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Abstract. Suppose (kn)n≥1 is Hartman uniformly distributed and good universal. Also
suppose ψ is a polynomial with at least one coefficient other than ψ(0) an irrational
number. We adapt an argument due to Furstenberg to prove that the sequence (ψ(kn))n≥1

is uniformly distributed modulo one. This is used to give some new families of Poincaré
recurrent sequences. In addition we show these sequences are also intersective and
Glasner.

1. Introduction
Let (X, B, µ) be a probability space and let T : X→ X be a measurable map, that is
also measure-preserving. That is, given A ∈ B, we have µ(T−1 A)= µ(A), where T−1 A
denotes the set {x ∈ X : T x ∈ A}. We call (X, B, µ, T ) a dynamical system. We say
that the dynamical system is ergodic if T−1 A = A for A ∈ B means that either µ(A) or
µ(X\A) is 0.

We say that (kn)n≥1 ⊆ N is L p good universal if for each dynamical system
(X, B, µ, T ) and for each f ∈ L p(X, β, µ) the limit

`T, f (x)= lim
N→∞

1
N

N−1∑
n=0

f (T kn x)

exists µ almost everywhere.
In what follows we will call (kn)n≥1 good if it is L∞-good universal and we have

`T, f (T x)= `T, f (x) µ almost everywhere.
We say that a sequence x1, . . . , xN , . . . is uniformly distributed modulo one if

lim
N→∞

1
N

#{1≤ n ≤ N : {xn} ∈ I } = |I |
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for every interval I ⊆ [0, 1). For a real number y we have used {y} to denote its fractional
part and let [y] = y − {y} denote its integer part. In this paper we prove the following
theorem.

THEOREM 1.1. Let ψ(x)= α0 + α1x + α2x2
+ · · · + αl x l , with at least one of the

numbers α1, . . . , αl irrational. Then the sequence (ψ(kn))n≥1 is uniformly distributed
modulo one if (kn)n≥1 is good.

The theorem is proved using Furstenberg’s skew product method [15]. This seems
to be the first new family of uniformly distributed sequences provided by this method.
Theorem 1.1 has a number of corollaries. For f ∈ L p(X, B, µ), with p ≥ 1, set ‖ f ‖p =

(
∫

X | f |
p dµ)1/p.

COROLLARY 1.2. Suppose that φ is a non-constant polynomial, mapping the natural
numbers to themselves, and that (kn)n≥1 is good. Then for any dynamical system
(X, B, µ, T ) and any f ∈ L2(X, B, µ), there exists f ∈ L2(X, B, µ) such that

lim
N→∞

∥∥∥∥ 1
N

N∑
n=1

f (T φ(kn)x)− f
∥∥∥∥

2
= 0.

It is natural to ask if Corollary 1.2 is true almost everywhere.
We say that a set of natural numbers S has positive Banach density B(S) if there exists

a sequence of intervals (Ip)
∞

p=1 in N with Ip = [ap, bp] ∩ N and |Ip| = bp − ap tending
to infinity as p tends to infinity such that

lim
p→∞

|S ∩ Ip|

|Ip|
= B(S),

and for any other sequence of intervals (I ′p)
∞

p=1 in N such that |I ′p| tends to infinity as p
tends to infinity we have

lim sup
p→∞

|S ∩ I ′p|

|I ′p|
≤ B(S).

We say that a sequence κ = (kn)
∞

n=1 of positive integers is a set of intersectivity if, given
any set of natural numbers S of positive Banach density B(S), there exists an integer k in
κ such that we can find s1 and s2 both in S satisfying

k = s1 − s2.

Following [16], we say that a sequence of natural numbers κ = (kn)
∞

n=1 is Poincaré
recurrent if, given any dynamical system on a probability space (X, β, µ, T ) and any set
A in β of positive measure, there exists an element k of κ such that

µ(A ∩ T−k A) > 0.

We say that a sequence of natural numbers κ = (kn)
∞

n=1 is strongly Poincaré recurrent
if, given any dynamical system on a probability space (X, β, µ, T ) and any set A in β of
positive measure, there exist γκ,A > 0 and an element k of κ such that

µ(A ∩ T−k A)≥ γκ,A.
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COROLLARY 1.3. Suppose φ is a non-constant polynomial mapping the natural numbers
to themselves such that φ(0)= 0. Then the sequence (φ(kn))n≥1 is strongly recurrent if
(kn)n≥1 is good.

Poincaré recurrent sequences are the same as intersective sequences [9], hence we have
the following corollary.

COROLLARY 1.4. Suppose φ is a non-constant polynomial mapping the natural numbers
to themselves such that φ(0)= 0. Then the sequence (φ(kn))n≥1 is intersective if (kn)n≥1
is good.

