in the adjoint-symmetries of non-dissipative PDE systems.

All of the symmetries and adjoint-symmetries in the examples are obtained by solving the determin-
ing equations (2.2) and (2.3) through a standard method (see [2, 23]).

The rest of the paper is organised as follows. A summary of the symmetry actions, bracket structures
and Noether operator is provided in Section 2. Sections 3–7 contain the five examples. Concluding
remarks are given in Section 8.

2. Summary of symmetry actions and brackets for adjoint-symmetries
The mathematical setting will be calculus in jet space [23], which is summarised in the appendix of [3].
Partial derivatives and total derivatives are denoted using a coordinate notation. The Frechet derivative
will be denoted by ′. Adjoints of total derivatives and linear operators will be denoted by ∗. Prolongations
will be denoted as pr. The transpose of a column/row vector and a matrix will be denoted by t. Hereafter,
a ‘symmetry’ will refer to an infinitesimal symmetry in evolutionary form.

As explained in [3], some technical conditions related to local solvability, involutivity, and existence
of a solved form for leading derivatives will be assumed on PDE systems, which are called regular
systems [2]. These conditions hold for essentially all PDE systems of interest in physical applications.
(See [7] for additional discussion.)

A general treatment of symmetries relevant for the present work can be found in [2, 13, 23].

2.1. Determining equations for symmetries and adjoint-symmetries

To begin, the algebraic formulation of determining equations for symmetries and adjoint-symmetries
will be stated for a general (regular) PDE system of order N consisting of M equations

GA(x, u(N)) = 0, A = 1, . . . , M (2.1)

with independent variables xi, i = 1, . . . , n, and dependent variables uα, α = 1, . . . , m. EG will denote
the solution space of the PDE system. The coordinate space (xi, uα, uα

j , . . . ) is called the jet space J(∞).
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The determining equation for symmetries is given by

G′(P)A|EG = 0, (2.2)

where Pα(x, u(k)) is a set of functions representing the components of the symmetry in evolutionary form.
Geometrically speaking, a symmetry is a vector field XP = Pα∂uα whose prolongation is tangent to EG

in J(∞).
The adjoint of the symmetry equation (2.2) is the determining equation for adjoint-symmetries

G′∗(Q)α|EG = 0, (2.3)

where QA(x, u(k)) is a set of functions representing the components of the adjoint-symmetry. Its
geometrical meaning is that the 1-form QAdGA in J(∞) functionally vanishes on EG, as discussed
in [9].

Off of the solution space EG, these determining equations are respectively given by

G′(P)A = RP(G)A (2.4)

and

G′∗(Q)α = RQ(G)α, (2.5)

where RP = (RP)A I
B DI and RQ = (RQ)I

α BDI are some linear differential operator in total derivatives whose
coefficients (RP)A I

B and (RQ)I
α B are functions that are non-singular on EG.

Recall that a multiplier is a set of functions �A(x, u(k)) that are non-singular on EG and satisfy �AGA =
Di�

i off of EG, for some vector function � i in J(∞). This total divergence condition is equivalent to

0 = Euα (�AGA) = �′∗(G)α + G′∗(�)α, (2.6)

whereby �A is an adjoint-symmetry,

G′∗(�)α|EG = 0. (2.7)

These equations (2.4), (2.5), (2.6) play a key role in formulating the actions of symmetries on adjoint-
symmetries.

2.2. Actions of symmetries on adjoint-symmetries

There are two basic different actions of symmetries on adjoint-symmetries [3, 10]. One action arises geo-
metrically from applying the Lie derivative with respect to a symmetry XP to the determining equation
for adjoint-symmetries, which yields

QA
XP−→ Q′(P)A + R∗

P(Q)A. (2.8)

The other action comes from the adjoint relationship between the determining equation for infinitesimal
symmetries and adjoint-symmetries, yielding

QA
XP−→ R∗

P(Q)A − R∗
Q(P)A. (2.9)

Under this action, adjoint-symmetries are mapped into conservation law multipliers.
For adjoint-symmetries that are conservation law multipliers, these two actions coincide with the

better known action of symmetries on multipliers [1, 4, 8]. Furthermore, the difference of the two actions
produces a third action

QA
XP−→ Q′(P)A + R∗

Q(P)A, (2.10)

which has the property that it vanishes on multipliers, as seen from the multiplier determining
equation (2.6).
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2.3. Dual actions and a Noether operator

For any symmetry action QA−→SP(Q)A, there is a dual action

SQ(P)A := SP(Q)A (2.11)

that maps symmetries into adjoint-symmetries. The symmetry action (2.10) is distinguished from the
other two by the property that its dual action can be expressed as a linear operator in total derivatives:

J := SQ = Q′ + R∗
Q. (2.12)

This operator (2.12) maps symmetries into adjoint-symmetries and thus is a Noether (pre-symplectic)
operator. Its formal inverse defines a pre-Hamiltonian (inverse Noether) operator which maps adjoint-
symmetries into symmetries.

2.4. Lie Bracket for adjoint-symmetries

A dual symmetry action SQ can be used to construct an associated Lie bracket on the subspace of adjoint-
symmetries given by the range of the action. This yields a homomorphism from the Lie algebra of
symmetries into a Lie algebra of adjoint-symmetries.

Let SymmG and AdjSymmG denote the linear spaces of symmetries and adjoint-symmetries. The Lie
bracket is given by

Q[Q1, Q2]A := SQ([S−1
Q Q1, S−1

Q Q2])A (2.13)

on the linear space SQ(SymmG) ⊆ AdjSymmG. Note that, since S−1
Q is well-defined only modulo ker (SQ),

the condition that ker (SQ) is an ideal is necessary and sufficient for the bracket to be well-defined. This
condition will select a set of adjoint-symmetries QA that can be used in constructing the bracket. If there
is more than one such adjoint-symmetry (up to scaling), then a natural choice will be to select a QA such
that ran(SQ) is maximal in AdjSymmG.

An alternative way to have the bracket be well-defined arises when the symmetry Lie algebra con-
tains a scaling symmetry. If ker (SQ) can be characterised as a subspace by its scaling weight, then the
symmetry Lie algebra possesses an extra structure of a direct-sum decomposition as a linear space

SymmG = ker (SQ) ⊕ coker(SQ) (2.14)

with coker(SQ) being defined by having a distinct scaling weight. In this situation, S−1
Q can be defined

as belonging to the subspace coker(SQ), and hence, the bracket will be well-defined. More generally,
a scaling decomposition (2.14) in which both ker (SQ) and coker(SQ) are each a direct sum of scaling
homogeneous subspaces that have no scaling weights in common is sufficient.

2.5. Results for evolution PDEs

The preceding general results have a further development for evolution PDEs

uα

t = gα(x, u, ∂xu, . . . , ∂N
x u), (2.15)

where x now denotes the spatial independent variables xi, i = 1, . . . , n, while t is the time variable. Note
that, for such a PDE system,

Gα(t, x, u(N)) = uα

t − gα(x, u, ∂xu, . . . , ∂N
x u) (2.16)

with A = α for the indices.
On the solution space EG, all t-derivatives of uα can be eliminated in any expression through substitut-

ing the equation (2.15) and its spatial derivatives. Consequently, symmetries consist of a set of functions
Pα(t, x, u, ∂xu, . . . , ∂ k

x u) satisfying

∂tP
α + P′(g)α − g′(P)α = ∂tP

α + [g, P]α = 0 (2.17)
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which is the symmetry determining equation (2.2) in simplified form off of EG. Hence,
RP = P′. (2.18)

Likewise, adjoint-symmetries consist of a set of functions Qα(t, x, u, ∂xu, . . . , ∂ k
x u) satisfying the adjoint

equation
−(∂tQα + Q′(g)α + g′∗(Q)α) = 0 (2.19)

which is a simplified form of the determining equation (2.19) off of EG. Thus,
RQ = −Q′. (2.20)

An equivalent formulation is given by
∂tQα + {Q, g}∗

α
= 0 (2.21)

in terms of the anti-commutator {A, B} = A′(B) + B′(A), where {A, B}∗ = A′∗(B) + B′∗(A).
The well-known necessary and sufficient condition for an adjoint-symmetry to be a conservation law

multiplier is that its Frechet derivative is self-adjoint
Q′ = Q′∗, (2.22)

which follows directly from equations (2.20) and (2.6). Self-adjointness (2.22) is equivalent to the
property that Qα is a variational derivative (gradient)

�α = Euα (�) (2.23)
for some function �(x, u(k)), k ≥ 0, where Euα is the Euler operator with respect to uα.

