A NOTE ON REGULAR LOCAL NOETHER LATTICES

by JOHNNY A. JOHNSON

(Received 17 September, 1973; revised 4 March, 1974)

If R is a local (Noetherian) ring, it is well known that R is regular if and only if its completion is regular. It is the purpose of this note to show that a similar result is true for Noether lattices.

Let \mathcal{L} be a complete lattice on which there is defined a commutative, associative, join distributive (finite and infinite) multiplication such that the unit element of \mathcal{L} is an identity for multiplication. An element b of \mathcal{L} is said to be meet principal if $(c \land (d:b))b = cb \land d$, for all c, d in \mathcal{L} ; b is said to be join principal if $d \lor (c:b) = (db \lor c) : b$ for all c, d in \mathcal{L} ; and b is said to be principal if b is both meet and join principal. \mathcal{L} is called a Noether lattice if \mathcal{L} is modular, satisfies the ascending chain condition, and every element of \mathcal{L} is the join of principal elements. A Noether lattice \mathcal{L} is said to be local if it has a unique maximal (proper) prime element m and we denote this by (\mathcal{L}, m) . In general we shall adopt the Noether lattice terminology of [1].

If q is a m-primary element of a local Noether lattice (\mathcal{L}, m) , then, for each positive integer n, we let D(q, n) denote the lattice dimension of \mathcal{L}/q^n . We will require the following two known results from [2] (Corollary 3.5, p. 135, and Theorem 3.9, p. 136, respectively).

THEOREM 1. Let q be a m-primary element of \mathcal{L} . Then there exists a polynomial $D^*(q, x)$ such that $D^*(q, n) = D(q, n)$, for all sufficiently large integers n.

THEOREM 2. Let q be a m-primary element of \mathcal{L} . Then the degree of $D^*(q, x)$ is the altitude of \mathcal{L} .

Throughout the remainder of this paper, \mathscr{L} will be a local Noether lattice with unique maximal prime element m. Elements of \mathscr{L} will be denoted by small letters a, b, c, \ldots . As in section 2 of [2] we let \mathscr{L}^* be the collection of all formal sums $\sum_{i=1}^{\infty} a_i$ of elements of \mathscr{L} such that $a_i = a_{i+1} \vee m^i$, for $i = 1, 2, \ldots$ Elements of \mathscr{L}^* are denoted by A, B, C, \ldots , and for A in \mathscr{L}^* , let $A = \sum_{i=1}^{\infty} a_i$. On \mathscr{L}^* define

 $A \leq B$ if and only if $a_i \leq b_i$, i = 1, 2, ...,

$$AB = \sum_{i=1}^{\infty} (a_i b_i \vee m^i),$$

so that \mathcal{L}^* is a multiplicative lattice which satisfies the ascending chain condition [3, Theorem 2.1, p. 330].

Let $\langle e_i \rangle$ (i = 1, 2, ...) be a sequence of elements of \mathcal{L} such that, for each positive integer n,

$$e_{i+1} \le e_i \lor m^n$$
, for all positive integers $i \ge n$. (1)

For each positive integer n, set $d_n = \bigwedge_{i \geq n} (e_i \vee m^n)$. Then $D = \sum_{i=1}^{\infty} d_i$ is an element of \mathcal{L}^* , which we will call the element of \mathcal{L}^* derived from the sequence $\langle e_i \rangle$ (i = 1, 2, ...). If a is an element of \mathcal{L} , set $a^* = \sum_{i=1}^{\infty} (a \vee m^i)$, so that a^* is the element of \mathcal{L}^* derived from the constant sequence $a_i = a$, $i = 1, 2, \ldots$ For each $A = \sum_{i=1}^{\infty} a_i$ in \mathcal{L}^* , define C(A) in \mathcal{L} by $C(A) = \bigwedge_{i=1}^{\infty} a_i$.

REMARK 1. For each a in \mathcal{L} note that

$$C(a^*) = C\left(\sum_{i=1}^{\infty} (a \vee m^i)\right) = \bigwedge_{i=1}^{\infty} (a \vee m^i) = a,$$

by [1, Corollary 3.2, p. 486].