It is natural to ask if the sequences from Corollaries 1.3 and 1.4 are also multiply
recurrent and multiply intersective.

Following [5], we say that a set S contained in Z is Glasner if for every infinite set Y
contained in T= R/Z and ε > 0, some dilation nY = {ny : y ∈ Y } is ε dense (that is, nY
intersects every open interval of length ε). This definition is motivated by the 1979 result
of Glasner [17] which says that, given an infinite set Y ⊂ T, there exists a natural number
n such that nY is ε dense in T.

We have the following theorem, which in the case kn = n(n = 1, 2, . . .), appears in [2].

COROLLARY 1.5. Let φ be a polynomial of degree l ≥ 1 mapping the natural numbers to
themselves. Suppose δ > 0. Then, if (kn)n≥1 is good, there exists ε(φ, δ) > 0 such that if
0< ε < ε(φ, δ) for any set Y contained in T of cardinality s, where

s >
(

1
ε

)2l+δ

,

we have an ε dense dilation of the form φ(kn)Y , for some natural number n.

Since the proof of Weyl’s theorem [39], now over a century ago, innumerable examples
of uniformly distributed sequences have been produced. See the standard references [14]
and [23] for more background. Despite its age, Weyl’s theorem remains of interest, in part
because of its applications. Most proofs of Weyl’s theorem rely on exponential sums. An
ergodic-theoretic proof of Weyl’s theorem, making no use of exponential sums, was given
by Furstenberg [15]. This is the point of view taken in this paper. That said, exponential
sums will also play a role in our considerations.

Inspired by Roth’s proof that a set of integers of positive density contains a three-
term arithmetic progression [37, Ch. 10], Sárközy [31] showed that any set of integers of
positive density contains two terms whose difference is a square. Later, in stages, he also
considered more general polynomials than squares and also primes minus one [32, 33].

Soon thereafter Furstenberg used Weyl’s theorem and an ergodic method to prove that
if P(x) is a non-constant polynomial with integer coefficients such that P(0)= 0 then
(P(n))n≥1 is a set of recurrence [16].

Let (pn)n≥1 denote the sequence of prime numbers. In [24] polynomials P such that
(P(pn))n≥1 and (P(n))n≥1 are sets of strong recurrence are fully classified. The primary
tools used to prove the first author’s single recurrence results are a method of Furstenberg,
together with the uniform distribution of the sequences (ψ(pn))n≥1 and (ψ(n))n≥1. The
extension of these results to Zr for r ∈ N rather than just Z is routine and for this reason
not discussed in either [24] or [26]. The modifications amount to working with characters
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of Zr rather than Z which work very similarly. In [8] it is shown that if η is a polynomial
with integer coefficients mapping the natural numbers to themselves, then (η(pn − 1))n≥1
is strongly Poincaré recurrent. Evidently this is just a special case of [24, Theorem 1].
There is now of course a literature on the multiple recurrence of these sequences, too
extensive to conveniently discuss here.

A sequence in a second countable locally compact group is called Hartman uniformly
distributed if it is uniformly distributed on the Bohr compactification of the locally compact
group. In [26] it is shown that any such sequence is strongly recurrent. In the special
cases of Z and R this observation is anticipated in [1] and [11]. As is shown in [26],
one can use Weyl’s criterion on the Bohr compactification to construct examples. In the
particular case of Z, the methods of analytic number theory are used to construct a number
of families of strongly Poincaré recurrent sequences. See [25, Theorem 4] for details of
this. Let (α1, . . . , αr ) be an r -tuple of non-integer real numbers all greater than 1. Then
([pα1

n ], . . . , [p
αr
n ])n≥1 is shown in [6] to be strongly Poincaré recurrent. In fact, while not

discussed in [26], the sequence ([pα1
n ], . . . , [p

αr
n ])n≥1 is Hartman uniformly distributed on

Zr . Therefore the fact that it is strongly Poincaré recurrent follows from [26, Theorem 1].
In [22] we adapt the ideas of Furstenberg to study the Poincaré recurrence–intersectivity

phenomenon in positive characteristic. In this context the analogue of the integers is the
ring of polynomials Fq [x] over the finite field Fq in characteristic q . We show in [22] that
the set of irreducibles in Fq [x], which is the analogue of the primes in Z, once shifted by
one, is both a set of strong recurrence and a set of intersectivity. Poincaré recurrent sets are
intersective sets in this context. Whether the converse is true is unknown to the authors.
In [22] it is shown that if q = pr for some natural number r and exceeds the degree of a
polynomial P over Fq then {P(x) : x ∈ Fq} is also both a set of strong recurrence and a set
of intersectivity. Later in [7] this restriction on degree is removed, by proving the analogue
of Weyl’s theorem in positive characteristic. This is done by using Van der Corput instead
of Weyl differencing.