The relations (2.18) and (2.20) give simplified expressions for the symmetry actions (2.8) and (2.9):

Qα

XP−→ Q′(P)α + P′∗(Q)α, (2.24)

Qα

XP−→ Q′∗(P)α + P′∗(Q)α, = Euα (PβQβ), (2.25)
which coincide if Qα is a conservation law multiplier. The symmetry action (2.10) is given by

Qα

XP−→ Q′(P)α − Q′∗(P)α, (2.26)
which is trivial if Qα is a conservation law multiplier.

For the sequel, indices will be omitted for simplicity of notation wherever it is convenient.

2.6. Symplectic 2-form

The Noether operator defined by the symmetry action (2.26) is simply
J = Q′ − Q′∗ = −J ∗, (2.27)

which is skew. It gives rise to a 2-form on the linear space of symmetries:

ωQ(P1, P2) =
∫
Rn

(Pα

1 Q′(P2)α − Pα

2 Q′(P1)α) dnx. (2.28)

This 2-form is symplectic, namely dωQ = 0, as proven in [3].
The formal inverse of the Noether operator (2.27) defines a pre-Hamiltonian (inverse Noether) oper-

ator J −1 which maps adjoint-symmetries into symmetries. It also formally yields a Poisson bracket
defined by

{F1, F2}J−1 :=
∫
Rn

(δF1/δu)J −1(δF2/δu) dnx (2.29)

for functionals F = ∫
Rn f (x, u(k)) dnx, where δ/δu denotes the variational derivative, namely δF/δuα =

Euα (f ). In particular, the Jacobi identity for this bracket holds as a consequence of closure of the
symplectic 2-form (see [3], and also [23] for a related general result).
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3. Reaction-diffusion system
Consider a coupled system of mass-conserving reaction-diffusion equations with quadratic
nonlinearities

ut = κ1uxx + αupv, vt = κ2vxx − αupv, (3.1)

where κ1 > 0, κ2 > 0 are the diffusivity coefficients; α is a reaction coefficient; p > 0 is an interaction
power. This evolution system is a simplified model for two interacting reactive chemicals or ions that
are diffusing in a solute, or two proteins in a cell with an activator-inhibitor interaction [19, 22], with
densities u(t, x) and v(t, x). Here, the equilibrium concentrations are u = v = 0. Note that more general
reactivities ±(α1u − β1v)p(α2u − β2v) can be expressed in the form (3.1) through a linear transformation
on (u, v) if the coefficient matrix

(
α1 −β1

α2 −β2

)
has a negative determinant.

Symmetries (in evolutionary form) Pu∂u + Pv∂v are determined by the equations

(DtP
u − κ1D

2
xPu − α(pup−1vPu + upPv)|EG = 0, (3.2a)

(DtP
v − κ2D

2
xPv + α(pup−1vPu + upPv)|EG = 0, (3.2b)

where EG denotes the solution space of the reaction-diffusion system (3.1). Adjoint-symmetries (Qu, Qv)
are determined by the adjoint equations

(−DtQ
u − κ1D

2
xQu + αpup−1v(Qv − Qu))|EG = 0, (3.3a)

(−DtQ
v − κ2D

2
xQv + αup(Qv − Qu))|EG = 0. (3.3b)

Note that, in the general notation (2.1) for PDE systems, here

G = (Gu, Gv) = (ut − κ1uxx − αupv, vt − κ2vxx + αupv). (3.4)

A basis for the linear space of Lie point symmetries, with P = (Pu, Pv), consists of

P1 = (ut, vt), P2 = (ux, vx), P3 =
(

u + ptut + 1

2
pxux, v + ptvt + 1

2
pxvx

)
, (3.5)

which represent generators for a time translation, a space translation, and a scaling. Their algebra is
given by the non-zero commutators

[P1, P3] = −pP1, [P2, P3] = −1

2
pP2. (3.6)

A basis of the linear space of adjoint-symmetries, Q = (Qu, Qv), is given by

Q1 = (1, 1), Q2 = (x, x), (3.7)

which are also multipliers for conservation laws of mass M= ∫
R

(u + v) dx and centre of mass X =∫
R

x(u + v) dx.
Consequently, (cf Section 2.2) the third symmetry action (2.26) is trivial, while the other two

symmetry actions (2.24) and (2.25) are given by the linear operator

SP(Q) = (Eu(PQt), Ev(PQt)). (3.8)

This action is summarised in Table 1. Note that, for evaluating the symmetry actions, all t-derivatives
of u and v are replaced through equations (3.1).

3.1. Adjoint-symmetry bracket

The adjoint-symmetry bracket (2.13) arising from this symmetry action is defined via the dual operator

SQ(P) = (Eu(PQt), Ev(PQt)). (3.9)
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Table 1. Reaction-diffusion system: symmetry
action (3.8) on adjoint-symmetries

P1 P2 P3

Q1 0 0 (1 − 1
2
p)Q1

Q2 0 −Q1 (1 − p)Q2

To obtain the maximal domain, namely the whole linear space span(Q1, Q2), one can choose Q = Q2,
whence

SQ2 (P) = (Eu(x(Pu + Pv)), Ev(x(Pu + Pv))). (3.10)

Thereby, one has ker (SQ2 ) = span(P1), which is an ideal, and ran(S−1
Q2

) = span(P2, P3) modulo ker (SQ2 ).
From Table 1, one then obtains

S−1
Q2

(Q1) = −P2, S−1
Q2

(Q2) = 1

1 − p
P3, (3.11)

and thus the adjoint-symmetry bracket can be directly computed by

Q2 [Q1, Q2] = SQ2

([
−P2,

1

1 − p
P3

])
= p

2(1 − p)
SQ2 (P2) = p

2(p − 1)
Q1 (3.12)

through the symmetry commutator (3.6).
This bracket (3.12), shown in Table 2, is a non-trivial Lie bracket. It is isomorphic to the symmetry

subalgebra A= span(P2, P3), which is generated by space translation and scaling. This correspondence
between symmetries and adjoint-symmetries exists in the absence of any local variational structure
(Hamiltonian or Lagrangian) for the reaction-diffusion equations (3.1).

Since the third symmetry action is trivial, both the corresponding Noether operator (2.27) and sym-
plectic 2-form (2.28) are trivial. This is expected, as reaction-diffusion systems are inherently dissipative
(namely, the linearised system is parabolic).