The following properties of \mathcal{L}^* are known and we collect them here for the convenience of the reader (see [3, p. 331] and [4]).

- (i) If $\langle c_i \rangle$ is a sequence of principal elements of \mathcal{L} satisfying (1), then the derived element in \mathcal{L}^* of $\langle c_i \rangle$ is a principal element of \mathcal{L}^* .
 - (ii) \mathcal{L}^* is a local Noether lattice with maximal element $m^* = \sum_{i=1}^{\infty} m_i$.
 - (iii) The map $a \to a^*$ of $\mathcal{L} \to \mathcal{L}^*$ is a multiplicative lattice monomorphism.
 - (iv) For each natural number n, $\mathcal{L}^*/m^{*n} \cong \mathcal{L}/m^n$.

The height of a prime element p of a Noether lattice \mathcal{L} is defined to be the supremum of all integers n for which there exists a prime chain $p_0 < p_1 < p_2 < \ldots < p_n = p$ in \mathcal{L} , and the altitude of \mathcal{L} is defined to be the supremum of the heights of the prime elements of \mathcal{L} . A local Noether lattice \mathcal{L} of altitude k is said to be regular in case the unique maximal prime element of \mathcal{L} is the join of k principal elements.

THEOREM 3. (\mathcal{L}, m) is a regular local Noether lattice if and only if (\mathcal{L}^*, m^*) is a regular local Noether lattice.

Proof. Since $\mathcal{L}^*/m^{*i} \cong \mathcal{L}/m^i$, for all integers $i \geq 1$, by (iv), it follows from Theorem 2 that \mathcal{L} and \mathcal{L}^* have the same altitude; so let the altitude of \mathcal{L} and \mathcal{L}^* be d. Assume that \mathcal{L}^* is regular and let a_1, a_2, \ldots, a_k be principal elements of \mathcal{L} that form a basis for m, so that $m = a_1 \vee \ldots \vee a_k$. Since the altitude of \mathcal{L} is d, it follows that m cannot be a join of fewer than d principal elements of \mathcal{L} (cf. [1, Theorem 6.5, p. 496]); thus $k \geq d$. Since

$$m^* = (a_1 \vee ... \vee a_k)^* = a_1^* \vee ... \vee a_k^*$$

by (iii), and each a_i^* ($1 \le i \le k$) is principal by (i), it follows that $\{a_1^*, \ldots, a_k^*\}$ forms a basis for the maximal element m^* of \mathcal{L}^* that can be reduced to a minimal basis that will necessarily have d elements (cf. [2, Theorem 1.4, p. 126]). Thus assume that

$$m^* = a_{i_1}^* \vee \ldots \vee a_{i_d}^*,$$

so that

$$m = C(m^*) = C((a_{i_1} \vee \ldots \vee a_{i_d})^*) = a_{i_1} \vee \ldots \vee a_{i_d},$$

by Remark 1. Consequently, m is the join of d principal elements and therefore \mathcal{L} is regular. Conversely, if \mathcal{L} is regular, then there are d principal elements a_1, \ldots, a_d of \mathcal{L} such that

$$m = a_1 \vee \ldots \vee a_d$$
.

Hence

$$m^* = (a_1 \vee ... \vee a_d)^* = a_1^* \vee ... \vee a_d^*$$

by (iii), where, as above, by (i) each a_i^* ($1 \le i \le d$) is principal in \mathcal{L}^* , so that \mathcal{L}^* is regular. This completes the proof of the theorem.

REFERENCES

- 1. R. P. Dilworth, Abstract commutative ideal theory, Pacific J. Math. 12 (1962), 481-498.
- 2. E. W. Johnson, A-transforms and Hilbert functions on local lattices, *Trans. Amer. Math. Soc.* 137 (1969), 125-139.
- 3. E. W. Johnson and J. A. Johnson, M-primary elements of a local Noether lattice, Canad. J. Math. 22 (1970), 327-331.
- 4. E. W. Johnson and J. A. Johnson, M-primary elements of a local Noether lattice, Corrigendum, Canad. J. Math. 25 (1973), 448.

University of Houston Department of Mathematics Houston, Texas 77004 U.S.A.