In [2] it is shown that if P is a non-constant polynomial mapping the natural numbers
to themselves, then the sets {P(n) : n ∈ N} and {pn : n ∈ N}, are Glasner. In [2] there is
also a consideration of the quantitative forms of results. The methods in [2] are Fourier
analytic and this is what allows these more quantitative forms of the result. See also [5] for
earlier results. In [28] it is shown that {P(pn) : n ∈ N} is Glasner and in [20] it is shown
that any sequence that is Hartman uniformly distributed on Z is again Glasner. Here again,
the methods are Fourier analytic and the theorems are quantitative.

2. Proof of Theorem 1.1
We say that a sequence of integers is uniformly distributed on Z if it is uniformly
distributed among the residue classes modulo m, for each natural number m > 1. We
say that a sequence of natural numbers (kn)n≥1 is Hartman uniform distributed (on Z) if it
is uniformly distributed on Z, and for each irrational number α the sequence ({knα})n≥1 is
uniformly distributed modulo one. This condition coincides with (kn)n≥1 being uniformly
distributed on the Bohr compactification of Z. Note that if (kn)n≥1 is Hartman uniformly
distributed on Z, and if for z with |z| = 1 we set

F(N , z) :=
1
N

N−1∑
n=0

zkn (N = 1, 2, . . .),
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then

lim
N→∞

F(N , z)=

{
1 if z = 1,

0 if z otherwise.

The converse is also true. See [23, Example 5.11 on p. 296]. In what follows, when we
say that a sequence is Hartman uniformly distributed we mean it is Hartman uniformly
distributed on Z.

The first lemma is [10, Corollary 3].

LEMMA 2.1. The following are equivalent.
(i) (kn)n≥1 is Hartman uniformly distributed.
(ii) For any dynamical system (X, B, µ, T ) and f ∈ L2(X, B, µ), if PT f denotes the

projection of f onto the T invariant subspace of L2(X, B, µ) we have

lim
N→∞

∥∥∥∥ 1
N

N−1∑
n=0

f (T kn x)− PT f
∥∥∥∥

2
= 0.

The next lemma is a special case of a theorem due to Sawyer [34].

LEMMA 2.2. Suppose for a dynamical system (X, β, µ, T ) that f ∈ Lq(X, β, µ) for
some q ∈ (1, 2). Set

M f (x)= sup
N≥1

∣∣∣∣ 1
N

N∑
n=1

f (T kn x)
∣∣∣∣ (N = 1, 2, . . . ).

If (kn)n≥1 is Lq -good universal, then there exists C > 0 such that ||M f ||2 ≤ C || f ||2.

A central tool of ours is the following lemma.

LEMMA 2.3. Suppose (ki )
∞

i=1 is Lq -good universal for q ∈ (1, 2]. Then if (ki )
∞

i=1 is
Hartman uniformly distributed and f ∈ L2(X, β, µ, T ), we have `T, f (T x)= `T, f (x)
µ almost everywhere for any dynamical system (X, β, µ). Further, we have `T, f (x)=∫

X f dµ, µ almost everywhere if (X, β, µ, T ) is ergodic.

The sequence kn = n2 (n = 1, 2, . . .) is L p good universal for all p > 1 [3] but not
Hartman uniformly distributed. To see this, note that a square integer is never congruent to
3 modulo 4. If we take X = Zp—the p-adic integers, set B to be the Haar σ -algebra on Zp,
set µ to be Haar measure on Zp and define T : Zp→ Zp by T x = x + 1, the dynamical
system we obtain is the p-adic adding machine, which is ergodic. For f ∈ L p(Zp) it is
possible using Fourier analysis to calculate

lim
N→∞

1
N

N∑
n=1

f (x + n2)

almost everywhere, which we know must exist because kn = n2 (n = 1, 2, . . .) is L p good
universal. The limit is, however, not the Haar integral of f on Zp as you might expect, but
rather a more complicated expression involving Fourier multipliers and Gauss sums. See
[3] for these details. This means that for the limit `T, f (x) for squares to be the integral of
f we need more than ergodicity. The ergodicity of all powers of T is a sufficient condition
[35].
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Proof of Lemma 2.3. The assertion that `(x) is invariant for ergodic (X, β, µ, T )
immediately implies `(x)=

∫
X f dµ.

Because |(1/N )
∑N

n=1 f (T an x)| ≤ M f (x) (N = 1, 2, . . .) and (M f )2 ∈ L1, the
dominated convergence theorem implies that

g(x)= lim
N→∞

1
N

N∑
n=1

f (T an x)

exists in L2-norm. Lemma 2.1 tells us that g(x) is T invariant if and only if (kn)n≥1 is
Hartman uniformly distributed.