4. Navier-Stokes equations
Consider the Navier-Stokes equations for compressible fluid flow [11, 16] with fluid velocity u(t, x) and
the density ρ(t, x) in one spatial dimension

ut + uux = (1/ρ)(−px + μuxx), ρt + (uρ)x = 0, (4.1)

where μ 
= 0 is the viscosity coefficient. Here the pressure will be specified by a general polytropic
equation of state

p(ρ) = kρq, q 
= 0 (4.2)

with coefficient k > 0. All of the parameters will be treated as being arbitrary. In the general notation
(2.1) for PDE systems,

G = (Gu, Gρ) = (ut + uux + (1/ρ)(px − μuxx), ρt + (uρ)x). (4.3)

The determining equations for symmetries Pu∂u + Pρ∂ρ (in evolutionary form) are given by

(DtP
u + Dx(uPu) + qDx((p/ρ2)Pρ) + μ(1/ρ)2uxxP

ρ − μ(1/ρ)D2
xPu)|EG = 0, (4.4a)

(DtP
ρ + Dx(uPρ + ρPu))|EG = 0, (4.4b)

where EG denotes the solution space of system (4.1)–(4.2). The adjoint of these equations yields the
determining equations for adjoint-symmetries (Qu, Qρ):
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Table 2. Reaction-diffusion system:
adjoint-symmetry bracket

Q1 Q2

Q1 0 p
2(p−1)

Q1

Q2 0

(−DtQ
u − uDxQ

u − ρDxQ
ρ − μD2

x((1/ρ)Qu))|EG = 0, (4.5a)

(−QtP
ρ − uDxQ

ρ − q(p/ρ2)DxQ
u + μ(1/ρ)2uxxQ

u)|EG = 0. (4.5b)

A basis for the linear space of Lie point symmetries, with P = (Pu, Pρ), consists of generators for a
time translation, a space translation, a Galilean boost, and a scaling:

P1 = (ut, ρt), P2 = (ux, ρx), P3 = (1 − tux, −tρx),

P4 =
(

1 − q

1 + q
u − 2q

1 + q
tut − xux, − 2

1 + q
ρ − 2q

1 + q
tρt − xρx

)
.

(4.6)

Their algebra is given by the non-zero commutators

[P1, P3] = P2, [P1, P4] = 2q

1 + q
P1, [P2, P4] = P2, [P3, P4] = 1 − q

1 + q
P3. (4.7)

A basis of the linear space of adjoint-symmetries, Q = (Qu, Qρ), is given by

Q1 = (0, 1), Q2 = (ρ, u), Q3 = (tρ, tu − x). (4.8)

They are multipliers for conservation laws of massM= ∫
R

ρ dx, momentumP = ∫
R

ρu dx, and Galilean
momentum G = ∫

R
ρ(tu − x) dx = tP −X (t) which is related to the motion of the centre of mass X (t) =∫

R
xρ dx.
The third symmetry action (2.26) is trivial (cf Section 2.2), while the other two symmetry actions

(2.25), (2.24) are given by the linear operator (3.8) with v = ρ,

SP(Q) = (Eu(PQt), Eρ(PQt)). (4.9)

This action is summarised in Table 3. For evaluating the symmetry actions, all t-derivatives of u and ρ

are replaced through equations (4.1).

4.1. Adjoint-symmetry bracket

To obtain a maximal domain on which an adjoint-symmetry bracket (2.13) can be defined via the
symmetry action (4.9), one seeks a maximal range for the dual operator

SQ(P) = (Eu(PQt), Eρ(PQt)). (4.10)

From Table 3, it is clear that the maximal range will be the whole linear space of adjoint-symmetries,
which is obtained for the choice Q = Q3 + c2Q2 + c1Q1, where one has

ker (SQ3+c2Q2+c1Q1 ) = span(P3 − c2P2). (4.11)

The subalgebra (4.11) is not an ideal, since [P1, P3 − c2P2] = P2, and consequently, the resulting
adjoint-symmetry bracket will depend on how coker(SQ3+c2Q2+c1Q1 ) is chosen in span(P1, P2, P3, P4).
However, the scaling symmetry P4 can be utilised (cf Section 2.4) to fix a canonical choice of
coker(SQ3+c2Q2+c1Q1 ) as follows. From the symmetry commutators (4.7), observe that span(P3) has a dif-
ferent scaling weight compared to span(P1) and span(P2). Also observe that span(Q1), span(Q2), and
span(Q3) have different scaling weights. Hence, one can take c2 = c1 = 0, whereby ker (SQ3 ) = span(P3)
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Table 3. Navier-Stokes equations: symmetry action (4.9) on
adjoint-symmetries

P1 P2 P3 P4

Q1 0 0 0 q−1
q+1

Q1

Q2 0 0 Q1 0
Q3 −Q2 Q1 0 2q

q+1
Q3

Table 4. Navier-Stokes equations: adjoint-
symmetry bracket

Q1 Q2 Q3

Q1 0 0 q+1
2q

Q1

Q2 0 Q2

Q3 0

and coker(SQ3 ) = span(P4) ⊕ span(P1) ⊕ span(P2) provides a well-defined decomposition (2.14) of the
symmetry Lie algebra under scaling. This determines ran(S−1

Q3
) = span(P1, P2, P4).

From Table 3, one now obtains

S−1
Q3

(Q1) = P2, S−1
Q3

(Q2) = −P1, S−1
Q3

(Q3) = q + 1

2q
P4. (4.12)

Hence, the adjoint-symmetry bracket (2.13) can be directly computed by
Q3 [Q1, Q2] = SQ3 ([P2, −P1]) = SQ3 (0) = 0, (4.13a)

Q3 [Q1, Q3] = SQ3

([
P2,

q + 1

2q
P4

])
= q + 1

2q
SQ3 (P2) = q + 1

2q
Q1, (4.13b)

Q3 [Q2, Q3] = SQ3 ([ − P1,
q + 1

2q
P4]) = −SQ3 (P1) = Q2, (4.13c)

through the symmetry commutator (4.7).
This bracket (3.12), shown in Table 4, is a non-trivial Lie bracket on the whole linear space

span(Q1, Q2, Q3) of adjoint-symmetries. In particular, from the inverse of the dual operator (4.12), one
sees that this Lie bracket structure is isomorphic to the symmetry subalgebraA= span(P1, P2, P4), which
is generated by time translation, space translation, and scaling.

Remarkably, this correspondence between symmetries and adjoint-symmetries exists despite the lack
of any local variational structure (Hamiltonian or Lagrangian) for the Navier-Stokes equations (4.1).

Finally, since the third symmetry action is trivial, both the corresponding Noether operator (2.27)
and symplectic 2-form (2.28) are trivial. This is expected, as viscous fluid flow is inherently dissipative.

5. Boussinesq system
Long wavelength, small amplitude surface water waves are described by a system of coupled Boussinesq
equations [14, 15]

�vt + ∇h + �v · ∇�v − ��vt = 0, ht + ∇ · �v + ∇ · (h�v) − �ht = 0, (5.1)

where, up to scaling of variables, h(t, x, y) is the water elevation and �v(t, x, y) is the horizontal velocity
of the water. For irrotational flow, one has �v = ∇u, which gives the coupled equations

ut + h + 1

2
|∇u|2 − �ut = 0, ht + �u + ∇ · (h∇u) − �ht = 0 (5.2)

https://doi.org/10.1017/S0956792522000328 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000328


European Journal of Applied Mathematics 983

for u(t, x, y) and h(t, x, y). This system is denoted as G = (Gu, Gh) in the general notation (2.1) for PDE
systems.

Symmetries (in evolutionary form) Pu∂u + Ph∂h are determined by the equations

(Dt(1 − D2
x − D2

y)P
u + uxDxP

u + uyDyP
u + Ph)|EG = 0, (5.3a)

(Dt(1 − D2
x − D2

y)Ph + Dx(uxP
h + hDxP

u) + Dy(uyP
h + hDyP

u)

+(D2
x + D2

y)P
u)|EG = 0, (5.3b)

where EG denotes the solution space of the system (5.2). The linear space of Lie point symmetries, with
P = (Pu, Ph), is generated by a shift, a time translation, space translations, a rotation, and a scaling:

P1 = (1, 0), P2 = (ut, ht), P3 = (ux, hx), P4 = (uy, hy),

P5 = (xuy − yux, xhy − yhx), P6 = (u + t(ut − 2), 2h + tht + 2).
(5.4)

Their algebra has the non-zero commutators

[P1, P6] = P1, [P2, P6] = 2P1 − P2, [P3, P5] = −P4, [P4, P5] = P3. (5.5)

Adjoint-symmetries Q = (Qu, Qh) are determined by the adjoint of the symmetry equations

((D2
x + D2

y − 1)DtQ
u − Dx(uxQ

u) − Dy(uyQ
u) + (D2

x + D2
y)Qh

+Dx(hDxQ
h) + Dy(hDyQ

h))|EG = 0, (5.6a)