All we have to do now is to show that the pointwise limit is the same as the norm limit,
that is, that `T, f (x)= g(x), µ almost everywhere. We consider a sequence of natural
numbers (Nt )t≥1 such that ∥∥∥∥ 1

Nt

Nt∑
n=1

f (T kn x)− g(x)
∥∥∥∥

2
≤

1
t
.

Thus
∞∑

t=1

∫
X

∣∣∣∣ 1
Nt

Nt∑
n=1

f (T kn x)− g(x)
∣∣∣∣2 dµ <∞.

Fatou’s lemma tells us that∫
X

( ∞∑
t=1

∣∣∣∣ 1
Nt

Nt∑
n=1

f (T kn x)− g(x)
∣∣∣∣2) dµ <∞,

which implies that
∞∑

t=1

∣∣∣∣ 1
Nt

Nt∑
n=1

f (T kn x)− g(x)
∣∣∣∣2 <∞

almost everywhere. This means that∣∣∣∣ 1
Nt

Nt∑
n=1

f (T kn x)− g(x)
∣∣∣∣= o(1),

µ almost everywhere. As (kn)n≥1 is L2-good universal we must have `T, f (x)= g(x), µ
almost everywhere. �

We also use the following lemma from [19], which in the case kn = n (n = 1, 2, . . .) is
classical and due to Oxtoby [30].

LEMMA 2.4. Suppose (kn)n≥1 is Hartman uniformly distributed and L∞-good universal.
Let T be a continuous map of a compact metrizable space X. Also let µ denote a measure
defined on a σ -algebra B of subsets of X. The following statements are equivalent.
(a) The transformation (X, B, µ, T ) is uniquely ergodic.
(b) Whenever f is a continuous function on X we have

lim
N→∞

1
N

N∑
n=1

f (T kn x)=
∫

X
f dµ

pointwise on X, that is, for all x ∈ X.
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Let δa denote the Kronecker delta function at a. We say that (xn)n≥1 ⊆ X for a compact
metric space X is asymptotically distributed with respect to a measure m if

lim
N→∞

1
N

N∑
n=1

δxn = m,

in the weak star limit. For x ∈ X a sequence of natural numbers κ = (kn)n≥1 and a
measure-preserving transformation T : X→ X we say that x is κ-generic with respect
to m if xn = T kn x (n = 1, 2 . . .) is asymptotically distributed with respect to m.

In light of Lemmas 2.3 and 2.4 we see that if κ is both Hartman uniformly distributed
and L∞ good universal then µ almost all x are κ-generic with respect to µ. For the
following lemma see [23, pp. 2–7]. For a real number x , let e(x) denote e2π i x . The next
lemma states Weyl’s famous criterion on uniform distribution.

LEMMA 2.5. The following are equivalent.
(i) (xn)n≥1 is uniformly distributed modulo one.
(ii) We have

lim
N→∞

1
N

N∑
n=1

e(hxn)= 0

for h ∈ Z\{0}.
(iii) For each continuous function f : [0, 1)→ R we have

lim
N→∞

1
N

N∑
n=1

f (xn)=

∫ 1

0
f (x) dx .

We have the following lemma of Furstenberg [15].

LEMMA 2.6. Let T : X→ X be a homeomorphism of a compact metric space that
preserves a measure µ such that (X, B, µ, T ) is uniquely ergodic. Let G be a compact
group with Haar measure mG and let c : X→ G be a continuous map. Define the skew
product map S on Y = X × G by S(x, g)= (T (x), c(x)g). If S is ergodic with respect to
µ× mG then it is uniquely ergodic.

We now specialize to the case G = Tl . For irrational α and x= (x1, . . . , xl) set
S(x)= (x1 + α, x2 + x1, . . . , xl + xl−1). A standard Fourier series argument shows
this map is ergodic. See [38, p.175] for details. Furstenberg’s lemma now shows it
must be uniquely ergodic. Suppose ψl(x) := ψ(x) is of degree l and let ψi−1(x) :=
ψi (x + 1)− ψi (x) (i = 2, . . . , l). So ψ1(x)= αl x + β for some real number β. Observe
that Sn((ψ1(0), . . . , ψl(0)))= (ψ1(n), . . . , ψl(n)) (n = 1, 2, . . .). Using Lemma 2.2,
all points in Tk are k-generic if k is good, so, given a continuous function f : Tl

→ C, we
have

lim
N→∞

1
N

N∑
n=1

f (ψ1(kn), . . . , ψl(kn))=

∫
Tl

f (t1, . . . , tl) dt1 . . . dtl .

Setting g(tl)= f (t1, . . . , tl), we have

lim
N→∞

1
N

N∑
n=1

g(ψl(kn))=

∫
T

g(tl) dtl ,
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for any continuous g : T→ C as required, thus proving Theorem 1.1 by Weyl’s criterion
on uniform distribution in the special case where αl is irrational.

Now suppose αl is rational. Then αl = p/q where p, q ∈ Z, the pair p and q are
coprime and q 6= 0. Also by assumption one of the numbers {α1, . . . , αl−1} is irrational
and we can assume without loss of generality that l ≥ 2. The latter assumption can be
made because the result is immediate for l = 1 from the the Hartman uniform distribution
of the sequence (kn)n≥1. To complete the proof of Theorem 1.1 we argue by induction and
assume the result is true for all polynomials for l ≤ k.

Suppose now thatψ has degree k + 1. Because αl = p/q , for each j = 0, 1, . . . , q − 1
the sequence ({ψ(kn)})kn≡ j mod q coincides with ({φ(kn)})kn≡ j mod q for a polynomial φ of
degree k satisfying the hypothesis of Theorem 1.1. By hypothesis we know ({φ(kn)})n≥1

is uniformly distributed modulo one. We wish to deduce that ({φ(kn)})kn≡ j mod q is
uniformly distributed modulo one. Unlike in the case when kn = n (n = 1, 2, . . .), where
this is immediate from the uniform distribution of ({φ(n)})n≥1, for general (kn)n≥1 a little
more care is needed. Let k(N ) denote the number of elements of (kn)n≥1 in the interval
[1, N ]. By Weyl’s criterion, which is Lemma 2.5(ii), we have to show for each h ∈ Z that

lim
N→∞

1
k(N )

∑
1≤kn≤N ;kn≡ j mod q

e(hφ(kn))= 0.

Let Gq denote the group of residues modulo q and let Ĝq its dual group. Using the
orthogonality property on this group, we have

I (n, j, q) :=
1
q

∑
χ∈Ĝq

χ(kn)χ( j)=

{
1 if kn ≡ j mod q,

0 otherwise.

Note that the function I (n, j, q) is the indicator function of the residue class j modulo q .
This means that

lim
N→∞

1
k(N )

∑
1≤kn≤N ;kn≡ j mod q

e(hφ(kn))

= lim
N→∞

1
k(N )

∑
1≤kn≤N

e(hφ(kn))

(
1
q

∑
χ∈Ĝq

χ(kn)χ( j)
)
.

Rearranging the double sum, we have that

1
k(N )

∑
1≤kn≤N

e(hφ(kn))

(
1
q

∑
χ∈Ĝq

χ(kn)χ( j)
)

=
χ( j)

q

∑
χ∈Ĝq

(
1

k(N )

∑
1≤kn≤N

e(hφ(kn))χ(kn)

)
.

Notice that the group Ĝq coincides with the group of roots of unity on the unit circle in
the complex plane. This means that χ(kn)= e2π ikn(s/t) for some s, t ∈ Z with t dividing
q. Moreover, s and t are coprime. This means that
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χ( j)
q

∑
χ∈Ĝq

(
1

k(N )

∑
1≤kn≤N

e(hφ(kn))χ(kn)

)

=
χ( j)

q

∑
χ∈Ĝq

(
1

k(N )

∑
1≤kn≤N

e(hφ′(kn))

)
,

where the polynomial φ′ coincides with the polynomial φ except that the coefficient
α1 is replaced by the coefficient α1 − s/th. Note that by the inductive hypothesis we
know that (φ′(kn))

∞

n=1 is uniformly distributed modulo one. Thus, using Weyl’s criterion,
({φ(kn)})kn≡ j mod q is uniformly distributed modulo one, implying ({ψ(kn)})kn≡ j mod q

is uniformly distributed modulo one, which finally implies ({ψ(kn)})
∞

n=1 is uniformly
distributed modulo one as required, so Theorem 1.1 is proved.

It is natural to ask if the assumption of (kn)n≥1 being good can be replaced by the
strictly weaker assumption that (kn)n≥1 is Hartman uniformly distributed on Z. The usual
differencing argument used to prove Weyl’s theorem does not seem to be sufficient.

3. Proof of Corollary 1.2
For coprime integers p, q with q non-zero let

G(p, q, φ)= lim
N→∞

1
N

N∑
j=1

e
(

p
q
φ(k j )

)
,

which must exist as (k j ) j≥1 is uniformly distributed on Z. Using Theorem 1.1, we have

lim
N→∞

1
N

N−1∑
n=0

e(φ(kn)θ)=


0 if θ 6∈Q,

G(p, q, φ) if θ =
p
q
.