((D2
x + D2

y − 1)DtQ
h − uxDxQ

h − uyDyQ
h + Qu)|EG = 0. (5.6b)

The linear space of low-order adjoint-symmetries is given by the basis

Q1 = (1, 0), Q2 = (ht, −ut), Q3 = (hx, −ux), Q4 = (hy, −uy),

Q5 = (xhy − yhx, yux − xuy), Q6 = (−2h − tht − 2), u + t(ut − 2)).
(5.7)

The first five of these adjoint-symmetries are also multipliers for conservation laws of (up to an overall
factor) mass, x- and y-momenta, angular momentum, and energy:

M=
∫
R2

h dx dy, (5.8a)

P x =
∫
R2

(uxhxx + uyhxy + uhx) dx dy, P y =
∫
R2

(uxhxy + uyhyy + uhy) dx dy, (5.8b)

I =
∫
R2

(y(uxhxx + uyhxy + uhx) − x(uxhxy + uyhyy + uhy)) dx dy, (5.8c)

E =
∫
R2

1

2
(h2 + h(u2

x + u2
y)) dx dy. (5.8d)

The sixth adjoint-symmetry is not a multiplier. Consequently, (cf Section 2.2) all three symmetry actions
(2.8), (2.9), (2.10) on adjoint-symmetries are different.

Moreover, the first and second actions differ only on the non-multiplier Q6. They are computed by
use of:

RP1 = 0, RP2 =
(

Dt 0

0 Dt

)
, RP3 =

(
Dx 0

0 Dx

)
, RP4 =

(
Dy 0

0 Dy

)
,

RP5 =
(

xDy − yDx 0

0 xDy − yDx

)
, RP6 =

(
tDt + 2 0

0 tDt + 3

)
, (5.9)
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Table 5. Boussinesq system: symmetry action (2.8) on adjoint-
symmetries

P1 P2 P3 P4 P5 P6

Q1 0 0 0 0 0 2Q1

Q2 0 0 0 0 0 4Q2 − 2Q1

Q3 0 0 0 0 Q4 3Q3

Q4 0 0 0 0 −Q3 3Q4

Q5 0 0 −Q4 Q3 0 3Q5

Q6 Q1 2Q1 − Q2 0 0 0 3Q6

Table 6. Boussinesq system: symmetry action (2.9) on adjoint-
symmetries

P1 P2 P3 P4 P5 P6

Q1 0 0 0 0 0 2Q1

Q2 0 0 0 0 0 4Q2 − 2Q1

Q3 0 0 0 0 Q4 3Q3

Q4 0 0 0 0 −Q3 3Q4

Q5 0 0 −Q4 Q3 0 3Q5

Q6 −2Q1 2Q1 − 4Q2 −3Q3 −3Q4 −3Q5 0

and

RQ1 = 0, RQ2 =
(

0 Dt

−Dt 0

)
, RQ3 =

(
0 Dx

−Dx 0

)
, RQ4 =

(
0 Dy

−Dy 0

)
,

RQ5 =
(

0 xDy − yDx

yDx − xDy 0

)
, RQ6 =

(
0 tDt + 3

−tDt − 2 0

)
, (5.10)

which are readily derived from the expressions (5.4) and (5.7). This leads to the results shown in Tables 5
and 6.

Using the first action (2.8), one can obtain an adjoint-symmetry bracket on a maximal domain which
is given by having a maximal range for the dual action (2.11). The kernel of the dual action is thereby
desired to have a minimal dimension, and it also must be an ideal in the symmetry algebra. From the
symmetry commutators (5.5), the only 1-dimensional ideal is span(P1), while the 2-dimensional ideals
consist of {P1, P2}, {P3, P4}. One can find the kernel of the dual action SQ(P) for Q =∑

i=1..6 ciQi from
Table 5. The cases having dimension at most 2 consist of ker (SQ) = span(P5 − c4

c5
P4 − c3

c5
P3) if c5 
= 0,

and ker (SQ) = span(P3, P4) if c5 = 0, c6 
= 0. Only the latter case is an ideal. Then, the range of SQv (Pv)
turns out to be contained in span(Q1, Q2, Q4 − c4

c3
Q3, Q6 + c3

2+c4
2

c3c6
Q3), which will be the maximal domain

for the adjoint-symmetry bracket. This yields the result shown in Table 7.
For the second action (2.9), one can show from Table 5 that none of the cases in which the kernel of

the dual action SQ(P) for Q =∑
i=1..6 ciQi is at most 2-dimensional are ideals. The case having minimal

dimension such that the kernel is an ideal turns out to be ker (SQ) = span(P1, P2, P3, P4), which arises
when c5 = c6 = 0. The maximal domain of the resulting adjoint-symmetry bracket is then 2 dimensional.

Finally, the third symmetry action (2.9), which is shown in Table 8, is non-trivial only on the non-
multiplier Q6. This action directly yields a bracket on the whole space span(Q1, Q2, Q3, Q4, Q5, Q6),
which is isomorphic to symmetry algebra.
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Table 7. Boussinesq system: adjoint-symmetry bracket from symmetry
action (2.8) with Q = Q6 + c4Q4 + c3Q3 + c2Q2 + c1Q1, where Q4

′ =
Q6 + c3

2+c4
2

c3
Q3, Q3

′ = Q4 − c4
c3

Q3, Q2
′ = Q2, Q1

′ = Q1

Q1
′ Q2

′ Q3
′ Q4

′

Q1
′ 0 0 0 1

3
Q1

′
Q2

′ 0 0 2
3
Q1

′ − 1
3
Q2

′
Q3

′ 0 0
Q4

′ 0

Table 8. Boussinesq system: symmetry action (2.10) on the non-
multiplier adjoint-symmetry

P1 P2 P3 P4 P5 P6

Q6 3Q1 3Q2 3Q3 3Q4 3Q5 3Q6

5.1. Symplectic 2-form and Hamiltonian operator

The third symmetry action encodes a Noether operator J (cf Section 2.3) for the Boussinesq system
(5.2). Specifically, one has

J = 1

3
(Q′

6 + R∗
Q6

) =
(

0 −1

1 0

)
, (5.11)

which is obtained from

Q′
6 =

(
0 −2 − tDt

1 + tDt

)
, R∗

Q6
=
(

0 tDt − 1

−tDt + 2 0

)
. (5.12)

The factor 1
3

has been inserted here as a convenient normalisation for the sequel.
There is a bilinear form (2.28) associated with the Noether operator (5.11):

ωQ6 (P, P̃) =
∫

P̃J (P)t dx =
∫

(P̃hPu − P̃uPh) dx, (5.13)

where Pu∂u + Ph∂h and P̃u∂u + P̃h∂h are any pair of symmetries. This bilinear form is skew and closed
(cf Section 2.6), whence it defines a symplectic 2-form. In particular, J is a symplectic operator.

The inverse of J defines a Hamiltonian operator

H=J −1 =
(

0 1

−1 0

)
. (5.14)

This indicates that the Boussinesq system (5.2) has a Hamiltonian formulation. If the time-derivative
terms in each equation in the system are combined on one side, then

(ut − �ut, ht − �ht)
t =H(δE/δu, δE/δh)t (5.15)

yields a Hamiltonian formulation in terms of the conserved energy, E . This formulation can be expressed
in the equivalent form (

u

h

)
t

= (1 − �)−1H
(

δE/δu

δE/δh

)
, (5.16)

where (1 − �)−1H is also a Hamiltonian operator.
Thus, the symmetry action (6.17) in Table 8 involving the non-multiplier adjoint-symmetry directly

encodes the Hamiltonian structure of the Boussinesq system (5.2). Moreover, because the Hamiltonian
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operator (5.14) is algebraic, it directly yields a Lagrangian structure:

H
(

Gu

Gh

)
=
(

Eu(L)

Eh(L)

)
, L = (h − �h)ut + 1

2
(h2 + h(u2

x + u2
y), (5.17)

where Gu and Gh denote the respective PDEs in the Boussinesq system (5.2). Here, Eu and Eh are the
Euler operators with respect to u and h.

6. Coupled solitary wave equations
The near-resonant interaction of weakly nonlinear solitary waves can be described by a coupled system
of KdV equations [17]. Consider, in particular, the nonlinearly coupled equations

ut + (uv)x + uxxx = 0, vt + uux + κvxxx = 0, (6.1)

after scaling of the variables, where κ 
= 0 is a relative dispersion parameter. Here u(t, x) and v(t, x) are
the amplitudes of the two waves. This system models [12, 21] the energy transfer between Rossby waves
in equatorial latitudes and mid-latitudes in the atmosphere.

Symmetries (in evolutionary form) Pu∂u + Pv∂v are determined by the equations

(DtP
u + Dx(uPv + vPu) + D3

xPu)|EG = 0, (6.2a)

(DtP
v + Dx(uPu) + κD3

xP
v)|EG = 0, (6.2b)

where EG denotes the solution space of the system (6.1). Adjoint-symmetries (Qu, Qv) are determined
by the adjoint equations

(−DtQ
u − vDxQ

u − uDxQ
v − D3

xQu)|EG = 0, (6.3a)

(−DtQ
v − uDxQ

u − κD3
xQ

v)|EG = 0. (6.3b)

In the general notation (2.1) for PDE systems, here G = (Gu, Gv) denotes the two respective
equations (6.1).

The linear space of Lie point symmetries of this system (6.1), with P = (Pu, Pv), is generated by a
time translation, a space translation, and a scaling:

P1 = (ut, vt), P2 = (ux, vx), P3 = (2u + xux + 3tut, 2v + xvx + 3tvt). (6.4)

Their algebra has the non-zero commutators

[P1, P3] = −3P1, [P2, P3] = −P2. (6.5)

The linear space of low-order adjoint-symmetries, Q = (Qu, Qv), is given by the basis

Q1 = (1, 0), Q2 = (0, 1), Q3 = (u, v), Q4 = (uv + uxx,
1

2
u2 + κvxx). (6.6)

These adjoint-symmetries are also multipliers for conservation laws of (up to an overall factor) the
mass Mu = ∫

R
u dx and Mv = ∫

R
v dx for each wave, the combined momentum of the waves P =∫

R
(u2 + v2) dx, and the net energy of the waves E = ∫

R

1
2
(u2

x + κv2
x − vu2) dx.

One sees that the third symmetry action (2.26) is trivial (cf Section 2.2), while the other two symmetry
actions (2.24) and (2.25) are given by the linear operator (3.8). This action is summarised in Table 9.
For evaluating the symmetry actions, all t-derivatives of u and v are replaced through equations (6.1).
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Table 9. Coupled solitary wave equations:
symmetry action (3.8) on adjoint-symmetries

P1 P2 P3

Q1 0 0 Q1

Q2 0 0 Q2

Q3 0 0 3Q3

Q4 0 0 5Q4

6.1. A nonlocal adjoint-symmetry and associated adjoint-symmetry brackets

From the symmetry action shown in Table 9, the dual action has ker SQ(P) = span(P1, P2) for any choice
of adjoint-symmetry Q. Hence, the cokernel, which is given by span(P3), is only 1-dimensional. Since
the dimension of the cokernel gives the dimension of the maximal domain on which a corresponding
adjoint-symmetry bracket can be defined, the resulting bracket is trivial.

However, the situation changes when one considers the possibility of nonlocal adjoint-symmetries
arising from potentials obtained via the mass conservation laws. These potentials are given by u = Ux

and v = Vx, and they satisfy the coupled system

Ut + UxVx + Uxxx = 0, Vt + 1

2
U2

x + κVxxx = 0. (6.7)

Adjoint-symmetries (QU , QV) of this system are determined by the equations

(−DtQ
U − Dx(VxQ

U + UxQ
V) − D3

xQU)|EG = 0, (6.8a)

(−DtQ
V − Dx(UxQ

U) − κD3
xQ

V)|EG = 0. (6.8b)

Note the relation

(QU , QV) = −Dx(Q
u, Qv) (6.9)

holds directly from the adjoint-symmetry equations (6.3) and (6.8).
The linear space of low-order adjoint-symmetries (QU , QV) is generated by three adjoint-symmetries,

two of which are inherited from the adjoint-symmetries Q3 and Q4 of the original system (6.1) for u, v,
through the relation (6.9). The other low-order adjoint-symmetry is given by

(QU , QV) = −(2Ux + xUxx + 3tUtx, 2Vx + xVxx + 3tVtx). (6.10)

Applying the inverse relation

(Qu, Qv) = −D−1
x (QU , QV), (6.11)

one obtains the nonlocal adjoint-symmetry

Q5 = (U + xUx + 3tUt, V + xVx + 3tVt) =
(

U + xu − 3t(uv + κuxx), V + xv − 3t

(
1

2
u2 + vxx

))
(6.12)

admitted by the system (6.1) for u, v. One can straightforwardly show that this adjoint-symmetry is not
a multiplier.

When the first symmetry action, as given by the linear operator (3.8), is applied to Q5, one obtains

SP1 (Q5) = 5Q4, SP2 (Q5) = −3Q3, SP3 (Q5) = 0, (6.13)

by using the variational derivative relations Eu = −D−1
x EU and Ev = −D−1

x EV . Consequently, if one
chooses

Q = Q5 + c2Q2 + c1Q1 := Q5
′ (6.14)

https://doi.org/10.1017/S0956792522000328 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000328


988 S. C. Anco

Table 10. Coupled solitary wave equations: adjoint-symmetry
bracket from symmetry action (3.8) with Q = Q5 + c2Q2 + c1Q1

c1Q1 + c2Q2 Q3 Q4

c1Q1 + c2Q2 0 Q3 3Q4

Q3 0 0
Q4 0

Table 11. Coupled solitary wave equations: symmetry
action (6.17) on the nonlocal adjoint-symmetry (6.12)

P1 P2 P3

Q5 −2Q4 2Q3 2Q5

Table 12. Coupled solitary wave equations:
adjoint-symmetry bracket from symmetry action
(6.17) with Q = Q5

Q3 Q4 Q5

Q3 0 0 − 1
2
Q3

Q4 0 − 3
2
Q4

Q5 0

with at least one of c1, c2 being non-zero, then ker SQ(P) is empty, and so the cokernel consists of the
whole linear space of Lie point symmetries, span(P1, P2, P3). This choice of Q produces a maximal
domain for defining the adjoint-symmetry bracket (2.13).

From equation (6.13) and Table 9, one obtains

SP1 (Q5
′ ) = SQ

5
′ (P1) = 5Q4, SP2 (Q5

′ ) = SQ
5
′ (P2) = −3Q3,

SP3 (Q5
′ ) = SQ

5
′ (P3) = c1Q1 + c2Q2,

(6.15)

which yields

S−1
Q

5
′ (c1Q1 + c2Q2) = P3, S−1

Q
5
′ (Q3) = −1

3
P2, S−1

Q
5
′ (Q4) = 1

5
P1. (6.16)

The resulting adjoint-symmetry bracket (2.13) on the linear subspace span(c1Q1 + c2Q2, Q3, Q4) is
shown in Table 10. This bracket is a Lie bracket which is isomorphic to the symmetry algebra (6.5).

Since Q5 is not a multiplier, the third symmetry action (2.26) is now non-trivial. In terms of compo-
nents Q = (Qu, Qv) and P = (Pu, Pv), the form of this symmetry action is given by the linear operator

SP(Q) = (
prXf (Q

u) − Eu(Qf t), prXf (Q
v) − Ev(Qf t)

)∣∣
f =P

(6.17)

with Xf = f u(t, x)∂u + f v(t, x)∂v, where prX, Eu, Ev are regarded as operators in total derivatives when
f = (f u(t, x), f v(t, x)) is replaced by P = (Pu, Pv). For Q = Q5, the resulting action is summarised in
Table 11.