Let U f (x)= f (T x). This is a unitary operator on L2 as T is measure-preserving.
Also let U−1 denote the L2 adjoint of U . Recall that we say that a sequence (cn)n∈Z is
positive definite if, given a bi-sequence of complex numbers (zn)n∈Z, only finitely many
of whose terms are non-zero, we have

∑
n,m∈Z cn−m znzm ≥ 0. Here z is the conjugate

of the complex number z. Let 〈 f, g〉 =
∫

X f g dµ (i.e. the standard inner product on L2).
Notice that (〈U n f, f 〉)n∈Z is positive definite. Recall that the Bochner–Herglotz theorem
[21] says that there is a measure ω f on T such that

〈U n f, f 〉 =
∫
T

zn dω f (z) (n ∈ Z).

From this we see that∥∥∥∥ 1
N

N−1∑
n=0

f (T φ(kn)x)−
1
M

M−1∑
n=0

f (T φ(kn)x)
∥∥∥∥2

2

=

∫
T

∣∣∣∣ 1
N

N−1∑
n=0

e(φ(kn)θ)−
1
M

M−1∑
n=0

e(φ(kn)θ)

∣∣∣∣2dω f (θ).

Using Theorem 1.1 and Weyl’s criterion, this can be as small as you like by choosing
M and N large enough. This means that ((1/N )

∑N−1
n=0 f (T φ(kn)x))N≥1 is a Cauchy

sequence in L2, proving Corollary 1.2.
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4. Proof of Corollaries 1.3 and 1.4
Now for each natural number N , the complex function (1/N )

∑N
n=1 zn is equal to 1 for all

N if z = 1, and it tends to 0 for all other z such that z is of absolute value 1 as N tends to
infinity. This means that if

AN f (x)=
1
N

N∑
n=1

f (T n x) (N = 1, 2, . . .),

then 〈AN f, f 〉 =
∫
T((1/N )

∑N
n=1 e(nθ))dω f (θ) tends to ω f ({0}) as N tends to infinity.

By the mean ergodic theorem, however, for f in L2, if PT f is the projection of f onto
the T invariant subspace of L2 then AN f tends to PT f in L2-norm as N tends to infinity.
This means that 〈PT f, f 〉 = w f ({0}) and so, by Cauchy’s inequality,

ω f ({0})= 〈PT f, f 〉 = 〈PT f, PT f 〉 ≥
∣∣∣∣∫ PT f dµ

∣∣∣∣2 = ∣∣∣∣ ∫
X

f dµ
∣∣∣∣2.

Let φ denote a non-constant polynomial mapping the natural numbers to themselves such
that φ(0)= 0. Let Ls,n = {φ(s∗k) : k ∈ κ ∩ [1, n] (n = 1, 2 . . .) where s∗ is the least
common multiple of the first s integers}, let Fk = {a/q : 1≤ a < q ≤ k; (a, q)= 1}, let
Fc

k denote its complement in the rational numbers and let ω f = ωi + ωr where ωr are the
atoms of ω f on the rationals. Then for arbitrary k0 we have

1
|Lk0,n|

∑
v∈Lk0,n

〈U v f, f 〉 = ω f ({0})+
∑
θ∈Fk0

ωr ({θ})

+

∑
θ∈Fc

k0

ωr ({θ})

(
1
|Lk0,n|

∑
v∈Lk0,n

e(vθ)
)

+

∫
T

(
1
|Lk0,n|

∑
v∈Lk0,n

e(vα)
)

dωi (α).

The second term on the right-hand side of this identity is non-negative, the third becomes
less than ε for large enough k0, and the final term tends to zero as n tends to infinity by
Theorem 1.1 and Weyl’s criterion, so, choosing f = χA with µ(A) > 0, we have

lim sup
n→∞

1
|Lk0,n|

∑
v∈Lk0,n

µ(A ∩ T−vA)≥ µ2(A)− ε,

as required.

5. Proof of Corollary 1.5
We begin with some technical results we will need later. The first is abstracted from special
cases dealt with in [2].

LEMMA 5.1. Given ε > 0, if X = {x1, . . . , xs} is any set of finitely many points contained
in T such that for every natural number n indexing the sequence (an)n≥1 the dilation an X
is not ε dense, then there is an absolute constant C > 0 such that if

M =
[(

1
ε

)
log2

(
1
ε

)]
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then we have

s2
≤

(
C
ε

) M∑
m=1

s∑
j=1

s∑
l=1

1
N

N∑
n=1

em(an(x j − xl)),

where em(t)= e2π imt .

We next need the following estimate for rational exponential sums which is due to Hua
[18].

LEMMA 5.2. Let θ denote a polynomial of degree L mapping the natural numbers to
themselves. Then if ε1 > 0, there is a constant C > 0 such that∣∣∣∣1b

b∑
a=1

e1

(
θ(a)

b

)∣∣∣∣≤ C
b1/L−ε1

.