The range of this action is the linear subspace of adjoint-symmetries span(Q3, Q4, Q5), which provides
a maximal domain for the adjoint-symmetry bracket (2.13) with Q = Q5, as shown in Table 12. The
resulting bracket is a Lie bracket which is isomorphic to the symmetry algebra (6.5).

https://doi.org/10.1017/S0956792522000328 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000328


European Journal of Applied Mathematics 989

6.2. Symplectic 2-form and Hamiltonian operator

The symmetry action (6.17) constructed in terms of the nonlocal adjoint-symmetry (6.12) encodes a
Noether operator J (cf Section 2.3) for the coupled KdV equations (6.1). Specifically, one has J (P) =
SP(Q5) = (

prXf Qu
5 − Eu(Q5f t), prXf Qv

5 − Ev(Q5f t)
)∣∣

f =P
, where

(prXf Q
u
5, prXf Q

v
5)|f =P

= (
D−1

x Pu + xPu − 3t(vPu + uPv + κD2
xP

u), D−1
x Pv + xPv − 3t(uPu + D2

xP
v)
) (6.18)

and
(Eu(Q5f t), Ev(Q5f

t))|f =P

= (−D−1
x Pu + xPu − 3t(vPu + uPv + κD2

xP
u), −D−1

x Pv + xPv − 3t(uPu + D2
xPv)

)
.

(6.19)

This yields, after scaling by a convenient normalisation factor 1
2
,

J =
(

D−1
x 0

0 D−1
x

)
(6.20)

which actually is a symplectic operator. In particular, there is a bilinear form (2.28) associated with this
operator,

ωQ5 (P, P̃) =
∫

P̃J (P)t dx =
∫

(P̃uD−1
x Pu + P̃vD−1

x Pv) dx, (6.21)

where Pu∂u + Pv∂v and P̃u∂u + P̃v∂v are any pair of symmetries, and t denotes the transpose. Modulo
boundary terms, this bilinear form is skew and closed (cf Section 2.6), and hence it defines a symplectic
2-form.

The inverse of J defines a Hamiltonian operator

H=J −1 =
(

Dx 0

0 Dx

)
. (6.22)

As a consequence, the coupled KdV equations (6.1) have the Hamiltonian formulation

(ut, vt)
t =H(δE/δu, δE/δv)t (6.23)

in terms of the conserved energy, E . From this formulation, one has ut = Dx(δE/δu) and vt = Dx(δE/δv),
which are analogous to the well-known first Hamiltonian structure of the KdV equation.

The symmetry action (6.17) involving the nonlocal adjoint-symmetry (6.12) thereby directly encodes
the Hamiltonian structure of the coupled KdV equations (6.1).

7. Nonlinear acoustic equation
Nonlinear and dissipative effects in the propagation of sound waves in a compressible medium (like
gases, liquids, or human tissue) [18] can be modelled by the wave equation ptt − β(p2)tt − αpttt = �p,
known as Westervelt’s equation [27], where α > 0 is the damping coefficient and β > 0 is the nonlin-
earity coefficient which arises from the equation of state ρ ≈ p − βp2 − αpt. Here, p(t, x, y, z) is the
pressure fluctuation, ρ(t, x, y, z) is the density, and units have been chosen so that the sound speed for
small amplitude waves (i.e. the linear approximation) is c = 1.

For the situation of spherical waves, Westervelt’s equation becomes

ptt − β(p2)tt − αpttt = prr + 2

r
pr (7.1)

for p(t, r), where r is radial variable.
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The determining equation for symmetries (in evolutionary form) P∂p is given by

(D2
t (P + 2βpP) − αD3

t P − D2
r P + 2

r
DrP)|EG = 0, (7.2)

where EG denotes the solution space of equation (7.1). Lie point symmetries are comprised by a time
translation and two generalised scalings:

P1 = pt, P2 = 2p + 2tpt + 3rpr − 1

β
, (7.3)

and, when α = 0,

P3 = tpt + rpr. (7.4)

The non-zero commutators in the symmetry algebra consist of

[P1, P2] = −2P1, [P1, P3] = −P1. (7.5)

Adjoint-symmetries Q are determined by the adjoint of equation (7.2):

(D2
t Q + 2βpD2

t Q − D2
r Q − 2

r
DrQ + 2

r2
Q)|EG = 0. (7.6)

The linear space of low-order adjoint-symmetries is given by the basis

Q1 = r, Q2 = r2 Q3 = t r, Q4 = t r2. (7.7)

These adjoint-symmetries are also multipliers for conservation laws of the following quantities (up to
an overall factor):

I =
∫ ∞

0

((1 − 2βp)pt − αptt) r2 dr = d

dt
M(t), X = tI −M(t), (7.8)

I r =
∫ ∞

0

((1 − 2βp)pt − αptt) r dr = d

dt
Mr(t), X r = tI r −Mr(t), (7.9)

where, from the equation of state, M(t) ≈ ∫ ∞
0

ρ r2 dr and Mr(t) ≈ ∫ ∞
0

ρ r dr. The latter two integrals
have the respective physical meanings of the total mass and a weighted total mass with the weighting
factor being 1

r
. Hence, conservation of the quantity I corresponds to M(t) having a constant rate of

change, while conservation of χ gives M(t) = tI −M(0). Conservation of I r and χ r are their radially
weighted counterparts.

Because the symmetry space is two dimensional if α 
= 0, the maximal domain on which an adjoint-
symmetry bracket can be defined is a 2-dimensional subspace of the four-dimensional space of adjoint-
symmetries. In the case α = 0, the maximal domain is at most 3-dimensional.

However, an adjoint-symmetry bracket on a much larger space can be found by considering the
adjoint-symmetries and symmetries in a potential system. Potentials can be introduced in several differ-
ent ways through each of the four conservation laws. The most useful potential arises through two layers
as follows, using the conservation law for transverse momentum.

First, in the standard way [13], put

(1 − 2βp)pt − αptt = r−2ur, (7.10a)

pr = r−2ut, (7.10b)

which turns the wave equation (7.1) into an identity satisfied by the potential u(t, r). Next, introduce a
further potential v(t, r) through equation (7.10b), by putting

p = r−2vt, r−2u = (r−2v)r. (7.11)

Then, equation (7.10a) yields vtt − 2βr−2vtvtt − αvttt = ur, which gives a second layer potential system

vr = 2r−1v + u, (vt − βr−2v2
t − αvtt)t = ur, (7.12)

https://doi.org/10.1017/S0956792522000328 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000328


European Journal of Applied Mathematics 991

or equivalently

(vt − βr−2v2
t − αvtt)t =

(
vr − 2

r
v

)
r

. (7.13)

7.1. Adjoint-symmetry brackets arising from a potential system

Symmetries (in evolutionary form) Pv∂v of the potential equation (7.13) are determined by the equation

(D2
t Pv − 2βr−2Dt(vtDtP

v) − αD3
t Pv − D2

r Pv + 2Dr(r
−1Pv))|EGv = 0, (7.14)

where EGv denotes the solution space of equation (7.13). Adjoint-symmetries Qv are determined by the
adjoint equation

(D2
t Q

v − 2βr−2Dt(vtDtQ
v) + αD3

t Qv − D2
r Q

v − 2r−1DrQ
v))|EGv = 0. (7.15)

The linear space of Lie point symmetries of the potential equation (7.13) is generated by two shifts,
in addition to the three point symmetries that are inherited from the acoustic wave equation (7.1) via the
relation

P = r−2DtP
v. (7.16)

In particular, these symmetries are given by

Pv
1 = r2, Pv

2 = r, Pv
3 = vt, Pv

4 = 2tvt + 3rvr − 6v − 1

β
t r2, (7.17)

and, when α = 0,

Pv
5 = tvt + rvr − 3v. (7.18)

Their algebra has the non-zero commutators

[Pv
1, Pv

5] = −Pv
1, [Pv

2, Pv
4] = −3Pv

2, [Pv
2, Pv

5] = −2Pv
2,

[Pv
3, Pv

4] = 1

β
Pv

1 − 2Pv
3, [Pv

3, Pv
5] = −Pv

3.
(7.19)

Note that the shifts Pv
1 and Pv

2 project onto trivial symmetries P = 0 of the acoustic wave equation (7.1).
The linear space of low-order adjoint-symmetries is given by the basis

Qv
1 = 1, Qv

2 = r−1, (7.20)

and, when α = 0,

Qv
3 = r−2vt, Qv

4 = r−2(3tvt − 9v) + 7r−1vr − 4
1

β
t, (7.21a)

Qv
5 = r−1vr − 1

β
t. (7.21b)

One can easily check that the adjoint-symmetry (7.21b) is not a conservation law multiplier. The two
adjoint-symmetries (7.21a) are multipliers for conservation of energy

E =
∫ ∞

0

(
1

2
p2 − 2

3
βp3 + 1

2
r−4v2

r − r−6v2

)
r2 dr, (7.22)

and a dilation energy

W =
∫ ∞

0

(
t

(
11

2
p2 − 2βp3 − 4

1

β
p + 3

2
r−2v2

r − 3r−6v2

)

+7r−1(p − βp2) −
(

9p − 9βp2 − 4
1

β

)
v

)
r2 dr, (7.23)
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Table 13. Acoustic potential equation: symmetry action (2.8) on
adjoint-symmetries

Pv
1 Pv

2 Pv
3 Pv

4 Pv
5

Qv
1 0 0 0 −5Qv

1 −3Qv
1

Qv
2 0 0 0 −2Qv

2 −2Qv
2

Qv
3 0 0 0 − 1

β
Qv

1 − 3Qv
3 −3Qv

3

Qv
4 5Qv

1 −2Qv
2 4 1

β
Qv

1 − 3Qv
3 −5Qv

4 −4Qv
4

Qv
5 2Qv

1 Qv
2

1
β
Qv

1 −5Qv
5 −4Qv

5

Table 14. Acoustic potential equation: symmetry action (2.9) on
adjoint-symmetries

Pv
1 Pv

2 Pv
3 Pv

4 Pv
5

Qv
1 0 0 0 −5Qv

1 −3Qv
1

Qv
2 0 0 0 −2Qv

2 −2Qv
2

Qv
3 0 0 0 − 1

β
Qv

1 − 3Qv
3 −3Qv

3

Qv
4 5Qv

1 −2Qv
2 4 1

β
Qv

1 − 3Qv
3 −5Qv

4 −4Qv
4

Qv
5 −Qv

1 −2Qv
2

1
β

Qv
1 − 3Qv

3 −2Qv
4 −Qv

4

Table 15. Acoustic potential equation: symmetry action (2.10) on the
non-multiplier adjoint-symmetry

Pv
1 Pv

2 Pv
3 Pv

4 Pv
5

Qv
5 3Qv

1 3Qv
2 3Qv

3 2Qv
4 − 5Qv

5 Qv
4 − 4Qv

5

respectively. Finally, the first two adjoint-symmetries (7.20) are inherited from Q3 and Q4 via the
relation

Qv = −r−2DtQ (7.24)

which follows directly from the adjoint-symmetry determining equations (7.6) and (7.15). These
inherited adjoint-symmetries are thus the respective multipliers for conservation of X and X r. (Note
that P and P r are locally trivially when they are evaluated on EGv in terms of the potential v.)

The three actions of the symmetries (7.17)–(7.18) on the adjoint-symmetries (7.20)–(7.21) give rise
to adjoint-symmetry brackets at the level of the potential equation (7.13). This structure will not be pre-
served under projection (7.16) and (7.24) back to the acoustic wave equation, since two of the potential
symmetries are lost, in contrast to the example of the coupled solitary wave equations considered in the
previous section.

The first and second actions (2.8), (2.9) here differ only on the non-multiplier Q5. They are computed
from the symmetry and adjoint-symmetry expressions by use of:

RPv
1
= RPv

2
= 0, RPv

3
= Dt, RPv

4
= 2tDt + 3rDr, RPv

5
= tDt + rDr − 1, (7.25)

and

RQv
1
= RQv

2
= 0, RQv

3
= r−2Dt, RQv

4
= r−2(3tDt + 7rDr + 5), RQv

5
= r−2(rDr + 2). (7.26)

This leads to the results shown in Tables 13 and 14.
The third action (2.10), which is shown in Table 15, is non-trivial only on the non-multiplier Q5.
Now, the adjoint-symmetry brackets arising from the dual actions (2.11) will be considered. The

maximal domain for defining a bracket is given by having a maximal range for the dual action, and,
therefore, a minimal dimension for the kernel which also must be an ideal in the symmetry algebra. From
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Table 16. Acoustic potential equation: adjoint-symmetry bracket
from symmetry action (2.8) with Qv = Qv

5 − 2
5
Qv

4 + c3Qv
3 + c2Qv

2 +
c1Qv

1, where Qv

4
′ = λ(Qv

5 − 2
5
Qv

4), Qv

3
′ = λQv

3, Qv

2
′ = λQv

2, Qv

1
′ = λ(Qv

1 −
2βQv

3), λ = c3 + 2βc1

Qv

1
′ Qv

2
′ Qv

3
′ Qv

4
′

Qv

1
′ 0 − 4β

5
Qv

2
′ 3

5
Qv

1
′ − 3c3

5
Qv

1
′ + 4βc2

5
Qv

2
′

Qv

2
′ 0 2

5
Qv

2
′

c3+2βc1
5

Qv

2
′

Qv

3
′ 0 βc1−c3

5β
Qv

1
′ + 2c2

5
Qv

2
′

Qv

4
′ 0

Table 17. Acoustic potential equation: adjoint-symmetry bracket from
symmetry action (2.8) with Qv = Qv

5 + 1
2
Qv

4 + c3Qv
3 + c2Qv

2 + c1Qv
1,

where Qv

4
′ = Qv

5 + 1
2
Qv

4, Qv

3
′ = Qv

3, Qv

2
′ = c2Qv

2, Qv

1
′ = Qv

1

Qv

1
′ Qv

2
′ Qv

3
′ Qv

4
′

Qv

1
′ 0 5

2
Qv

1
′ 0 −Qv

1
′

Qv

2
′ 0 − 2

β
Qv

1
′ + 3

2
Qv

3
′

4c3+5βc1
2β

Qv

1
′ − 3c3

2
Qv

3
′

Qv

3
′ 0 1

β
Qv

1
′ + Qv

3
′

Qv

4
′ 0

the symmetry commutators (7.19), the ideals with smallest dimension consist of span(Pv
1), span(Pv

2),
which are 1-dimensional.

For the first symmetry action, shown in Table 13, the dual action SQv (Pv) given by Qv =∑
i=1..5 ciQv

i

will have span(Pv
1) as the kernel if c5 = 1, c4 = − 2

5
, and span(Pv

2) as the kernel if c5 = 1, c4 = 1
2
. In

both cases, the range of SQv (Pv) is contained in span(Qv
1, Qv

2, Qv
3, Qv

5 + c4Qv
4), which will be the maximal

domain for the resulting adjoint-symmetry bracket. This yields the brackets shown in Tables 16 and 17.
For the second symmetry action, shown in Table 14, the dual action SQv (Pv) given by Qv =∑

i=1..5 ciQv
i

never has span(Pv
1) or span(Pv

2) as the kernel. In particular, in the first case, one needs c5 = 1, c4 = 1
5
, but

then the kernel also contains span(Pv
5 − 3

5
Pv

4 − c3
3

Pv
3 − c2

3
Pv

2); and in the second case, one needs c5 = 1,
c4 = −1, whereby the kernel then also contains span(Pv

3 − 1
2β

Pv
1, Pv

5 − Pv
4 + c3+2βc1

6β
Pv

1). In both cases, the
kernel is at least 2-dimensional, and hence, the maximal domain on which an adjoint-symmetry bracket
can be defined is at most 3-dimensional, which is no larger than the domain arising at the level of the
acoustic wave equation.