The following is also taken from [2].

LEMMA 5.3. Let {x1, . . . , xs} be an arbitrary set of s distinct points in the unit interval
[0, 1). Denote by hm the number of pairs (i, j) with 1≤ i < j ≤ s, such that m(xi − x j )

is an integer. Suppose β > 0. Then if s is sufficiently large for any m ≥ 1, the partial sum

Hm =

m∑
l=1

hl

satisfies the inequality
Hm ≤ (sm)β+1.

The trivial bound here is Hm ≤ sm2.

Following Lemma 5.1, given ε > 0 and a finite set X = {x1, . . . , xs} contained in T, if
the dilation φ(kn)X is not ε dense, setting

M =
[(

1
ε

)
log2

(
1
ε

)]
,

we have

s2
≤

(
C
ε

) M∑
m=1

s∑
j=1

s∑
l=1

1
N

N∑
n=1

em(φ(kn)(x j − xl)). (5.1)

As a consequence of Theorem 1.1 and Weyl’s criterion, as N tends to infinity, when for
a particular j and l the difference x j − xk is irrational the average furthest to the right in
(5.1) tends to zero. This means that in estimating the right-hand side of (5.1) we need
only consider the contribution of the terms in the double sum in j and l for which the
corresponding x j − xl is rational.

Now for rational a/b, in reduced form we may clearly write

mφ(n)
a
b
=
(a′ln

l
+ · · · + a′0)

b′
=
θ(n)

b′

where the highest common factor of the integers a′l , . . . , a′0, and b′ is 1, b′ denotes
b/(m, b), and (m, b) denotes the highest common factor of m and b. Because (kn)

∞

n=1
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is uniformly distributed among the residue classes modulo b′, and further because of the
fact that the value of mφ(kn)(a/b) is θ(c)/b′ when kn ≡ c(mod b′), if x j − xk = a/b, we
have

lim
N→∞

1
N

N∑
n=1

em(φ(kn)(x j − xl))=
1
b′

b′∑
a=1

e1

(
θ(a)

b′

)
.

From Lemma 5.2 we have that∣∣∣∣ 1
b′

b′∑
a=1

e1

(
θ(a)

b′

)∣∣∣∣< C
(b′)1/ l−ε1

≤ C
(
(m, b)

b

)1/ l−ε1

.

Also because there are at most M/r multiples of r that divide b less than M we know that

M∑
m=1

(m, b)1/ l−ε1 ≤

∑
r |b

r≤M

(
M
r

)
r1/ l−ε1 .

We also note that ∑
r |b

r≤M

(
M
r

)
r1/ l−ε

≤ Md(b), (5.2)

where d(n) denotes the number of integers between 1 and n inclusive that there are that
divide n. Note that, given ε2 > 0, we have d(n)= o(nε2). From this (5.2) tells us that

M∑
m=1

∣∣∣∣ lim
N→∞

1
N

N∑
n=1

em(φ(kn)(x j − xl))

∣∣∣∣≤ C Mb−1/ l+ε1+ε2 .

Let

gb = #
{
( j, k) : 1≤ j < l ≤ s : x j − xl =

a
b

for some a; (a, b)= 1
}

and let

Gb =

b∑
i=1

gi .

Then, setting ε = ε1 + ε2 and using partial summation, we have

s2
≤ C

(
M
ε

)(
s +

∑
b≥2

gbb−1/ l+ε
)

=C
(

M
ε

)(
s +

∑
b≥2

Gb(b−1/ l+ε
− (b + 1)−1/ l+ε)

)
.

From the trivial estimate in Lemma 5.3 we see that we have Gb ≤ s2 for b ≥ s. If b < s
we know Gb ≤ Hb ≤ sb1+β . Therefore the above expression is majorized by

C
(

M
ε

)(
s +

∑
b≥2

(sb)1+βb−1/ l+ε
+ s2s−1/ l+ε

)

≤ C
(

M
ε

)
s1+β

( s∑
b=1

b2β−1/ l
+ s1−1/ l

)
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≤ C
(

M
ε

)
s2+3β−1/ l(1+ s−2β).

Given our value for M , this tells us that

s ≤
(

1
ε

)2+δ

,

as required.

6. List of known good universal sequences
In this section we give some examples of L p-good universal sequences for some
p ≥ 1. Examples 1 and 3–6 are Hartman uniformly distributed. Example 2 is not Hartman
uniformly distributed in general.
(1) The natural numbers. The sequence (n)∞n=1 is L1-good universal. This is Birkhoff’s

pointwise ergodic theorem.
(2) Polynomial-like sequences. If φ(x) is a polynomial such that φ(N)⊆ N and p > 1,

then (φ(n))∞n=1 and (φ(pn))
∞

n=1, where pn is the nth prime, are L p-good universal
sequences. See [13] and [25], respectively.