Finally, for the third symmetry action, which appears in Table 15, the dual action with Qv =
Qv

5 has an empty kernel, whence an adjoint-symmetry bracket is obtained on the whole space of
adjoint-symmetries span(Qv

1, Qv
2, Qv

3, Qv
4, Qv

5). This bracket is shown in Table 18, and one sees that
it is isomorphic to symmetry algebra through the correspondence Qv

1 ↔ Pv
1, Qv

2 ↔ Pv
2, Qv

3 ↔ Pv
3,

Qv
4 ↔ 4Pv

4 − 5Pv
5, Qv

5 ↔ Pv
4 − 2Pv

5.

7.2. Noether operator and variational structure

The third symmetry action (2.10) encodes a Noether operator J for the acoustic potential equation
(7.12) with α = 0, namely when there is no damping.

This operator is given by J v = Qv
5
′ + R∗

Qv
5
= 3r−2, since one has

Qv
5
′ = r−1Dr, R∗

Qv
5
= r−2(3 − rDr). (7.27)
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Table 18. Acoustic potential equation: adjoint-symmetry bracket from
symmetry action (2.10) with Qv = Qv

5

Qv
1 Qv

2 Qv
3 Qv

4 Qv
5

Qv
1 0 0 0 5

3
Qv

1
2
3
Qv

1

Qv
2 0 0 − 2

3
Qv

2
1
3
Qv

2

Qv
3 0 4

3β
Qv

1 − Qv
3

1
3β

Qv
1

Qv
4 0 0

Qv
5 0

For convenience, a factor 1
3

will be inserted in hereafter so that

J v = r−2. (7.28)

The Noether operator (7.28) provides a mapping of symmetries into adjoint-symmetries:

J v(Pv) = r−2Pv = Qv. (7.29)

Specifically, in terms of the respective symmetry basis (7.17)–(7.18) and adjoint-symmetry basis (7.20)–
(7.21), one sees that J v(Pv

1) = Qv
1, J v(Pv

2) = Qv
2, J v(Pv

3) = Qv
3, J v(Pv

4) = 2
3
Qv

4 − 5
3
Qv

5, J v(Pv
5) = 1

3
Qv

4 −
4
3
Qv

5.
As the Noether operator is algebraic, it yields a Lagrangian structure:

J v(Gv) = Ev(L), (7.30)

where Gv denotes the potential equation (7.12) with α = 0, and where the Lagrangian is straightforwardly
found to be

L = 1

2
r−2(v2

r − v2
t ) + r−4

(
1

3
βv3

t − v2

)
. (7.31)

Here, Ev is the Euler operator with respect to v.
The preceding structure can be lifted to the acoustic wave equation (7.1) through the relations (7.24)

and

r−2DtG
v = G, (7.32)

where G denotes the PDE (7.1) with α = 0. These relations imply that

J = −r2D−1
t J vr2D−1

t = −r2D−2
t (7.33)

defines a Noether operator for the acoustic wave equation (7.1) with no damping, α = 0. In particular,
using the form of the potential p = r−2vt, one has

J (P1) = −r2D−2
t (pt) = −v, (7.34a)

J (P2) = −r2D−2
t

(
2p + 2tpt + 3rpr − 1

β

)
= 1

β
t2r2 − 2tvt − 3r∂−1

t vr + 8∂−1
t v, (7.34b)

J (P3) = −r2D−2
t (tpt + rpr) = v − ∂−1

t (tv) − r∂−1
t vr + 2∂−1

t v, (7.34c)

all of which can be verified to be nonlocal adjoint-symmetries Q.
The Lagrangian structure becomes

J (G) = Ep(L) (7.35)

through the variational derivative relation δ/δv = −r−2Dtδ/δp, where L is a nonlocal expression (7.31)
in terms of p:

L = r2

(
1

2

(
∂−1

t pr

)2 − 1

2
p2 + 1

3
βp3

)
− (∂−1

t p)2. (7.36)
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Thus, the symmetry action in Table 15 involving the non-multiplier adjoint-symmetry directly
encodes a variational structure for the undamped acoustic wave equation.

7.3. Hamiltonian structure

The variational structure can also be lifted to the level of the first-layer potential system (7.10). Denote
the PDEs in this system by G1 = pr − r−2ut and G2 = wr − r2(p − βp2)t, which satisfy the relation

Dr(r
2G1) + DtG

2 = −DtG
v = −r2G. (7.37)

The determining equations for an adjoint-symmetry (Q1, Q2) of the potential system (G1, G2) = 0 are
given by

(−DxQ
1 + r2(1 − 2βp)DtQ

2)|E(G1,G2)
= 0, (−DxQ

2 + r−2DtQ
1)|E(G1,G2)

= 0. (7.38)

From the PDE relation (7.37), one can show that

Q1 = −r2DrD
−1
t Qv = r2Dr(r

−2Q), Q2 = −Qv = r2DtQ. (7.39)

Similarly, a symmetry P∂p + Pu∂u of the potential system satisfies

P = r−2DtP
v, Pu = r2Dr(r

−2Pv). (7.40)

Now consider the non-multiplier adjoint-symmetry (7.21b). The corresponding adjoint-symmetry
(Q1, Q2) of the potential system (G1, G2) = 0 is given by

Q1 = −r2DrD
−1
t

(
r−1vr − 1

β
t

)
= −(∂−1

t u + r3(p − βp2)),

Q2 = −
(

r−1vr − 1

β
t

)
= −(r−1u + 2∂−1

t p) + 1

β
t,

(7.41)

with the use of equations (7.10) and (7.11) for the potentials. A straightforward computation then yields

Q1 ′(P, Pu) = −(D−1
t Pu + r3(1 − 2βp)P), Q2 ′(P, Pu) = −(r−1Pu + 2D−1

t P), (7.42)

and

R∗
Q1 (P, Pu) = r3(1 − 2βp)P, R∗

Q2 (P, Pu) = D−1
t P + r−1Pu. (7.43)

Hence, one obtains (
Q1 ′(P, Pu) + R∗

Q1 (P, Pu)

Q2 ′(P, Pu) + R∗
Q2 (P, Pu)

)
=
(−D−1

t Pu

−D−1
t P

)
=J

(
P

Pu

)
, (7.44)

giving the Noether operator

J = −
(

0 D−1
t

D−1
t 0

)
. (7.45)

The equations in the potential system have the following variational structure in terms of the inverse
of the Noether operator (7.45),

J −1 = −
(

0 Dt

Dt 0

)
. (7.46)

One sees that

(pr, ur)
t = −J −1(∂pE, ∂uE)t, (7.47)

where

E = r2

(
1

2
p2 − 1

3
βp3

)
+ r−2 1

2
u2. (7.48)
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This structure is, formally, a Hamiltonian formulation in which J −1 and E respectively play the roles
of the Hamiltonian operator and the Hamiltonian density, where r represents the ‘time’ coordinate for
the evolution and t represents the ‘spatial’ coordinate with respect to which J −1 is skew-adjoint. Also,
E is in fact the density of the energy integral (7.22) expressed in terms of p and u: E = ∫ ∞

0

(
r2( 1

2
p2 −

1
3
βp3) + r−2 1

2
u2
)

dr.

8. Concluding remarks
For general PDE systems, the general results developed in [3] on the basic algebraic structure surround-
ing adjoint-symmetries and symmetry actions are very rich. In particular, as shown by the examples
of physically interesting PDE systems in the present work, the adjoint-symmetry bracket constitutes a
homomorphism of a Lie (sub) algebra of symmetries into a Lie algebra of adjoint-symmetries, which
can hold, surprisingly, even for dissipative systems with no variational structure. Moreover, whenever
a PDE system possesses a non-multiplier adjoint-symmetry, there a dual symmetry action that yields a
Noether operator which leads to existence of a variational structure (Hamiltonian or Lagrangian).

Thus, the adjoint-symmetries of a given PDE system carry useful information about important aspects
of the system. Further developments and exploration of more examples will be an interesting problem
for future work.
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