(3) Condition H. Sequences (kn)
∞

n=1 that are both L p-good universal and Hartman
uniformly distributed can be constructed as follows. Set kn = [τ(n)] (n = 1, 2, . . . ),
where τ : [1,∞)→ [1,∞) is a differentiable function whose derivative increases
with its argument. Let�m denote the cardinality of the set {n : an ≤ m}, and suppose,
for some function ϕ : [1,∞)→ [1,∞) increasing to infinity as its argument does,
that we set

%(m)= sup
{z}∈[1/ϕ(m),1/2)

∣∣∣∣ ∑
n : kn≤m

e(zkn)

∣∣∣∣.
Suppose also, for some decreasing function ρ : [1,∞)→ [1,∞) and some positive
constant ω > 0, that

%(m)+�[ϕ(m)] + m/ϕ(m)
�m

≤ ωρ(m).

Then if we have
∞∑

n=1

ρ(θn) <∞

for all θ > 0, we say that (an)
∞

n=1 satisfies condition H, see [27, 36].
Sequences satisfying condition H are known to be both Hartman uniformly distributed

and L p-good universal. Specific sequences of integers that satisfy condition H include
an = [τ(n)] (n = 1, 2, . . . ) where:
(I) τ(n)= nγ if γ > 1 and γ /∈ N.
(II) τ(n)= elogγ n for γ ∈ (1, 3

2 ).

(III) τ(n)= bknk
+ · · · + b1n + b0 for bk, . . . , b1 not all rational multiplies of the same

real number.
(IV) Hardy fields. By a Hardy field, we mean a closed subfield (under differentiation)

of the ring of germs at +∞ of continuous real-valued functions with addition and
multiplication taken to be pointwise. Let H denote the union of all Hardy fields.
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Conditions for (an)
∞

n=1 = ([ψ(n)])
∞

n=1, where ψ ∈H, to satisfy condition H are
given by the hypotheses of [12, Theorems 3.4, 3.5 and 3.8]. Note that the term
ergodic is used in this paper in place of the older term Hartman uniformly distributed.

(4) A random example. Suppose that S = (kn)
∞

n=1 is a strictly increasing sequence of
natural numbers. By identifying S with its characteristic function χS, we may view
it as a point in3= {0, 1}N, the set of maps from N to {0, 1}.We may endow3 with
a probability measure by viewing it as a Cartesian product3=

∏
∞

n=1 Xn,where, for
each natural number n, we have Xn = {0, 1} and specify the probability νn on Xn by
νn({1})= ωn with 0≤ ωn ≤ 1 and νn({0})= 1− ωn such that limn→∞ ωnn =∞.
The desired probability measure on 3 is the corresponding product measure ν =∏
∞

n=1 νn . The underlying σ -algebra A is that generated by the cylinders

{(1n)
∞

n=1 ∈3 : 1n1 = αn1 , . . . , 1nk = αnk }

for all possible choices of n1, . . . , nk and αn1 , . . . , αnk . Then almost every point
(an)

∞

n=1 in 3, with respect to the measure ν, is Hartman uniformly distributed. See
[13, Proposition 8.2 (i)] for the details of this. Again Hartman uniformly distributed
sequences are called ergodic sequences in this paper.

(5) Block sequences. Suppose that (an)
∞

n=1 =
⋃
∞

n=1[dn, en] is ordered by absolute value
for disjoint ([dn, en])

∞

n=1 with dn−1 = O(en) as n tends to infinity. Note that this
allows the possibility that (an)

∞

n=1 is zero density. This example is an immediate
consequence of Tempelman’s semigroup ergodic theorem. See [4, p. 218]. Being a
group average ergodic theorem, this pointwise limit must be invariant, which ensures
that the block sequence must be Hartman uniformly distributed. The proof of this,
which we do not need in this paper and is hence omitted, is a simple exercise in
spectral theory.

(6) Random perturbation of good sequences. Suppose that (an)
∞

n=1 is an L p-good
universal sequence which is also Hartman uniformly distributed. Let θ = (θn)

∞

n=1
be a sequence of N-valued independent, identically distributed random variables
with basic probability space (Y,A, P), and a P-complete σ -field A. Let E denote
expectation with respect to the basic probability space (Y,A, P). Assume that there
exist 0< α < 1 and β > 1/α such that

an = O(enα ) and E logβ+ |θ1|<∞.

Then (kn + θn(ω))
∞

n=1 is both L p-good universal and Hartman uniformly distributed
[29].
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improved the presentation of this paper.
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